

 [image: cover]

 Ruby on Rails Tutorial
Learn Web Development with Rails
Michael Hartl

Contents
	Foreword
	Acknowledgments
	About the author
	Copyright and license
	Chapter 1 From zero to deploy
		1.1 Introduction
		1.1.1 Prerequisites
	1.1.2 Conventions in this book

	1.2 Up and running
		1.2.1 Development environment
	1.2.2 Installing Rails

	1.3 The first application
		1.3.1 Bundler
	
 1.3.2
 rails server

	1.3.3 Model-View-Controller (MVC)
	1.3.4 Hello, world!

	1.4 Version control with Git
		1.4.1 Installation and setup
	1.4.2 What good does Git do you?
	1.4.3 Bitbucket
	1.4.4 Branch, edit, commit, merge

	1.5 Deploying
		1.5.1 Heroku setup
	1.5.2 Heroku deployment, step one
	1.5.3 Heroku deployment, step two
	1.5.4 Heroku commands

	1.6 Conclusion
		1.6.1 What we learned in this chapter

	1.7 Exercises

	Chapter 2 A toy app
		2.1 Planning the application
		2.1.1 A toy model for users
	2.1.2 A toy model for microposts

	2.2 The Users resource
		2.2.1 A user tour
	2.2.2 MVC in action
	2.2.3 Weaknesses of this Users resource

	2.3 The Microposts resource
		2.3.1 A micropost microtour
	2.3.2 Putting the micro in microposts
	2.3.3 A user has_many microposts
	2.3.4 Inheritance hierarchies
	2.3.5 Deploying the toy app

	2.4 Conclusion
		2.4.1 What we learned in this chapter

	2.5 Exercises

	Chapter 3 Mostly static pages
		3.1 Sample app setup
	3.2 Static pages
		3.2.1 Generated static pages
	3.2.2 Custom static pages

	3.3 Getting started with testing
		3.3.1 Our first test
	3.3.2 Red
	3.3.3 Green
	3.3.4 Refactor

	3.4 Slightly dynamic pages
		3.4.1 Testing titles (Red)
	3.4.2 Adding page titles (Green)
	3.4.3 Layouts and embedded Ruby (Refactor)
	3.4.4 Setting the root route

	3.5 Conclusion
		3.5.1 What we learned in this chapter

	3.6 Exercises
	3.7 Advanced testing setup
		3.7.1 MiniTest reporters
	3.7.2 Backtrace silencer
	3.7.3 Automated tests with Guard

	Chapter 4 Rails-flavored Ruby
		4.1 Motivation
	4.2 Strings and methods
		4.2.1 Comments
	4.2.2 Strings
	4.2.3 Objects and message passing
	4.2.4 Method definitions
	4.2.5 Back to the title helper

	4.3 Other data structures
		4.3.1 Arrays and ranges
	4.3.2 Blocks
	4.3.3 Hashes and symbols
	4.3.4 CSS revisited

	4.4 Ruby classes
		4.4.1 Constructors
	4.4.2 Class inheritance
	4.4.3 Modifying built-in classes
	4.4.4 A controller class
	4.4.5 A user class

	4.5 Conclusion
		4.5.1 What we learned in this chapter

	4.6 Exercises

	Chapter 5 Filling in the layout
		5.1 Adding some structure
		5.1.1 Site navigation
	5.1.2 Bootstrap and custom CSS
	5.1.3 Partials

	5.2 Sass and the asset pipeline
		5.2.1 The asset pipeline
	5.2.2 Syntactically awesome stylesheets

	5.3 Layout links
		5.3.1 Contact page
	5.3.2 Rails routes
	5.3.3 Using named routes
	5.3.4 Layout link tests

	5.4 User signup: A first step
		5.4.1 Users controller
	5.4.2 Signup URL

	5.5 Conclusion
		5.5.1 What we learned in this chapter

	5.6 Exercises

	Chapter 6 Modeling users
		6.1 User model
		6.1.1 Database migrations
	6.1.2 The model file
	6.1.3 Creating user objects
	6.1.4 Finding user objects
	6.1.5 Updating user objects

	6.2 User validations
		6.2.1 A validity test
	6.2.2 Validating presence
	6.2.3 Length validation
	6.2.4 Format validation
	6.2.5 Uniqueness validation

	6.3 Adding a secure password
		6.3.1 A hashed password
	6.3.2 User has secure password
	6.3.3 Minimum password length
	6.3.4 Creating and authenticating a user

	6.4 Conclusion
		6.4.1 What we learned in this chapter

	6.5 Exercises

	Chapter 7 Sign up
		7.1 Showing users
		7.1.1 Debug and Rails environments
	7.1.2 A Users resource
	7.1.3 Debugger
	7.1.4 A Gravatar image and a sidebar

	7.2 Signup form
		7.2.1 Using form_for
	7.2.2 Signup form HTML

	7.3 Unsuccessful signups
		7.3.1 A working form
	7.3.2 Strong parameters
	7.3.3 Signup error messages
	7.3.4 A test for invalid submission

	7.4 Successful signups
		7.4.1 The finished signup form
	7.4.2 The flash
	7.4.3 The first signup
	7.4.4 A test for valid submission

	7.5 Professional-grade deployment
		7.5.1 SSL in production
	7.5.2 Production webserver
	7.5.3 Ruby version number

	7.6 Conclusion
		7.6.1 What we learned in this chapter

	7.7 Exercises

	Chapter 8 Log in, log out
		8.1 Sessions
		8.1.1 Sessions controller
	8.1.2 Login form
	8.1.3 Finding and authenticating a user
	8.1.4 Rendering with a flash message
	8.1.5 A flash test

	8.2 Logging in
		8.2.1 The log_in method
	8.2.2 Current user
	8.2.3 Changing the layout links
	8.2.4 Testing layout changes
	8.2.5 Login upon signup

	8.3 Logging out
	8.4 Remember me
		8.4.1 Remember token and digest
	8.4.2 Login with remembering
	8.4.3 Forgetting users
	8.4.4 Two subtle bugs
	8.4.5 “Remember me” checkbox
	8.4.6 Remember tests

	8.5 Conclusion
		8.5.1 What we learned in this chapter

	8.6 Exercises

	Chapter 9 Updating, showing, and deleting users
		9.1 Updating users
		9.1.1 Edit form
	9.1.2 Unsuccessful edits
	9.1.3 Testing unsuccessful edits
	9.1.4 Successful edits (with TDD)

	9.2 Authorization
		9.2.1 Requiring logged-in users
	9.2.2 Requiring the right user
	9.2.3 Friendly forwarding

	9.3 Showing all users
		9.3.1 Users index
	9.3.2 Sample users
	9.3.3 Pagination
	9.3.4 Users index test
	9.3.5 Partial refactoring

	9.4 Deleting users
		9.4.1 Administrative users
	9.4.2 The destroy action
	9.4.3 User destroy tests

	9.5 Conclusion
		9.5.1 What we learned in this chapter

	9.6 Exercises

	Chapter 10 Account activation and password reset
		10.1 Account activation
		10.1.1 Account activations resource
	10.1.2 Account activation mailer method
	10.1.3 Activating the account
	10.1.4 Activation test and refactoring

	10.2 Password reset
		10.2.1 Password resets resource
	10.2.2 Password resets controller and form
	10.2.3 Password reset mailer method
	10.2.4 Resetting the password
	10.2.5 Password reset test

	10.3 Email in production
	10.4 Conclusion
		10.4.1 What we learned in this chapter

	10.5 Exercises
	10.6 Proof of expiration comparison

	Chapter 11 User microposts
		11.1 A Micropost model
		11.1.1 The basic model
	11.1.2 Micropost validations
	11.1.3 User/Micropost associations
	11.1.4 Micropost refinements

	11.2 Showing microposts
		11.2.1 Rendering microposts
	11.2.2 Sample microposts
	11.2.3 Profile micropost tests

	11.3 Manipulating microposts
		11.3.1 Micropost access control
	11.3.2 Creating microposts
	11.3.3 A proto-feed
	11.3.4 Destroying microposts
	11.3.5 Micropost tests

	11.4 Micropost images
		11.4.1 Basic image upload
	11.4.2 Image validation
	11.4.3 Image resizing
	11.4.4 Image upload in production

	11.5 Conclusion
		11.5.1 What we learned in this chapter

	11.6 Exercises

	Chapter 12 Following users
		12.1 The Relationship model
		12.1.1 A problem with the data model (and a solution)
	12.1.2 User/relationship associations
	12.1.3 Relationship validations
	12.1.4 Followed users
	12.1.5 Followers

	12.2 A web interface for following users
		12.2.1 Sample following data
	12.2.2 Stats and a follow form
	12.2.3 Following and followers pages
	12.2.4 A working follow button the standard way
	12.2.5 A working follow button with Ajax
	12.2.6 Following tests

	12.3 The status feed
		12.3.1 Motivation and strategy
	12.3.2 A first feed implementation
	12.3.3 Subselects

	12.4 Conclusion
		12.4.1 Guide to further resources
	12.4.2 What we learned in this chapter

	12.5 Exercises

Foreword

My former company (CD Baby) was one of the first to loudly switch to Ruby on Rails, and then even more loudly switch back to PHP (Google me to read about the drama). This book by Michael Hartl came so highly recommended that I had to try it, and the Ruby on Rails Tutorial is what I used to switch back to Rails again.

Though I’ve worked my way through many Rails books, this is the one that finally made me “get” it. Everything is done very much “the Rails way”—a way that felt very unnatural to me before, but now after doing this book finally feels natural. This is also the only Rails book that does test-driven development the entire time, an approach highly recommended by the experts but which has never been so clearly demonstrated before. Finally, by including Git, GitHub, and Heroku in the demo examples, the author really gives you a feel for what it’s like to do a real-world project. The tutorial’s code examples are not in isolation.

The linear narrative is such a great format. Personally, I powered through the Rails Tutorial in three long days,1 doing all the examples and challenges at the end of each chapter. Do it from start to finish, without jumping around, and you’ll get the ultimate benefit.

Enjoy!

Derek Sivers (sivers.org)
Founder, CD Baby

Acknowledgments

The Ruby on Rails Tutorial owes a lot to my previous Rails book, RailsSpace, and hence to my coauthor Aurelius Prochazka. I’d like to thank Aure both for the work he did on that book and for his support of this one. I’d also like to thank Debra Williams Cauley, my editor on both RailsSpace and the Ruby on Rails Tutorial; as long as she keeps taking me to baseball games, I’ll keep writing books for her.

I’d like to acknowledge a long list of Rubyists who have taught and inspired me over the years: David Heinemeier Hansson, Yehuda Katz, Carl Lerche, Jeremy Kemper, Xavier Noria, Ryan Bates, Geoffrey Grosenbach, Peter Cooper, Matt Aimonetti, Mark Bates, Gregg Pollack, Wayne E. Seguin, Amy Hoy, Dave Chelimsky, Pat Maddox, Tom Preston-Werner, Chris Wanstrath, Chad Fowler, Josh Susser, Obie Fernandez, Ian McFarland, Steven Bristol, Pratik Naik, Sarah Mei, Sarah Allen, Wolfram Arnold, Alex Chaffee, Giles Bowkett, Evan Dorn, Long Nguyen, James Lindenbaum, Adam Wiggins, Tikhon Bernstam, Ron Evans, Wyatt Greene, Miles Forrest, the good people at Pivotal Labs, the Heroku gang, the thoughtbot guys, and the GitHub crew. Finally, many, many readers—far too many to list—have contributed a huge number of bug reports and suggestions during the writing of this book, and I gratefully acknowledge their help in making it as good as it can be.

About the author

Michael Hartl is the author of the Ruby on Rails Tutorial, one of the leading introductions to web development, and is a cofounder of the Softcover self-publishing platform. His prior experience includes writing and developing RailsSpace, an extremely obsolete Rails tutorial book, and developing Insoshi, a once-popular and now-obsolete social networking platform in Ruby on Rails. In 2011, Michael received a Ruby Hero Award for his contributions to the Ruby community. He is a graduate of Harvard College, has a Ph.D. in Physics from Caltech, and is an alumnus of the Y Combinator entrepreneur program.

Copyright and license

Ruby on Rails Tutorial: Learn Web Development with Rails. Copyright © 2014 by Michael Hartl. All source code in the Ruby on Rails Tutorial is available jointly under the MIT License and the Beerware License.

The MIT License

Copyright (c) 2014 Michael Hartl

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

/*
 * --
 * "THE BEERWARE LICENSE" (Revision 43):
 * Michael Hartl wrote this code. As long as you retain this notice you
 * can do whatever you want with this stuff. If we meet some day, and you think
 * this stuff is worth it, you can buy me a beer in return.
 * --
 */

 	This is not typical! Getting through the entire book usually takes much longer than three days. ↑

 Chapter 1 From zero to deploy

Welcome to Ruby on Rails Tutorial: Learn Web Development with Rails. The purpose of this book is to teach you how to develop custom web applications, and our tool of choice is the popular Ruby on Rails web framework. If you are new to the subject, the Ruby on Rails Tutorial will give you a thorough introduction to web application development, including a basic grounding in Ruby, Rails, HTML & CSS, databases, version control, testing, and deployment—sufficient to launch you on a career as a web developer or technology entrepreneur. On the other hand, if you already know web development, this book will quickly teach you the essentials of the Rails framework, including MVC and REST, generators, migrations, routing, and embedded Ruby. In either case, when you finish the Ruby on Rails Tutorial you will be in a position to benefit from the many more advanced books, blogs, and screencasts that are part of the thriving programming educational ecosystem.1

The Ruby on Rails Tutorial takes an integrated approach to web development by building three example applications of increasing sophistication, starting with a minimal hello app (Section 1.3), a slightly more capable toy app (Chapter 2), and a real sample app (Chapter 3 through Chapter 12). As implied by their generic names, the applications developed in the Ruby on Rails Tutorial are not specific to any particular kind of website; although the final sample application will bear more than a passing resemblance to a certain popular social microblogging site (a site which, coincidentally, was also originally written in Rails), the emphasis throughout the tutorial is on general principles, so you will have a solid foundation no matter what kinds of web applications you want to build.

One common question is how much background is necessary to learn web development using the Ruby on Rails Tutorial. As discussed in more depth in Section 1.1.1, web development is a challenging subject, especially for complete beginners. Although the tutorial was originally designed for readers with some prior programming or web-development experience, in fact it has found a significant audience among beginning developers. In acknowledgment of this, the present third edition of the Rails Tutorial has taken several important steps toward lowering the barrier to getting started with Rails (Box 1.1).

Box 1.1.

Lowering the barrier

This third edition of the Ruby on Rails Tutorial aims to lower the barrier to getting started with Rails in a number of ways:

	Use of a standard development environment in the cloud (Section 1.2), which sidesteps many of the problems associated with installing and configuring a new system

	Use of the Rails “default stack”, including the built-in MiniTest testing framework

	Elimination of many external dependencies (RSpec, Cucumber, Capybara, Factory Girl)

	A lighter-weight and more flexible approach to testing

	Deferral or elimination of more complex configuration options (Spork, RubyTest)

	Less emphasis on features specific to any given version of Rails, with greater emphasis on general principles of web development

It is my hope that these changes will make the third edition of the Ruby on Rails Tutorial accessible to an even broader audience than previous versions.

In this first chapter, we’ll get started with Ruby on Rails by installing all the necessary software and by setting up our development environment (Section 1.2). We’ll then create our first Rails application, called hello_app. The Rails Tutorial emphasizes good software development practices, so immediately after creating our fresh new Rails project we’ll put it under version control with Git (Section 1.4). And, believe it or not, in this chapter we’ll even put our first app on the wider web by deploying it to production (Section 1.5).

In Chapter 2, we’ll make a second project, whose purpose is to demonstrate the basic workings of a Rails application. To get up and running quickly, we’ll build this toy app (called toy_app) using scaffolding (Box 1.2) to generate code; because this code is both ugly and complex, Chapter 2 will focus on interacting with the toy app through its URIs (often called URLs)2 using a web browser.

The rest of the tutorial focuses on developing a single large real sample application (called sample_app), writing all the code from scratch. We’ll develop the sample app using a combination of mockups, test-driven development (TDD), and integration tests. We’ll get started in Chapter 3 by creating static pages and then add a little dynamic content. We’ll take a quick detour in Chapter 4 to learn a little about the Ruby language underlying Rails. Then, in Chapter 5 through Chapter 10, we’ll complete the foundation for the sample application by making a site layout, a user data model, and a full registration and authentication system (including account activation and password resets). Finally, in Chapter 11 and Chapter 12 we’ll add microblogging and social features to make a working example site.

Box 1.2.

Scaffolding: Quicker, easier, more seductive

From the beginning, Rails has benefited from a palpable sense of excitement, starting with the famous 15-minute weblog video by Rails creator David Heinemeier Hansson. That video and its successors are a great way to get a taste of Rails’ power, and I recommend watching them. But be warned: they accomplish their amazing fifteen-minute feat using a feature called scaffolding, which relies heavily on generated code, magically created by the Rails generate scaffold command.

When writing a Ruby on Rails tutorial, it is tempting to rely on the scaffolding approach—it’s quicker, easier, more seductive. But the complexity and sheer amount of code in the scaffolding can be utterly overwhelming to a beginning Rails developer; you may be able to use it, but you probably won’t understand it. Following the scaffolding approach risks turning you into a virtuoso script generator with little (and brittle) actual knowledge of Rails.

In the Ruby on Rails Tutorial, we’ll take the (nearly) polar opposite approach: although Chapter 2 will develop a small toy app using scaffolding, the core of the Rails Tutorial is the sample app, which we’ll start writing in Chapter 3. At each stage of developing the sample application, we will write small, bite-sized pieces of code—simple enough to understand, yet novel enough to be challenging. The cumulative effect will be a deeper, more flexible knowledge of Rails, giving you a good background for writing nearly any type of web application.

1.1 Introduction

Ruby on Rails (or just “Rails” for short) is a web development framework written in the Ruby programming language. Since its debut in 2004, Ruby on Rails has rapidly become one of the most powerful and popular tools for building dynamic web applications. Rails is used by companies as diverse as Airbnb, Basecamp, Disney, GitHub, Hulu, Kickstarter, Shopify, Twitter, and the Yellow Pages. There are also many web development shops that specialize in Rails, such as ENTP, thoughtbot, Pivotal Labs, Hashrocket, and HappyFunCorp, plus innumerable independent consultants, trainers, and contractors.

What makes Rails so great? First of all, Ruby on Rails is 100% open-source, available under the permissive MIT License, and as a result it also costs nothing to download or use. Rails also owes much of its success to its elegant and compact design; by exploiting the malleability of the underlying Ruby language, Rails effectively creates a domain-specific language for writing web applications. As a result, many common web programming tasks—such as generating HTML, making data models, and routing URLs—are easy with Rails, and the resulting application code is concise and readable.

Rails also adapts rapidly to new developments in web technology and framework design. For example, Rails was one of the first frameworks to fully digest and implement the REST architectural style for structuring web applications (which we’ll be learning about throughout this tutorial). And when other frameworks develop successful new techniques, Rails creator David Heinemeier Hansson and the Rails core team don’t hesitate to incorporate their ideas. Perhaps the most dramatic example is the merger of Rails and Merb, a rival Ruby web framework, so that Rails now benefits from Merb’s modular design, stable API, and improved performance.

Finally, Rails benefits from an unusually enthusiastic and diverse community. The results include hundreds of open-source contributors, well-attended conferences, a huge number of gems (self-contained solutions to specific problems such as pagination and image upload), a rich variety of informative blogs, and a cornucopia of discussion forums and IRC channels. The large number of Rails programmers also makes it easier to handle the inevitable application errors: the “Google the error message” algorithm nearly always produces a relevant blog post or discussion-forum thread.

1.1.1 Prerequisites

There are no formal prerequisites to this book—the Ruby on Rails Tutorial contains integrated tutorials not only for Rails, but also for the underlying Ruby language, the default Rails testing framework (MiniTest), the Unix command line, HTML, CSS, a small amount of JavaScript, and even a little SQL. That’s a lot of material to absorb, though, and I generally recommend having some HTML and programming background before starting this tutorial. That said, a surprising number of beginners have used the Ruby on Rails Tutorial to learn web development from scratch, so even if you have limited experience I suggest giving it a try. If you feel overwhelmed, you can always go back and start with one of the resources listed below. Another strategy recommended by multiple readers is simply to do the tutorial twice; you may be surprised at how much you learned the first time (and how much easier it is the second time through).

One common question when learning Rails is whether to learn Ruby first. The answer depends on your personal learning style and how much programming experience you already have. If you prefer to learn everything systematically from the ground up, or if you have never programmed before, then learning Ruby first might work well for you, and in this case I recommend Learn to Program by Chris Pine and Beginning Ruby by Peter Cooper. On the other hand, many beginning Rails developers are excited about making web applications, and would rather not wait to finish a whole book on Ruby before ever writing a single web page. In this case, I recommend following the short interactive tutorial at Try Ruby3 to get a general overview before starting with the Rails Tutorial. If you still find this tutorial too difficult, you might try starting with Learn Ruby on Rails by Daniel Kehoe or One Month Rails, both of which are geared more toward complete beginners than the Ruby on Rails Tutorial.

At the end of this tutorial, no matter where you started, you should be ready for the many more intermediate-to-advanced Rails resources out there. Here are some I particularly recommend:

	Code School: Good interactive online programming courses

	The Turing School of Software & Design: a full-time, 27-week training program in Denver, Colorado, with a $500 discount for Rails Tutorial readers using the code RAILSTUTORIAL500

	Tealeaf Academy: A good online Rails development bootcamp (includes advanced material)

	Thinkful: An online class that pairs you with a professional engineer as you work through a project-based curriculum

	Pragmatic Studio: Online Ruby and Rails courses from Mike and Nicole Clark. Along with Programming Ruby author Dave Thomas, Mike taught the first Rails course I took, way back in 2006.

	RailsCasts by Ryan Bates: Excellent (mostly free) Rails screencasts

	RailsApps: A large variety of detailed topic-specific Rails projects and tutorials

	Rails Guides: Topical and up-to-date Rails references

1.1.2 Conventions in this book

The conventions in this book are mostly self-explanatory. In this section, I’ll mention some that may not be.

Many examples in this book use command-line commands. For simplicity, all command line examples use a Unix-style command line prompt (a dollar sign), as follows:

$ echo "hello, world"
hello, world

As mentioned in Section 1.2, I recommend that users of all operating systems (especially Windows) use a cloud development environment (Section 1.2.1), which comes with a built-in Unix (Linux) command line. This is particularly useful because Rails comes with many commands that can be run at the command line. For example, in Section 1.3.2 we’ll run a local development web server with the rails server command:

$ rails server

As with the command-line prompt, the Rails Tutorial uses the Unix convention for directory separators (i.e., a forward slash /). For example, the sample application production.rb configuration file appears as follows:

config/environments/production.rb

This file path should be understood as being relative to the application’s root directory, which will vary by system; on the cloud IDE (Section 1.2.1), it looks like this:

/home/ubuntu/workspace/sample_app/

Thus, the full path to production.rb is

/home/ubuntu/workspace/sample_app/config/environments/production.rb

For brevity, I will typically omit the application path and write just config/environments/production.rb.

The Rails Tutorial often shows output from various programs (shell commands, version control status, Ruby programs, etc.). Because of the innumerable small differences between different computer systems, the output you see may not always agree exactly with what is shown in the text,
but this is not cause for concern. In addition, some commands may produce errors depending on your system; rather than attempt the Sisyphean task of documenting all such errors in this tutorial, I will delegate to the “Google the error message” algorithm, which among other things is good practice for real-life software development. If you run into any problems while following the tutorial, I suggest consulting the resources listed in the Rails Tutorial help section.4

Because the Rails Tutorial covers testing of Rails applications, it is often helpful to know if a particular piece of code causes the test suite to fail (indicated by the color red) or pass (indicated by the color green). For convenience, code resulting in a failing test is thus indicated with red, while code resulting in a passing test is indicated with green.

Each chapter in the tutorial includes exercises, the completion of which is optional but recommended. In order to keep the main discussion independent of the exercises, the solutions are not generally incorporated into subsequent code listings. In the rare circumstance that an exercise solution is used subsequently, it is explicitly solved in the main text.

Finally, for convenience the Ruby on Rails Tutorial adopts two conventions designed to make the many code samples easier to understand. First, some code listings include one or more highlighted lines, as seen below:

class User < ActiveRecord::Base
 validates :name, presence: true
 validates :email, presence: true
end

Such highlighted lines typically indicate the most important new code in the given sample, and often (though not always) represent the difference between the present code listing and previous listings. Second, for brevity and simplicity many of the book’s code listings include vertical dots, as follows:

class User < ActiveRecord::Base
 .
 .
 .
 has_secure_password
end

These dots represent omitted code and should not be copied literally.

1.2 Up and running

Even for experienced Rails developers, installing Ruby, Rails, and all the associated supporting software can be an exercise in frustration. Compounding the problem is the multiplicity of environments: different operating systems, version numbers, preferences in text editor and integrated development environment (IDE), etc. Users who already have a development environment installed on their local machine are welcome to use their preferred setup, but (as mentioned in Box 1.1) new users are encouraged to sidestep such installation and configuration issues by using a cloud integrated development environment. The cloud IDE runs inside an ordinary web browser and hence works the same across different platforms, which is especially useful for operating systems (such as Windows) on which Rails development has historically been difficult. If, despite the challenges involved, you would still prefer to complete the Ruby on Rails Tutorial using a local development environment, I recommend following the instructions at InstallRails.com.5

1.2.1 Development environment

Considering various idiosyncratic customizations, there are probably as many development environments as there are Rails programmers. To avoid this complexity, the Ruby on Rails Tutorial standardizes on the excellent cloud development environment Cloud9. In particular, for this third edition I am pleased to partner with Cloud9 to offer a development environment specifically tailored to the needs of this tutorial. The resulting Rails Tutorial Cloud9 workspace comes pre-configured with most of the software needed for professional-grade Rails development, including Ruby, RubyGems, Git. (Indeed, the only big piece of software we’ll install separately is Rails itself, and this is intentional (Section 1.2.2).) The cloud IDE also includes the three essential components needed to develop web applications: a text editor, a filesystem navigator, and a command-line terminal (Figure 1.1). Among other features, the cloud IDE text editor supports the “Find in Files” global search that I consider essential to navigating any large Ruby or Rails project.6 Finally, even if you decide not to use the cloud IDE exclusively in real life (and I certainly recommend learning other tools as well), it provides an excellent introduction to the general capabilities of text editors and other development tools.

[image: images/figures/ide_anatomy]
Figure 1.1: The anatomy of the cloud IDE.

Here are the steps for getting started with the cloud development environment:

	Sign up for a free account at Cloud97

	Click on “Go to your Dashboard”

	Select “Create New Workspace”

	As shown in Figure 1.2, create a workspace called “rails-tutorial” (not “rails_tutorial”), set it to “Private to the people I invite”, and select the icon for the Rails Tutorial (not the icon for Ruby on Rails)

	Click “Create”

	After Cloud9 has finished provisioning the workspace, select it and click “Start editing”

Because using two spaces for indentation is a near-universal convention in Ruby, I also recommend changing the editor to use two spaces instead of the default four. As shown in Figure 1.3, you can do this by clicking the gear icon in the upper right and then selecting “Code Editor (Ace)” to edit the “Soft Tabs” setting. (Note that this takes effect immediately; you don’t need to click a “Save” button.)

[image: images/figures/cloud9_new_workspace]
Figure 1.2: Creating a new workspace at Cloud9.

[image: images/figures/cloud9_two_spaces]
Figure 1.3: Setting Cloud9 to use two spaces for indentation.

1.2.2 Installing Rails

The development environment from Section 1.2.1 includes all the software we need to get started except for Rails itself.8 To install Rails, we’ll use the gem command provided by the RubyGems package manager, which involves typing the command shown in Listing 1.1 into your command-line terminal. (If developing on your local system, this means using a regular terminal window; if using the cloud IDE, this means using the command-line area shown in Figure 1.1.)

Listing 1.1:

Installing Rails with a specific version number.

$ gem install rails -v 4.2.0

Here the -v flag ensures that the specified version of Rails gets installed, which is important to get results consistent with this tutorial.

1.3 The first application

Following a long tradition in computer programming, our goal for the first application is to write a “hello, world” program. In particular, we will create a simple application that displays the string “hello, world!” on a web page, both on our development environment (Section 1.3.4) and on the live web (Section 1.5).

Virtually all Rails applications start the same way, by running the rails new command. This handy command creates a skeleton Rails application in a directory of your choice. To get started, users not using the Cloud9 IDE recommended in Section 1.2.1 should make a workspace directory for your Rails projects if it doesn’t already exist (Listing 1.2) and then change into the directory. (Listing 1.2 uses the Unix commands cd and mkdir; see Box 1.3 if you are not already familiar with these commands.)

Listing 1.2:

Making a workspace directory for Rails projects (unnecessary in the cloud).

$ cd # Change to the home directory.
$ mkdir workspace # Make a workspace directory.
$ cd workspace/ # Change into the workspace directory.

Box 1.3.

A crash course on the Unix command line

For readers coming from Windows or (to a lesser but still significant extent) Macintosh OS X, the Unix command line may be unfamiliar. Luckily, if you are using the recommended cloud environment, you automatically have access to a Unix (Linux) command line running a standard shell command-line interface known as Bash.

The basic idea of the command line is simple: by issuing short commands, users can perform a large number of operations, such as creating directories (mkdir), moving and copying files (mv and cp), and navigating the filesystem by changing directories (cd). Although the command line may seem primitive to users mainly familiar with graphical user interfaces (GUIs), appearances are deceiving: the command line is one of the most powerful tools in the developer’s toolbox. Indeed, you will rarely see the desktop of an experienced developer without several open terminal windows running command-line shells.

The general subject is deep, but for the purposes of this tutorial we will need only a few of the most common Unix command-line commands, as summarized in Table 1.1. For a more in-depth treatment of the Unix command line, see Conquering the Command Line by Mark Bates (available as a free online version and as ebooks and screencasts).

	Description
	Command
	Example

	list contents
	ls
	$ ls -l

	make directory
	mkdir <dirname>
	$ mkdir workspace

	change directory
	cd <dirname>
	$ cd workspace/

	cd one directory up
	
	$ cd ..

	cd to home directory
	
	$ cd ~ or just $ cd

	cd to path incl. home dir
	
	$ cd ~/workspace/

	move file (rename)
	mv <source> <target>
	$ mv README.rdoc README.md

	copy file
	cp <source> <target>
	$ cp README.rdoc README.md

	remove file
	rm <file>
	$ rm README.rdoc

	remove empty directory
	rmdir <directory>
	$ rmdir workspace/

	remove nonempty directory
	rm -rf <directory>
	$ rm -rf tmp/

	concatenate & display file contents
	cat <file>
	$ cat ~/.ssh/id_rsa.pub

Table 1.1: Some common Unix commands.

The next step on both local systems and the cloud IDE is to create the first application using the command in Listing 1.3. Note that Listing 1.3 explicitly includes the Rails version number (_4.2.0_) as part of the command. This ensures that the same version of Rails we installed in Listing 1.1 is used to create the first application’s file structure. (If the command in Listing 1.3 returns an error like “Could not find ’railties”’, it means you don’t have the right version of Rails installed, and you should double-check that you followed the command in Listing 1.1 exactly as written.)

Listing 1.3:

Running rails new (with a specific version number).

$ cd ~/workspace
$ rails _4.2.0_ new hello_app
 create
 create README.rdoc
 create Rakefile
 create config.ru
 create .gitignore
 create Gemfile
 create app
 create app/assets/javascripts/application.js
 create app/assets/stylesheets/application.css
 create app/controllers/application_controller.rb
 .
 .
 .
 create test/test_helper.rb
 create tmp/cache
 create tmp/cache/assets
 create vendor/assets/javascripts
 create vendor/assets/javascripts/.keep
 create vendor/assets/stylesheets
 create vendor/assets/stylesheets/.keep
 run bundle install
Fetching gem metadata from https://rubygems.org/..........
Fetching additional metadata from https://rubygems.org/..
Resolving dependencies...
Using rake 10.3.2
Using i18n 0.6.11
.
.
.
Your bundle is complete!
Use `bundle show [gemname]` to see where a bundled gem is installed.
 run bundle exec spring binstub --all
* bin/rake: spring inserted
* bin/rails: spring inserted

As seen at the end of Listing 1.3, running rails new automatically runs the bundle install command after the file creation is done. We’ll discuss what this means in more detail starting in Section 1.3.1.

Notice how many files and directories the rails command creates. This standard directory and file structure (Figure 1.4) is one of the many advantages of Rails; it immediately gets you from zero to a functional (if minimal) application. Moreover, since the structure is common to all Rails apps, you can immediately get your bearings when looking at someone else’s code. A summary of the default Rails files appears in Table 1.2; we’ll learn about most of these files and directories throughout the rest of this book. In particular, starting in Section 5.2.1 we’ll discuss the app/assets directory, part of the asset pipeline that makes it easier than ever to organize and deploy assets such as cascading style sheets and JavaScript files.

[image: images/figures/directory_structure_rails_3rd_edition]
Figure 1.4: The directory structure for a newly created Rails app.

	File/Directory
	Purpose

	app/
	Core application (app) code, including models, views, controllers, and helpers

	app/assets
	Applications assets such as cascading style sheets (CSS), JavaScript files, and images

	bin/
	Binary executable files

	config/
	Application configuration

	db/
	Database files

	doc/
	Documentation for the application

	lib/
	Library modules

	lib/assets
	Library assets such as cascading style sheets (CSS), JavaScript files, and images

	log/
	Application log files

	public/
	Data accessible to the public (e.g., via web browsers), such as error pages

	bin/rails
	A program for generating code, opening console sessions, or starting a local server

	test/
	Application tests

	tmp/
	Temporary files

	vendor/
	Third-party code such as plugins and gems

	vendor/assets
	Third-party assets such as cascading style sheets (CSS), JavaScript files, and images

	README.rdoc
	A brief description of the application

	Rakefile
	Utility tasks available via the rake command

	Gemfile
	Gem requirements for this app

	Gemfile.lock
	A list of gems used to ensure that all copies of the app use the same gem versions

	config.ru
	A configuration file for Rack middleware

	.gitignore
	Patterns for files that should be ignored by Git

Table 1.2: A summary of the default Rails directory structure.

1.3.1 Bundler

After creating a new Rails application, the next step is to use Bundler to install and include the gems needed by the app. As noted briefly in Section 1.3, Bundler is run automatically (via bundle install) by the rails command, but in this section we’ll make some changes to the default application gems and run Bundler again. This involves opening the Gemfile with a text editor. (With the cloud IDE, this involves clicking the arrow in the file navigator to open the sample app directory and double-clicking the Gemfile icon.) Although the exact version numbers and details may differ slightly, the results should look something like Figure 1.5 and Listing 1.4. (The code in this file is Ruby, but don’t worry at this point about the syntax; Chapter 4 will cover Ruby in more depth.) If the files and directories don’t appear as shown in Figure 1.5, click on the file navigator’s gear icon and select “Refresh File Tree”. (As a general rule, you should refresh the file tree any time files or directories don’t appear as expected.)

[image: images/figures/cloud9_gemfile]
Figure 1.5: The default Gemfile open in a text editor.

Listing 1.4:

The default Gemfile in the hello_app directory.

source 'https://rubygems.org'

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'
gem 'rails', '4.2.0'
Use sqlite3 as the database for Active Record
gem 'sqlite3'
Use SCSS for stylesheets
gem 'sass-rails', '~> 5.0'
Use Uglifier as compressor for JavaScript assets
gem 'uglifier', '>= 1.3.0'
Use CoffeeScript for .js.coffee assets and views
gem 'coffee-rails', '~> 4.0.0'
See https://github.com/sstephenson/execjs#readme for more supported runtimes
gem 'therubyracer', platforms: :ruby

Use jquery as the JavaScript library
gem 'jquery-rails'
Turbolinks makes following links in your web application faster. Read more:
https://github.com/rails/turbolinks
gem 'turbolinks'
Build JSON APIs with ease. Read more: https://github.com/rails/jbuilder
gem 'jbuilder', '~> 2.0'
bundle exec rake doc:rails generates the API under doc/api.
gem 'sdoc', '~> 0.4.0', group: :doc

Use ActiveModel has_secure_password
gem 'bcrypt', '~> 3.1.7'

Use Unicorn as the app server
gem 'unicorn'

Use Capistrano for deployment
gem 'capistrano-rails', group: :development

group :development, :test do
 # Call 'debugger' anywhere in the code to stop execution and get a
 # debugger console
 gem 'byebug'

 # Access an IRB console on exceptions page and /console in development
 gem 'web-console', '~> 2.0.0.beta2'

 # Spring speeds up development by keeping your application running in the
 # background. Read more: https://github.com/rails/spring
 gem 'spring'
end

Many of these lines are commented out with the hash symbol #; they are there to show you some commonly needed gems and to give examples of the Bundler syntax. For now, we won’t need any gems other than the defaults.

Unless you specify a version number to the gem command, Bundler will automatically install the latest requested version of the gem. This is the case, for example, in the code

gem 'sqlite3'

There are also two common ways to specify a gem version range, which allows us to exert some control over the version used by Rails. The first looks like this:

gem 'uglifier', '>= 1.3.0'

This installs the latest version of the uglifier gem (which handles file compression for the asset pipeline) as long as it’s greater than or equal to version 1.3.0—even if it’s, say, version 7.2. The second method looks like this:

gem 'coffee-rails', '~> 4.0.0'

This installs the gem coffee-rails as long as it’s newer than version 4.0.0 and not newer than 4.1. In other words, the >= notation always installs the latest gem, whereas the ~> 4.0.0 notation only installs updated gems representing minor point releases (e.g., from 4.0.0 to 4.0.1), but not major point releases (e.g., from 4.0 to 4.1). Unfortunately, experience shows that even minor point releases can break things, so for the Ruby on Rails Tutorial we’ll err on the side of caution by including exact version numbers for all gems. You are welcome to use the most up-to-date version of any gem, including using the ~> construction in the Gemfile (which I generally recommend for more advanced users), but be warned that this may cause the tutorial to act unpredictably.

Converting the Gemfile in Listing 1.4 to use exact gem versions results in the code shown in Listing 1.5. Note that we’ve also taken this opportunity to arrange for the sqlite3 gem to be included only in a development or test environment (Section 7.1.1), which prevents potential conflicts with the database used by Heroku (Section 1.5).

Listing 1.5:

A Gemfile with an explicit version for each Ruby gem.

source 'https://rubygems.org'

gem 'rails', '4.2.0'
gem 'sass-rails', '5.0.2'
gem 'uglifier', '2.5.3'
gem 'coffee-rails', '4.1.0'
gem 'jquery-rails', '4.0.3'
gem 'turbolinks', '2.3.0'
gem 'jbuilder', '2.2.3'
gem 'sdoc', '0.4.0', group: :doc

group :development, :test do
 gem 'sqlite3', '1.3.9'
 gem 'byebug', '3.4.0'
 gem 'web-console', '2.0.0.beta3'
 gem 'spring', '1.1.3'
end

Once you’ve placed the contents of Listing 1.5 into the application’s Gemfile, install the gems using bundle install:9

$ cd hello_app/
$ bundle install
Fetching source index for https://rubygems.org/
.
.
.

The bundle install command might take a few moments, but when it’s done our application will be ready to run.

1.3.2 rails server

Thanks to running rails new in Section 1.3 and bundle install in Section 1.3.1, we already have an application we can run—but how? Happily, Rails comes with a command-line program, or script, that runs a local web server to assist us in developing our application. The exact command depends on the environment you’re using: on a local system, you just run rails server (Listing 1.6), whereas on Cloud9 you need to supply an additional IP binding address and port number to tell the Rails server the address it can use to make the application visible to the outside world (Listing 1.7).10 (Cloud9 uses the special environment variables $IP and $PORT to assign the IP address and port number dynamically. If you want to see the values of these variables, type echo $IP or echo $PORT at the command line.) If your system complains about the lack of a JavaScript runtime, visit the execjs page at GitHub for a list of possibilities. I particularly recommend installing Node.js.

Listing 1.6:

Running the Rails server on a local machine.

$ cd ~/workspace/hello_app/
$ rails server
=> Booting WEBrick
=> Rails application starting on http://localhost:3000
=> Run `rails server -h` for more startup options
=> Ctrl-C to shutdown server

Listing 1.7:

Running the Rails server on the cloud IDE.

$ cd ~/workspace/hello_app/
$ rails server -b $IP -p $PORT
=> Booting WEBrick
=> Rails application starting on http://0.0.0.0:8080
=> Run `rails server -h` for more startup options
=> Ctrl-C to shutdown server

Whichever option you choose, I recommend running the rails server command in a second terminal tab so that you can still issue commands in the first tab, as shown in Figure 1.6 and Figure 1.7. (If you already started a server in your first tab, press Ctrl-C to shut it down.)11 On a local server, point your browser at the address http://localhost:3000/; on the cloud IDE, go to Share and click on the Application address to open it (Figure 1.8). In either case, the result should look something like Figure 1.9.

[image: images/figures/new_terminal_tab]
Figure 1.6: Opening a new terminal tab.

[image: images/figures/rails_server_new_tab]
Figure 1.7: Running the Rails server in a separate tab.

[image: images/figures/share_workspace]
Figure 1.8: Sharing the local server running on the cloud workspace.

[image: images/figures/riding_rails_3rd_edition]
Figure 1.9: The default Rails page served by rails server.

To see information about the first application, click on the link “About your application’s environment”. Although exact version numbers may differ, the result should look something like Figure 1.10. Of course, we don’t need the default Rails page in the long run, but it’s nice to see it working for now. We’ll remove the default page (and replace it with a custom home page) in Section 1.3.4.

[image: images/figures/riding_rails_environment_3rd_edition]
Figure 1.10: The default page with the application’s environment.

1.3.3 Model-View-Controller (MVC)

Even at this early stage, it’s helpful to get a high-level overview of how Rails applications work (Figure 1.11). You might have noticed that the standard Rails application structure (Figure 1.4) has an application directory called app/ with three subdirectories: models, views, and controllers. This is a hint that Rails follows the model-view-controller (MVC) architectural pattern, which enforces a separation between “domain logic” (also called “business logic”) from the input and presentation logic associated with a graphical user interface (GUI). In the case of web applications, the “domain logic” typically consists of data models for things like users, articles, and products, and the GUI is just a web page in a web browser.

When interacting with a Rails application, a browser sends a request, which is received by a web server and passed on to a Rails controller, which is in charge of what to do next. In some cases, the controller will immediately render a view, which is a template that gets converted to HTML and sent back to the browser. More commonly for dynamic sites, the controller interacts with a model, which is a Ruby object that represents an element of the site (such as a user) and is in charge of communicating with the database. After invoking the model, the controller then renders the view and returns the complete web page to the browser as HTML.

[image: mvc_schematic]
Figure 1.11: A schematic representation of the model-view-controller (MVC) architecture.

If this discussion seems a bit abstract right now, worry not; we’ll refer back to this section frequently. Section 1.3.4 shows a first tentative application of MVC, while Section 2.2.2 includes a more detailed discussion of MVC in the context of the toy app. Finally, the sample app will use all aspects of MVC; we’ll cover controllers and views starting in Section 3.2, models starting in Section 6.1, and we’ll see all three working together in Section 7.1.2.

1.3.4 Hello, world!

As a first application of the MVC framework, we’ll make a wafer-thin change to the first app by adding a controller action to render the string “hello, world!”. (We’ll learn more about controller actions starting in Section 2.2.2.) The result will be to replace the default Rails page from Figure 1.9 with the “hello, world” page that is the goal of this section.

As implied by their name, controller actions are defined inside controllers. We’ll call our action hello and place it in the Application controller. Indeed, at this point the Application controller is the only controller we have, which you can verify by running

$ ls app/controllers/*_controller.rb

to view the current controllers. (We’ll start creating our own controllers in Chapter 2.) Listing 1.8 shows the resulting definition of hello, which uses the render function to return the text “hello, world!”. (Don’t worry about the Ruby syntax right now; it will be covered in more depth in Chapter 4.)

Listing 1.8:

Adding a hello action to the Application controller. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
 # Prevent CSRF attacks by raising an exception.
 # For APIs, you may want to use :null_session instead.
 protect_from_forgery with: :exception

 def hello
 render text: "hello, world!"
 end
end

Having defined an action that returns the desired string, we need to tell Rails to use that action instead of the default page in Figure 1.10. To do this, we’ll edit the Rails router, which sits in front of the controller in Figure 1.11 and determines where to send requests that come in from the browser. (I’ve omitted the router from Figure 1.11 for simplicity, but we’ll discuss the router in more detail starting in Section 2.2.2.) In particular, we want to change the default page, the root route, which determines the page that is served on the root URL. Because it’s the URL for an address like http://www.example.com/ (where nothing comes after the final forward slash), the root URL is often referred to as / (“slash”) for short.

As seen in Listing 1.9, the Rails routes file (config/routes.rb) includes a commented-out line that shows how to structure the root route. Here “welcome” is the controller name and “index” is the action within that controller. To activate the root route, uncomment this line by removing the hash character and then replace it with the code in Listing 1.10, which tells Rails to send the root route to the hello action in the Application controller. (As noted in Section 1.1.2, vertical dots indicate omitted code and should not be copied literally.)

Listing 1.9:

The default (commented-out) root route. config/routes.rb

Rails.application.routes.draw do
 .
 .
 .
 # You can have the root of your site routed with "root"
 # root 'welcome#index'
 .
 .
 .
end

Listing 1.10:

Setting the root route. config/routes.rb

Rails.application.routes.draw do
 .
 .
 .
 # You can have the root of your site routed with "root"
 root 'application#hello'
 .
 .
 .
end

With the code from Listing 1.8 and Listing 1.10, the root route returns “hello, world!” as required (Figure 1.12).

[image: images/figures/hello_world_hello_app]
Figure 1.12: Viewing “hello, world!” in the browser.

1.4 Version control with Git

Now that we have a fresh and working Rails application, we’ll take a moment for a step that, while technically optional, would be viewed by experienced software developers as practically essential: placing our application source code under version control. Version control systems allow us to track changes to our project’s code, collaborate more easily, and roll back any inadvertent errors (such as accidentally deleting files). Knowing how to use a version control system is a required skill for every professional-grade software developer.

There are many options for version control, but the Rails community has largely standardized on Git, a distributed version control system originally developed by Linus Torvalds to host the Linux kernel. Git is a large subject, and we’ll only be scratching the surface in this book, but there are many good free resources online; I especially recommend Bitbucket 101 for a short overview and Pro Git by Scott Chacon for a book-length introduction. Putting your source code under version control with Git is strongly recommended, not only because it’s nearly a universal practice in the Rails world, but also because it will allow you to back up and share your code more easily (Section 1.4.3) and deploy your application right here in the first chapter (Section 1.5).

1.4.1 Installation and setup

The cloud IDE recommended in Section 1.2.1 includes Git by default, so no installation is necessary in this case. Otherwise, InstallRails.com (Section 1.2) includes instructions for installing Git on your system.

First-time system setup

Before using Git, you should perform a set of one-time setup steps. These are system setups, meaning you only have to do them once per computer:

$ git config --global user.name "Your Name"
$ git config --global user.email your.email@example.com
$ git config --global push.default matching
$ git config --global alias.co checkout

Note that the name and email address you use in your Git configuration will be available in any repositories you make public. (Only the first two lines above are strictly necessary. The third line is included only to ensure forward-compatibility with an upcoming release of Git. The optional fourth line is included so that you can use co in place of the more verbose checkout command. For maximum compatibility with systems that don’t have co configured, this tutorial will use the full checkout command, but in real life I nearly always use git co.)

First-time repository setup

Now we come to some steps that are necessary each time you create a new repository (sometimes called a repo for short). First navigate to the root directory of the first app and initialize a new repository:

$ git init
Initialized empty Git repository in /home/ubuntu/workspace/hello_app/.git/

The next step is to add all the project files to the repository using git add -A:

$ git add -A

This command adds all the files in the current directory apart from those that match the patterns in a special file called .gitignore. The rails new command automatically generates a .gitignore file appropriate to a Rails project, but you can add additional patterns as well.12

The added files are initially placed in a staging area, which contains pending changes to your project. You can see which files are in the staging area using the status command:

$ git status
On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: .gitignore
 new file: Gemfile
 new file: Gemfile.lock
 new file: README.rdoc
 new file: Rakefile
 .
 .
 .

(The results are long, so I’ve used vertical dots to indicate omitted output.)

To tell Git you want to keep the changes, use the commit command:

$ git commit -m "Initialize repository"
[master (root-commit) df0a62f] Initialize repository
.
.
.

The -m flag lets you add a message for the commit; if you omit -m, Git will open the system’s default editor and have you enter the message there. (All the examples in this book will use the -m flag.)

It is important to note that Git commits are local, recorded only on the machine on which the commits occur. We’ll see how to push the changes up to a remote repository (using git push) in Section 1.4.4.

By the way, you can see a list of your commit messages using the log command:

$ git log
commit df0a62f3f091e53ffa799309b3e32c27b0b38eb4
Author: Michael Hartl <michael@michaelhartl.com>
Date: Wed August 20 19:44:43 2014 +0000

 Initialize repository

Depending on the length of your repository’s log history, you may have to type q to quit.

1.4.2 What good does Git do you?

If you’ve never used version control before, it may not be entirely clear at this point what good it does you, so let me give just one example. Suppose you’ve made some accidental changes, such as (D’oh!) deleting the critical app/controllers/ directory.

$ ls app/controllers/
application_controller.rb concerns/
$ rm -rf app/controllers/
$ ls app/controllers/
ls: app/controllers/: No such file or directory

Here we’re using the Unix ls command to list the contents of the app/controllers/ directory and the rm command to remove it (Table 1.1). The -rf flag means “recursive force”, which recursively removes all files, directories, subdirectories, and so on, without asking for explicit confirmation of each deletion.

Let’s check the status to see what changed:

$ git status
On branch master
Changed but not updated:
 (use "git add/rm <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 deleted: app/controllers/application_controller.rb

no changes added to commit (use "git add" and/or "git commit -a")

We see here that a file has been deleted, but the changes are only on the “working tree”; they haven’t been committed yet. This means we can still undo the changes using the checkout command with the -f flag to force overwriting the current changes:

$ git checkout -f
$ git status
On branch master
nothing to commit (working directory clean)
$ ls app/controllers/
application_controller.rb concerns/

The missing files and directories are back. That’s a relief!

1.4.3 Bitbucket

Now that we’ve put our project under version control with Git, it’s time to push our code up to Bitbucket, a site optimized for hosting and sharing Git repositories. (Previous editions of this tutorial used GitHub instead; see Box 1.4 to learn the reasons for the switch.) Putting a copy of your Git repository at Bitbucket serves two purposes: it’s a full backup of your code (including the full history of commits), and it makes any future collaboration much easier.

Box 1.4.

GitHub and Bitbucket

By far the two most popular sites for hosting Git repositories are GitHub and Bitbucket. The two services share many similarities: both sites allow for Git repository hosting and collaboration, as well as offering convenient ways to browse and search repositories. The important differences (from the perspective of this tutorial) are that GitHub offers unlimited free repositories (with collaboration) for open-source repositories while charging for private repos, whereas Bitbucket allows unlimited free private repos while charging for more than a certain number of collaborators. Which service you use for a particular repo thus depends on your specific needs.

Previous editions of this book used GitHub because of its emphasis on supporting open-source code, but growing concerns about security have led me to recommend that all web application repositories be private by default. The issue is that web application repositories might contain potentially sensitive information such as cryptographic keys and passwords, which could be used to compromise the security of a site running the code. It is possible, of course, to arrange for this information to be handled securely (by having Git ignore it, for example), but this is error-prone and requires significant expertise.

As it happens, the sample application created in this tutorial is safe for exposure on the web, but it is dangerous to rely on this fact in general. Thus, to be as secure as possible, we will err on the side of caution and use private repositories by default. Since GitHub charges for private repositories while Bitbucket offers an unlimited number for free, for our purposes Bitbucket is a better fit than GitHub.

Getting started with Bitbucket is simple:

	Sign up for a Bitbucket account if you don’t already have one.

	Copy your public key to your clipboard. As indicated in Listing 1.11, users of the cloud IDE can view their public key using the cat command, which can then be selected and copied. If you’re using your own system and see no output when running the command in Listing 1.11, follow the instructions on how to install a public key on your Bitbucket account.

	Add your public key to Bitbucket by clicking on the avatar image in the upper right and selecting “Manage account” and then “SSH keys” (Figure 1.13).

Listing 1.11:

Printing the public key using cat.

$ cat ~/.ssh/id_rsa.pub

[image: images/figures/add_public_key]
Figure 1.13: Adding the SSH public key.

Once you’ve added your public key, click on “Create” to create a new repository, as shown in Figure 1.14. When filling in the information for the project, take care to leave the box next to “This is a private repository.” checked. After clicking “Create repository”, follow the instructions under “Command line > I have an existing project”, which should look something like Listing 1.12. (If it doesn’t look like Listing 1.12, it might be because the public key didn’t get added correctly, in which case I suggest trying that step again.) When pushing up the repository, answer yes if you see the question “Are you sure you want to continue connecting (yes/no)?”

[image: images/figures/create_first_repository_bitbucket]
Figure 1.14: Creating the first app repository at Bitbucket.

Listing 1.12:

Adding Bitbucket and pushing up the repository.

$ git remote add origin git@bitbucket.org:<username>/hello_app.git
$ git push -u origin --all # pushes up the repo and its refs for the first time

The commands in Listing 1.12 first tell Git that you want to add Bitbucket as the origin for your repository, and then push your repository up to the remote origin. (Don’t worry about what the -u flag does; if you’re curious, do a web search for “git set upstream”.) Of course, you should replace <username> with your actual username. For example, the command I ran was

$ git remote add origin git@bitbucket.org:mhartl/hello_app.git

The result is a page at Bitbucket for the hello_app repository, with file browsing, full commit history, and lots of other goodies (Figure 1.15).

[image: images/figures/bitbucket_repository_page]
Figure 1.15: A Bitbucket repository page.

1.4.4 Branch, edit, commit, merge

If you’ve followed the steps in Section 1.4.3, you might notice that Bitbucket didn’t automatically detect the README.rdoc file from our repository, instead complaining on the main repository page that there is no README present (Figure 1.16). This is an indication that the rdoc format isn’t common enough for Bitbucket to support it automatically, and indeed I and virtually every other developer I know prefer to use Markdown instead. In this section, we’ll change the README.rdoc file to README.md, while taking the opportunity to add some Rails Tutorial–specific content to the README file. In the process, we’ll see a first example of the branch, edit, commit, merge workflow that I recommend using with Git.13

[image: images/figures/bitbucket_no_readme]
Figure 1.16: Bitbucket’s message for a missing README.

Branch

Git is incredibly good at making branches, which are effectively copies of a repository where we can make (possibly experimental) changes without modifying the parent files. In most cases, the parent repository is the master branch, and we can create a new topic branch by using checkout with the -b flag:

$ git checkout -b modify-README
Switched to a new branch 'modify-README'
$ git branch
 master
* modify-README

Here the second command, git branch, just lists all the local branches, and the asterisk * identifies which branch we’re currently on. Note that git checkout -b modify-README both creates a new branch and switches to it, as indicated by the asterisk in front of the modify-README branch. (If you set up the co alias in Section 1.4, you can use git co -b modify-README instead.)

The full value of branching only becomes clear when working on a project with multiple developers,14 but branches are helpful even for a single-developer tutorial such as this one. In particular, the master branch is insulated from any changes we make to the topic branch, so even if we really screw things up we can always abandon the changes by checking out the master branch and deleting the topic branch. We’ll see how to do this at the end of the section.

By the way, for a change as small as this one I wouldn’t normally bother with a new branch, but in the present context it’s a prime opportunity to start practicing good habits.

Edit

After creating the topic branch, we’ll edit it to make it a little more descriptive. I prefer the Markdown markup language to the default RDoc for this purpose, and if you use the file extension .md then Bitbucket will automatically format it nicely for you. So, first we’ll use Git’s version of the Unix mv (move) command to change the name:

$ git mv README.rdoc README.md

Then fill README.md with the contents of Listing 1.13.

Listing 1.13:

The new README file, README.md.

Ruby on Rails Tutorial: "hello, world!"

This is the first application for the
[*Ruby on Rails Tutorial*](http://www.railstutorial.org/)
by [Michael Hartl](http://www.michaelhartl.com/).

Commit

With the changes made, we can take a look at the status of our branch:

$ git status
On branch modify-README
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 renamed: README.rdoc -> README.md

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: README.md

At this point, we could use git add -A as in Section 1.4.1.2, but git commit provides the -a flag as a shortcut for the (very common) case of committing all modifications to existing files (or files created using git mv, which don’t count as new files to Git):

$ git commit -a -m "Improve the README file"
2 files changed, 5 insertions(+), 243 deletions(-)
delete mode 100644 README.rdoc
create mode 100644 README.md

Be careful about using the -a flag improperly; if you have added any new files to the project since the last commit, you still have to tell Git about them using git add -A first.

Note that we write the commit message in the present tense (and, technically speaking, the imperative mood). Git models commits as a series of patches, and in this context it makes sense to describe what each commit does, rather than what it did. Moreover, this usage matches up with the commit messages generated by Git commands themselves. See the article “Shiny new commit styles” for more information.

Merge

Now that we’ve finished making our changes, we’re ready to merge the results back into our master branch:

$ git checkout master
Switched to branch 'master'
$ git merge modify-README
Updating 34f06b7..2c92bef
Fast forward
README.rdoc | 243 --
README.md | 5 +
2 files changed, 5 insertions(+), 243 deletions(-)
delete mode 100644 README.rdoc
create mode 100644 README.md

Note that the Git output frequently includes things like 34f06b7, which are related to Git’s internal representation of repositories. Your exact results will differ in these details, but otherwise should essentially match the output shown above.

After you’ve merged in the changes, you can tidy up your branches by deleting the topic branch using git branch -d if you’re done with it:

$ git branch -d modify-README
Deleted branch modify-README (was 2c92bef).

This step is optional, and in fact it’s quite common to leave the topic branch intact. This way you can switch back and forth between the topic and master branches, merging in changes every time you reach a natural stopping point.

As mentioned above, it’s also possible to abandon your topic branch changes, in this case with git branch -D:

For illustration only; don't do this unless you mess up a branch
$ git checkout -b topic-branch
$ <really screw up the branch>
$ git add -A
$ git commit -a -m "Major screw up"
$ git checkout master
$ git branch -D topic-branch

Unlike the -d flag, the -D flag will delete the branch even though we haven’t merged in the changes.

Push

Now that we’ve updated the README, we can push the changes up to Bitbucket to see the result. Since we have already done one push (Section 1.4.3), on most systems we can omit origin master, and simply run git push:

$ git push

As promised in Section 1.4.4.2, Bitbucket nicely formats the new file using Markdown (Figure 1.17).

[image: images/figures/new_readme_bitbucket]
Figure 1.17: The improved README file formatted with Markdown.

1.5 Deploying

Even at this early stage, we’re already going to deploy our (nearly empty) Rails application to production. This step is optional, but deploying early and often allows us to catch any deployment problems early in our development cycle. The alternative—deploying only after laborious effort sealed away in a development environment—often leads to terrible integration headaches when launch time comes.15

Deploying Rails applications used to be a pain, but the Rails deployment ecosystem has matured rapidly in the past few years, and now there are several great options. These include shared hosts or virtual private servers running Phusion Passenger (a module for the Apache and Nginx16 web servers), full-service deployment companies such as Engine Yard and Rails Machine, and cloud deployment services such as Engine Yard Cloud, Ninefold, and Heroku.

My favorite Rails deployment option is Heroku, which is a hosted platform built specifically for deploying Rails and other web applications. Heroku makes deploying Rails applications ridiculously easy—as long as your source code is under version control with Git. (This is yet another reason to follow the Git setup steps in Section 1.4 if you haven’t already.) In addition, for many purposes, including for this tutorial, Heroku’s free tier is more than sufficient. Indeed, the first two editions of this tutorial were hosted for free on Heroku, which served several million requests without charging me a cent.

The rest of this section is dedicated to deploying our first application to Heroku. Some of the ideas are fairly advanced, so don’t worry about understanding all the details; what’s important is that by the end of the process we’ll have deployed our application to the live web.

1.5.1 Heroku setup

Heroku uses the PostgreSQL database (pronounced “post-gres-cue-ell”, and often called “Postgres” for short), which means that we need to add the pg gem in the production environment to allow Rails to talk to Postgres:17

group :production do
 gem 'pg', '0.17.1'
 gem 'rails_12factor', '0.0.2'
end

Note also the addition of the rails_12factor gem, which is used by Heroku to serve static assets such as images and stylesheets. The resulting Gemfile appears as in Listing 1.14.

Listing 1.14:

A Gemfile with added gems.

source 'https://rubygems.org'

gem 'rails', '4.2.0'
gem 'sass-rails', '5.0.2'
gem 'uglifier', '2.5.3'
gem 'coffee-rails', '4.1.0'
gem 'jquery-rails', '4.0.3'
gem 'turbolinks', '2.3.0'
gem 'jbuilder', '2.2.3'
gem 'sdoc', '0.4.0', group: :doc

group :development, :test do
 gem 'sqlite3', '1.3.9'
 gem 'byebug', '3.4.0'
 gem 'web-console', '2.0.0.beta3'
 gem 'spring', '1.1.3'
end

group :production do
 gem 'pg', '0.17.1'
 gem 'rails_12factor', '0.0.2'
end

To prepare the system for deployment to production, we run bundle install with a special flag to prevent the local installation of any production gems (which in this case consists of pg and rails_12factor):

$ bundle install --without production

Because the only gems added in Listing 1.14 are restricted to a production environment, right now this command doesn’t actually install any additional local gems, but it’s needed to update Gemfile.lock with the pg and rails_12factor gems. We can commit the resulting change as follows:

$ git commit -a -m "Update Gemfile.lock for Heroku"

Next we have to create and configure a new Heroku account. The first step is to sign up for Heroku. Then check to see if your system already has the Heroku command-line client installed:

$ heroku version

Those using the cloud IDE should see the Heroku version number, indicating that the heroku CLI is available, but on other systems it may be necessary to install it using the Heroku Toolbelt.18

Once you’ve verified that the Heroku command-line interface is installed, use the heroku command to log in and add your SSH key:

$ heroku login
$ heroku keys:add

Finally, use the heroku create command to create a place on the Heroku servers for the sample app to live (Listing 1.15).

Listing 1.15:

Creating a new application at Heroku.

$ heroku create
Creating damp-fortress-5769... done, stack is cedar
http://damp-fortress-5769.herokuapp.com/ | git@heroku.com:damp-fortress-5769.git
Git remote heroku added

The heroku command creates a new subdomain just for our application, available for immediate viewing. There’s nothing there yet, though, so let’s get busy deploying.

1.5.2 Heroku deployment, step one

To deploy the application, the first step is to use Git to push the master branch up to Heroku:

$ git push heroku master

(You may see some warning messages, which you should ignore for now. We’ll discuss them further in Section 7.5.)

1.5.3 Heroku deployment, step two

There is no step two! We’re already done. To see your newly deployed application, visit the address that you saw when you ran heroku create (i.e., Listing 1.15). (If you’re working on your local machine instead of the cloud IDE, you can also use heroku open.) The result appears in Figure 1.18. The page is identical to Figure 1.12, but now it’s running in a production environment on the live web.

[image: images/figures/heroku_app_hello_world]
Figure 1.18: The first Rails Tutorial application running on Heroku.

1.5.4 Heroku commands

There are many Heroku commands, and we’ll barely scratch the surface in this book. Let’s take a minute to show just one of them by renaming the application as follows:

$ heroku rename rails-tutorial-hello

Don’t use this name yourself; it’s already taken by me! In fact, you probably shouldn’t bother with this step right now; using the default address supplied by Heroku is fine. But if you do want to rename your application, you can arrange for it to be reasonably secure by using a random or obscure subdomain, such as the following:

hwpcbmze.herokuapp.com
seyjhflo.herokuapp.com
jhyicevg.herokuapp.com

With a random subdomain like this, someone could visit your site only if you gave them the address. (By the way, as a preview of Ruby’s compact awesomeness, here’s the code I used to generate the random subdomains:

('a'..'z').to_a.shuffle[0..7].join

Pretty sweet.)

In addition to supporting subdomains, Heroku also supports custom domains. (In fact, the Ruby on Rails Tutorial site lives at Heroku; if you’re reading this book online, you’re looking at a Heroku-hosted site right now!) See the Heroku documentation for more information about custom domains and other Heroku topics.

1.6 Conclusion

We’ve come a long way in this chapter: installation, development environment setup, version control, and deployment. In the next chapter, we’ll build on the foundation from Chapter 1 to make a database-backed toy app, which will give us our first real taste of what Rails can do.

If you’d like to share your progress at this point, feel free to send a tweet or Facebook status update with something like this:

I’m learning Ruby on Rails with the @railstutorial! http://www.railstutorial.org/

I also recommend signing up for the Rails Tutorial email list19, which will ensure that you receive priority updates (and exclusive coupon codes) regarding the Ruby on Rails Tutorial.

1.6.1 What we learned in this chapter

	Ruby on Rails is a web development framework written in the Ruby programming language.

	Installing Rails, generating an application, and editing the resulting files is easy using a pre-configured cloud environment.

	Rails comes with a command-line command called rails that can generate new applications (rails new) and run local servers (rails server).

	We added a controller action and modified the root route to create a “hello, world” application.

	We protected against data loss while enabling collaboration by placing our application source code under version control with Git and pushing the resulting code to a private repository at Bitbucket.

	We deployed our application to a production environment using Heroku.

1.7 Exercises

Note: The Solutions Manual for Exercises, with solutions to every exercise in the Ruby on Rails Tutorial book, is included for free with every purchase at www.railstutorial.org.

	Change the content of the hello action in Listing 1.8 to read “hola, mundo!” instead of “hello, world!”. Extra credit: Show that Rails supports non-ASCII characters by including an inverted exclamation point, as in “¡Hola, mundo!” (Figure 1.19).20

	By following the example of the hello action in Listing 1.8, add a second action called goodbye that renders the text “goodbye, world!”. Edit the routes file from Listing 1.10 so that the root route goes to goodbye instead of to hello (Figure 1.20).

[image: images/figures/hola_mundo]
Figure 1.19: Changing the root route to return “¡Hola, mundo!”.

[image: images/figures/goodbye_world]
Figure 1.20: Changing the root route to return “goodbye, world!”.

 	The most up-to-date version of the Ruby on Rails Tutorial can be found on the book’s website at http://www.railstutorial.org/. If you are reading this book offline, be sure to check the online version of the Rails Tutorial book at http://www.railstutorial.org/book for the latest updates. ↑

 	URI stands for Uniform Resource Identifier, while the slightly less general URL stands for Uniform Resource Locator. In practice, the URL is usually equivalent to “the thing you see in the address bar of your browser”. ↑

 	http://tryruby.org/ ↑

 	http://www.railstutorial.org/#help ↑

 	Even then, Windows users should be warned that the Rails installer recommended by InstallRails is often out of date, and is likely to be incompatible with the present tutorial. ↑

 	For example, to find the definition of a function called foo, you can do a global search for “def foo”. ↑

 	https://c9.io/web/sign-up/free ↑

 	At present, Cloud9 includes an older version of Rails that is incompatible with the present tutorial, which is one reason why it’s so important to install it ourselves. ↑

 	As noted in Table 3.1, you can even leave off install, as the bundle command by itself is an alias for bundle install. ↑

 	Normally, websites run on port 80, but this usually requires special privileges, so it’s conventional to use a less restricted higher-numbered port for the development server. ↑

 	It’s really “Ctrl-c”—there’s no need to hold down the Shift key to get a capital “C”—but for some reason it’s always written as “Ctrl-C”. ↑

 	Although we’ll never need to edit it in the main tutorial, an example of adding a rule to the .gitignore file appears in Section 3.7.3, which is part of the optional advanced testing setup in Section 3.7. ↑

 	For a convenient way to visualize Git repositories, take a look at Atlassian’s SourceTree app. ↑

 	See the chapter Git Branching in Pro Git for details. ↑

 	Though it shouldn’t matter for the example applications in the Rails Tutorial, if you’re worried about accidentally making your app public too soon there are several options; see Section 1.5.4 for one. ↑

 	Pronounced “Engine X”. ↑

 	Generally speaking, it’s a good idea for the development and production environments to match as closely as possible, which includes using the same database, but for the purposes of this tutorial we’ll always use SQLite locally and PostgreSQL in production. See Section 3.1 for more information. ↑

 	https://toolbelt.heroku.com/ ↑

 	http://www.railstutorial.org/#email ↑

 	Your editor may display a message like “invalid multibyte character”, but this is not a cause for concern. You can Google the error message if you want to learn how to make it go away. ↑

 Chapter 2 A toy app

In this chapter, we’ll develop a toy demo application to show off some of the power of Rails. The purpose is to get a high-level overview of Ruby on Rails programming (and web development in general) by rapidly generating an application using scaffold generators, which create a large amount of functionality automatically. As discussed in Box 1.2, the rest of the book will take the opposite approach, developing a full sample application incrementally and explaining each new concept as it arises, but for a quick overview (and some instant gratification) there is no substitute for scaffolding. The resulting toy app will allow us to interact with it through its URLs, giving us insight into the structure of a Rails application, including a first example of the REST architecture favored by Rails.

As with the forthcoming sample application, the toy app will consist of users and their associated microposts (thus constituting a minimalist Twitter-style app). The functionality will be utterly under-developed, and many of the steps will seem like magic, but worry not: the full sample app will develop a similar application from the ground up starting in Chapter 3, and I will provide plentiful forward-references to later material. In the mean time, have patience and a little faith—the whole point of this tutorial is to take you beyond this superficial, scaffold-driven approach to achieve a deeper understanding of Rails.

2.1 Planning the application

In this section, we’ll outline our plans for the toy application. As in Section 1.3, we’ll start by generating the application skeleton using the rails new command with a specific Rails version number:

$ cd ~/workspace
$ rails _4.2.0_ new toy_app
$ cd toy_app/

If the command above returns an error like “Could not find ’railties”’, it means you don’t have the right version of Rails installed, and you should double-check that you followed the command in Listing 1.1 exactly as written. (If you’re using the cloud IDE as recommended in Section 1.2.1, note that this second app can be created in the same workspace as the first. It is not necessary to create a new workspace. In order to get the files to appear, you may need to click the gear icon in the file navigator area and select “Refresh File Tree”.)

Next, we’ll use a text editor to update the Gemfile needed by Bundler with the contents of Listing 2.1.

Listing 2.1:

A Gemfile for the toy app.

source 'https://rubygems.org'

gem 'rails', '4.2.0'
gem 'sass-rails', '5.0.2'
gem 'uglifier', '2.5.3'
gem 'coffee-rails', '4.1.0'
gem 'jquery-rails', '4.0.3'
gem 'turbolinks', '2.3.0'
gem 'jbuilder', '2.2.3'
gem 'sdoc', '0.4.0', group: :doc

group :development, :test do
 gem 'sqlite3', '1.3.9'
 gem 'byebug', '3.4.0'
 gem 'web-console', '2.0.0.beta3'
 gem 'spring', '1.1.3'
end

group :production do
 gem 'pg', '0.17.1'
 gem 'rails_12factor', '0.0.2'
end

Note that Listing 2.1 is identical to Listing 1.14.

As in Section 1.5.1, we’ll install the local gems while suppressing the installation of production gems using the --without production option:

$ bundle install --without production

Finally, we’ll put the toy app under version control with Git:

$ git init
$ git add -A
$ git commit -m "Initialize repository"

You should also create a new repository by clicking on the “Create” button at Bitbucket (Figure 2.1), and then push up to the remote repository:

$ git remote add origin git@bitbucket.org:<username>/toy_app.git
$ git push -u origin --all # pushes up the repo and its refs for the first time

[image: images/figures/create_demo_repo_bitbucket]
Figure 2.1: Creating the toy app repository at Bitbucket.

Finally, it’s never too early to deploy, which I suggest doing by following the same “hello, world!” steps in Listing 1.8 and Listing 1.9.1 Then commit the changes and push up to Heroku:

$ git commit -am "Add hello"
$ heroku create
$ git push heroku master

(As in Section 1.5, you may see some warning messages, which you should ignore for now. We’ll eliminate them in Section 7.5.) Apart from the address of the Heroku app, the result should be the same as in Figure 1.18.

Now we’re ready to start making the app itself. The typical first step when making a web application is to create a data model, which is a representation of the structures needed by our application. In our case, the toy app will be a microblog, with only users and short (micro)posts. Thus, we’ll begin with a model for users of the app (Section 2.1.1), and then we’ll add a model for microposts (Section 2.1.2).

2.1.1 A toy model for users

There are as many choices for a user data model as there are different registration forms on the web; we’ll go with a distinctly minimalist approach. Users of our toy app will have a unique integer identifier called id, a publicly viewable name (of type string), and an email address (also a string) that will double as a username. A summary of the data model for users appears in Figure 2.2.

[image: demo_user_model]
Figure 2.2: The data model for users.

As we’ll see starting in Section 6.1.1, the label users in Figure 2.2 corresponds to a table in a database, and the id, name, and email attributes are columns in that table.

2.1.2 A toy model for microposts

The core of the micropost data model is even simpler than the one for users: a micropost has only an id and a content field for the micropost’s text (of type text).2 There’s an additional complication, though: we want to associate each micropost with a particular user. We’ll accomplish this by recording the user_id of the owner of the post. The results are shown in Figure 2.3.

[image: demo_micropost_model]
Figure 2.3: The data model for microposts.

We’ll see in Section 2.3.3 (and more fully in Chapter 11) how this user_id attribute allows us to succinctly express the notion that a user potentially has many associated microposts.

2.2 The Users resource

In this section, we’ll implement the users data model in Section 2.1.1, along with a web interface to that model. The combination will constitute a Users resource, which will allow us to think of users as objects that can be created, read, updated, and deleted through the web via the HTTP protocol. As promised in the introduction, our Users resource will be created by a scaffold generator program, which comes standard with each Rails project. I urge you not to look too closely at the generated code; at this stage, it will only serve to confuse you.

Rails scaffolding is generated by passing the scaffold command to the rails generate script. The argument of the scaffold command is the singular version of the resource name (in this case, User), together with optional parameters for the data model’s attributes:3

$ rails generate scaffold User name:string email:string
 invoke active_record
 create db/migrate/20140821011110_create_users.rb
 create app/models/user.rb
 invoke test_unit
 create test/models/user_test.rb
 create test/fixtures/users.yml
 invoke resource_route
 route resources :users
 invoke scaffold_controller
 create app/controllers/users_controller.rb
 invoke erb
 create app/views/users
 create app/views/users/index.html.erb
 create app/views/users/edit.html.erb
 create app/views/users/show.html.erb
 create app/views/users/new.html.erb
 create app/views/users/_form.html.erb
 invoke test_unit
 create test/controllers/users_controller_test.rb
 invoke helper
 create app/helpers/users_helper.rb
 invoke test_unit
 create test/helpers/users_helper_test.rb
 invoke jbuilder
 create app/views/users/index.json.jbuilder
 create app/views/users/show.json.jbuilder
 invoke assets
 invoke coffee
 create app/assets/javascripts/users.js.coffee
 invoke scss
 create app/assets/stylesheets/users.css.scss
 invoke scss
 create app/assets/stylesheets/scaffolds.css.scss

By including name:string and email:string, we have arranged for the User model to have the form shown in Figure 2.2. (Note that there is no need to include a parameter for id; it is created automatically by Rails for use as the primary key in the database.)

To proceed with the toy application, we first need to migrate the database using Rake (Box 2.1):

$ bundle exec rake db:migrate
== CreateUsers: migrating ==
-- create_table(:users)
 -> 0.0017s
== CreateUsers: migrated (0.0018s) ===

This simply updates the database with our new users data model. (We’ll learn more about database migrations starting in Section 6.1.1.) Note that, in order to ensure that the command uses the version of Rake corresponding to our Gemfile, we need to run rake using bundle exec. On many systems, including the cloud IDE, you can omit bundle exec, but it is necessary on some systems, so I’ll include it for completeness.

With that, we can run the local web server in a separate tab (Figure 1.7) as follows:4

$ rails server -b $IP -p $PORT # Use only `rails server` if running locally

Now the toy application should be available on the local server as described in Section 1.3.2. (If you’re using the cloud IDE, be sure to open the resulting development server in a new browser tab, not inside the IDE itself.)

Box 2.1.

Rake

In the Unix tradition, the make utility has played an important role in building executable programs from source code; many a computer hacker has committed to muscle memory the line

 $./configure && make && sudo make install

commonly used to compile code on Unix systems (including Linux and Mac OS X).

Rake is Ruby make, a make-like language written in Ruby. Rails uses Rake extensively, especially for the innumerable little administrative tasks necessary when developing database-backed web applications. The rake db:migrate command is probably the most common, but there are many others; you can see a list of database tasks using -T db:

 $ bundle exec rake -T db

To see all the Rake tasks available, run

 $ bundle exec rake -T

The list is likely to be overwhelming, but don’t worry, you don’t have to know all (or even most) of these commands. By the end of the Rails Tutorial, you’ll know all the most important ones.

2.2.1 A user tour

If we visit the root URL at / (read “slash”, as noted in Section 1.3.4), we get the same default Rails page shown in Figure 1.9, but in generating the Users resource scaffolding we have also created a large number of pages for manipulating users. For example, the page for listing all users is at /users, and the
page for making a new user is at /users/new. The rest of this section is dedicated to taking a whirlwind tour through these user pages. As we proceed, it may help to refer to Table 2.1, which shows the correspondence between pages and URLs.

	URL
	Action
	Purpose

	/users
	index
	page to list all users

	/users/1
	show
	page to show user with id 1

	/users/new
	new
	page to make a new user

	/users/1/edit
	edit
	page to edit user with id 1

Table 2.1: The correspondence between pages and URLs for the Users resource.

We start with the page to show all the users in our application, called index; as you might expect, initially there are no users at all (Figure 2.4).

[image: images/figures/demo_blank_user_index_3rd_edition]
Figure 2.4: The initial index page for the Users resource (/users).

To make a new user, we visit the new page, as shown in Figure 2.5. (Since the http://0.0.0.0:3000 or cloud IDE part of the address is implicit whenever we are developing locally, I’ll omit it from now on.) In Chapter 7, this will become the user signup page.

[image: images/figures/demo_new_user_3rd_edition]
Figure 2.5: The new user page (/users/new).

We can create a user by entering name and email values in the text fields and then clicking the Create User button. The result is the user show page, as seen in Figure 2.6. (The green welcome message is accomplished using the flash, which we’ll learn about in Section 7.4.2.) Note that the URL is /users/1; as you might suspect, the number 1 is simply the user’s id attribute from Figure 2.2. In Section 7.1, this page will become the user’s profile.

[image: images/figures/demo_show_user_3rd_edition]
Figure 2.6: The page to show a user (/users/1).

To change a user’s information, we visit the edit page (Figure 2.7). By modifying the user information and clicking the Update User button, we arrange to change the information for the user in the toy application (Figure 2.8). (As we’ll see in detail starting in Chapter 6, this user data is stored in a database back-end.) We’ll add user edit/update functionality to the sample application in Section 9.1.

[image: images/figures/demo_edit_user_3rd_edition]
Figure 2.7: The user edit page (/users/1/edit).

[image: images/figures/demo_update_user_3rd_edition]
Figure 2.8: A user with updated information.

Now we’ll create a second user by revisiting the new page and submitting a second set of user information; the resulting user index is shown in Figure 2.9. Section 7.1 will develop the user index into a more polished page for showing all users.

[image: images/figures/demo_user_index_two_3rd_edition]
Figure 2.9: The user index page (/users) with a second user.

Having shown how to create, show, and edit users, we come finally to destroying them (Figure 2.10). You should verify that clicking on the link in Figure 2.10 destroys the second user, yielding an index page with only one user. (If it doesn’t work, be sure that JavaScript is enabled in your browser; Rails uses JavaScript to issue the request needed to destroy a user.) Section 9.4 adds user deletion to the sample app, taking care to restrict its use to a special class of administrative users.

[image: images/figures/demo_destroy_user_3rd_edition]
Figure 2.10: Destroying a user.

2.2.2 MVC in action

Now that we’ve completed a quick overview of the Users resource, let’s examine one particular part of it in the context of the Model-View-Controller (MVC) pattern introduced in Section 1.3.3. Our strategy will be to describe the results of a typical browser hit—a visit to the user index page at /users—in terms of MVC (Figure 2.11).

[image: images/figures/mvc_detailed]
Figure 2.11: A detailed diagram of MVC in Rails.

Here is a summary of the steps shown in Figure 2.11:

	The browser issues a request for the /users URL.

	Rails routes /users to the index action in the Users controller.

	The index action asks the User model to retrieve all users (User.all).

	The User model pulls all the users from the database.

	The User model returns the list of users to the controller.

	The controller captures the users in the @users variable, which is passed to the index view.

	The view uses embedded Ruby to render the page as HTML.

	The controller passes the HTML back to the browser.5

Now let’s take a look at the above steps in more detail. We start with a request issued from the browser—i.e., the result of typing a URL in the address bar or clicking on a link (Step 1 in Figure 2.11). This request hits the Rails router (Step 2), which dispatches to the proper controller action based on the URL (and, as we’ll see in Box 3.2, the type of request). The code to create the mapping of user URLs to controller actions for the Users resource appears in Listing 2.2; this code effectively sets up the table of URL/action pairs seen in Table 2.1. (The strange notation :users is a symbol, which we’ll learn about in Section 4.3.3.)

Listing 2.2:

The Rails routes, with a rule for the Users resource. config/routes.rb

Rails.application.routes.draw do
 resources :users
 .
 .
 .
end

While we’re looking at the routes file, let’s take a moment to associate the root route with the users index, so that “slash” goes to /users. Recall from Listing 1.10 that we changed

root 'welcome#index'

to read

root 'application#hello'

so that the root route went to the hello action in the Application controller. In the present case, we want to use the index action in the Users controller, which we can arrange using the code shown in Listing 2.3. (At this point, I also recommend removing the hello action from the Application controller if you added it at the beginning of this section.)

Listing 2.3:

Adding a root route for users. config/routes.rb

Rails.application.routes.draw do
 resources :users
 root 'users#index'
 .
 .
 .
end

The pages from the tour in Section 2.2.1 correspond to actions in the Users controller, which is a collection of related actions. The controller generated by the scaffolding is shown schematically in Listing 2.4. Note the notation class UsersController < ApplicationController, which is an example of a Ruby class with inheritance. (We’ll discuss inheritance briefly in Section 2.3.4 and cover both subjects in more detail in Section 4.4.)

Listing 2.4:

The Users controller in schematic form. app/controllers/users_controller.rb

class UsersController < ApplicationController
 .
 .
 .
 def index
 .
 .
 .
 end

 def show
 .
 .
 .
 end

 def new
 .
 .
 .
 end

 def edit
 .
 .
 .
 end

 def create
 .
 .
 .
 end

 def update
 .
 .
 .
 end

 def destroy
 .
 .
 .
 end
end

You may notice that there are more actions than there are pages; the index, show, new, and edit actions all correspond to pages from Section 2.2.1, but there are additional create, update, and destroy actions as well. These actions don’t typically render pages (although they can); instead, their main purpose is to modify information about users in the database. This full suite of controller actions, summarized in Table 2.2, represents the implementation of the REST architecture in Rails (Box 2.2), which is based on the ideas of representational state transfer identified and named by computer scientist Roy Fielding.6 Note from Table 2.2 that there is some overlap in the URLs; for example, both the user show action and the update action correspond to the URL /users/1. The difference between them is the HTTP request method they respond to. We’ll learn more about HTTP request methods starting in Section 3.3.

	HTTP request
	URL
	Action
	Purpose

	GET
	/users
	index
	page to list all users

	GET
	/users/1
	show
	page to show user with id 1

	GET
	/users/new
	new
	page to make a new user

	POST
	/users
	create
	create a new user

	GET
	/users/1/edit
	edit
	page to edit user with id 1

	PATCH
	/users/1
	update
	update user with id 1

	DELETE
	/users/1
	destroy
	delete user with id 1

Table 2.2: RESTful routes provided by the Users resource in Listing 2.2.

Box 2.2.

REpresentational State Transfer (REST)

If you read much about Ruby on Rails web development, you’ll see a lot of references to “REST”, which is an acronym for REpresentational State Transfer. REST is an architectural style for developing distributed, networked systems and software applications such as the World Wide Web and web applications. Although REST theory is rather abstract, in the context of Rails applications REST means that most application components (such as users and microposts) are modeled as resources that can be created, read, updated, and deleted—operations that correspond both to the CRUD operations of relational databases and to the four fundamental HTTP request methods: POST, GET, PATCH, and DELETE.7 (We’ll learn more about HTTP requests in Section 3.3 and especially Box 3.2.)

As a Rails application developer, the RESTful style of development helps you make choices about which controllers and actions to write: you simply structure the application using resources that get created, read, updated, and deleted. In the case of users and microposts, this process is straightforward, since they are naturally resources in their own right. In Chapter 12, we’ll see an example where REST principles allow us to model a subtler problem, “following users”, in a natural and convenient way.

To examine the relationship between the Users controller and the User model, let’s focus on a simplified version of the index action, shown in Listing 2.5. (The scaffold code is ugly and confusing, so I’ve suppressed it.)

Listing 2.5:

The simplified user index action for the toy application. app/controllers/users_controller.rb

class UsersController < ApplicationController
 .
 .
 .
 def index
 @users = User.all
 end
 .
 .
 .
end

This index action has the line @users = User.all (Step 3 in Figure 2.11), which asks the User model to retrieve a list of all the users from the database (Step 4), and then places them in the variable @users (pronounced “at-users”) (Step 5). The User model itself appears in Listing 2.6; although it is rather plain, it comes equipped with a large amount of functionality because of inheritance (Section 2.3.4 and Section 4.4). In particular, by using the Rails library called Active Record, the code in Listing 2.6 arranges for User.all to return all the users in the database.

Listing 2.6:

The User model for the toy application. app/models/user.rb

class User < ActiveRecord::Base
end

Once the @users variable is defined, the controller calls the view (Step 6), shown in Listing 2.7. Variables that start with the @ sign, called instance variables, are automatically available in the views; in this case, the index.html.erb view in Listing 2.7 iterates through the @users list and outputs a line of HTML for each one. (Remember, you aren’t supposed to understand this code right now. It is shown only for purposes of illustration.)

Listing 2.7:

The view for the user index. app/views/users/index.html.erb

<h1>Listing users</h1>

<table>
 <thead>
 <tr>
 <th>Name</th>
 <th>Email</th>
 <th colspan="3"></th>
 </tr>
 </thead>

<% @users.each do |user| %>
 <tr>
 <td><%= user.name %></td>
 <td><%= user.email %></td>
 <td><%= link_to 'Show', user %></td>
 <td><%= link_to 'Edit', edit_user_path(user) %></td>
 <td><%= link_to 'Destroy', user, method: :delete,
 data: { confirm: 'Are you sure?' } %></td>
 </tr>
<% end %>
</table>

<%= link_to 'New User', new_user_path %>

The view converts its contents to HTML (Step 7), which is then returned by the controller to the browser for display (Step 8).

2.2.3 Weaknesses of this Users resource

Though good for getting a general overview of Rails, the scaffold Users resource suffers from a number of severe weaknesses.

	No data validations. Our User model accepts data such as blank names and invalid email addresses without complaint.

	No authentication. We have no notion of logging in or out, and no way to prevent any user from performing any operation.

	No tests. This isn’t technically true—the scaffolding includes rudimentary tests—but the generated tests don’t test for data validation, authentication, or any other custom requirements.

	No style or layout. There is no consistent site styling or navigation.

	No real understanding. If you understand the scaffold code, you probably shouldn’t be reading this book.

2.3 The Microposts resource

Having generated and explored the Users resource, we turn now to the associated Microposts resource. Throughout this section, I recommend comparing the elements of the Microposts resource with the analogous user elements from Section 2.2; you should see that the two resources parallel each other in many ways. The RESTful structure of Rails applications is best absorbed by this sort of repetition of form—indeed, seeing the parallel structure of Users and Microposts even at this early stage is one of the prime motivations for this chapter.

2.3.1 A micropost microtour

As with the Users resource, we’ll generate scaffold code for the Microposts resource using rails generate scaffold, in this case implementing the data model from Figure 2.3:8

$ rails generate scaffold Micropost content:text user_id:integer
 invoke active_record
 create db/migrate/20140821012832_create_microposts.rb
 create app/models/micropost.rb
 invoke test_unit
 create test/models/micropost_test.rb
 create test/fixtures/microposts.yml
 invoke resource_route
 route resources :microposts
 invoke scaffold_controller
 create app/controllers/microposts_controller.rb
 invoke erb
 create app/views/microposts
 create app/views/microposts/index.html.erb
 create app/views/microposts/edit.html.erb
 create app/views/microposts/show.html.erb
 create app/views/microposts/new.html.erb
 create app/views/microposts/_form.html.erb
 invoke test_unit
 create test/controllers/microposts_controller_test.rb
 invoke helper
 create app/helpers/microposts_helper.rb
 invoke test_unit
 create test/helpers/microposts_helper_test.rb
 invoke jbuilder
 create app/views/microposts/index.json.jbuilder
 create app/views/microposts/show.json.jbuilder
 invoke assets
 invoke coffee
 create app/assets/javascripts/microposts.js.coffee
 invoke scss
 create app/assets/stylesheets/microposts.css.scss
 invoke scss
 identical app/assets/stylesheets/scaffolds.css.scss

(If you get an error related to Spring, just run the command again.) To update our database with the new data model, we need to run a migration as in Section 2.2:

$ bundle exec rake db:migrate
== CreateMicroposts: migrating ===
-- create_table(:microposts)
 -> 0.0023s
== CreateMicroposts: migrated (0.0026s) ======================================

Now we are in a position to create microposts in the same way we created users in Section 2.2.1. As you might guess, the scaffold generator has updated the Rails routes file with a rule for Microposts resource, as seen in Listing 2.8.9 As with users, the resources :microposts routing rule maps micropost URLs to actions in the Microposts controller, as seen in Table 2.3.

Listing 2.8:

The Rails routes, with a new rule for Microposts resources. config/routes.rb

Rails.application.routes.draw do
 resources :microposts
 resources :users
 .
 .
 .
end

	HTTP request
	URL
	Action
	Purpose

	GET
	/microposts
	index
	page to list all microposts

	GET
	/microposts/1
	show
	page to show micropost with id 1

	GET
	/microposts/new
	new
	page to make a new micropost

	POST
	/microposts
	create
	create a new micropost

	GET
	/microposts/1/edit
	edit
	page to edit micropost with id 1

	PATCH
	/microposts/1
	update
	update micropost with id 1

	DELETE
	/microposts/1
	destroy
	delete micropost with id 1

Table 2.3: RESTful routes provided by the Microposts resource in Listing 2.8.

The Microposts controller itself appears in schematic form Listing 2.9. Note that, apart from having MicropostsController in place of UsersController, Listing 2.9 is identical to the code in Listing 2.4. This is a reflection of the REST architecture common to both resources.

Listing 2.9:

The Microposts controller in schematic form. app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController
 .
 .
 .
 def index
 .
 .
 .
 end

 def show
 .
 .
 .
 end

 def new
 .
 .
 .
 end

 def edit
 .
 .
 .
 end

 def create
 .
 .
 .
 end

 def update
 .
 .
 .
 end

 def destroy
 .
 .
 .
 end
end

To make some actual microposts, we enter information at the new microposts page, /microposts/new, as seen in Figure 2.12.

[image: images/figures/demo_new_micropost_3rd_edition]
Figure 2.12: The new micropost page (/microposts/new).

At this point, go ahead and create a micropost or two, taking care to make sure that at least one has a user_id of 1 to match the id of the first user created in Section 2.2.1. The result should look something like Figure 2.13.

[image: images/figures/demo_micropost_index_3rd_edition]
Figure 2.13: The micropost index page (/microposts).

2.3.2 Putting the micro in microposts

Any micropost worthy of the name should have some means of enforcing the length of the post. Implementing this constraint in Rails is easy with validations; to accept microposts with at most 140 characters (à la Twitter), we use a length validation. At this point, you should open the file app/models/micropost.rb in your text editor or IDE and fill it with the contents of Listing 2.10.

Listing 2.10:

Constraining microposts to be at most 140 characters. app/models/micropost.rb

class Micropost < ActiveRecord::Base
 validates :content, length: { maximum: 140 }
end

The code in Listing 2.10 may look rather mysterious—we’ll cover validations more thoroughly starting in Section 6.2—but its effects are readily apparent if we go to the new micropost page and enter more than 140 characters for the content of the post. As seen in Figure 2.14, Rails renders error messages indicating that the micropost’s content is too long. (We’ll learn more about error messages in Section 7.3.3.)

[image: images/figures/micropost_length_error_3rd_edition]
Figure 2.14: Error messages for a failed micropost creation.

2.3.3 A user has_many microposts

One of the most powerful features of Rails is the ability to form associations between different data models. In the case of our User model, each user potentially has many microposts. We can express this in code by updating the User and Micropost models as in Listing 2.11 and Listing 2.12.

Listing 2.11:

A user has many microposts. app/models/user.rb

class User < ActiveRecord::Base
 has_many :microposts
end

Listing 2.12:

A micropost belongs to a user. app/models/micropost.rb

class Micropost < ActiveRecord::Base
 belongs_to :user
 validates :content, length: { maximum: 140 }
end

We can visualize the result of this association in Figure 2.15. Because of the user_id column in the microposts table, Rails (using Active Record) can infer the microposts associated with each user.

[image: images/figures/micropost_user_association]
Figure 2.15: The association between microposts and users.

In Chapter 11 and Chapter 12, we will use the association of users and microposts both to display all of a user’s microposts and to construct a Twitter-like micropost feed. For now, we can examine the implications of the user-micropost association by using the console, which is a useful tool for interacting with Rails applications. We first invoke the console with rails console at the command line, and then retrieve the first user from the database using User.first (putting the results in the variable first_user):10

$ rails console
>> first_user = User.first
=> #<User id: 1, name: "Michael Hartl", email: "michael@example.org",
created_at: "2014-07-21 02:01:31", updated_at: "2014-07-21 02:01:31">
>> first_user.microposts
=> [#<Micropost id: 1, content: "First micropost!", user_id: 1, created_at:
"2014-07-21 02:37:37", updated_at: "2014-07-21 02:37:37">, #<Micropost id: 2,
content: "Second micropost", user_id: 1, created_at: "2014-07-21 02:38:54",
updated_at: "2014-07-21 02:38:54">]
>> micropost = first_user.microposts.first # Micropost.first would also work.
=> #<Micropost id: 1, content: "First micropost!", user_id: 1, created_at:
"2014-07-21 02:37:37", updated_at: "2014-07-21 02:37:37">
>> micropost.user
=> #<User id: 1, name: "Michael Hartl", email: "michael@example.org",
created_at: "2014-07-21 02:01:31", updated_at: "2014-07-21 02:01:31">
>> exit

(I include exit in the last line just to demonstrate how to exit the console. On most systems, you can also use Ctrl-D for the same purpose.)11 Here we have accessed the user’s microposts using the code first_user.microposts. With this code, Active Record automatically returns all the microposts with user_id equal to the id of first_user (in this case, 1). We’ll learn much more about the association facilities in Active Record in Chapter 11 and Chapter 12.

2.3.4 Inheritance hierarchies

We end our discussion of the toy application with a brief description of the controller and model class hierarchies in Rails. This discussion will only make much sense if you have some experience with object-oriented programming (OOP); if you haven’t studied OOP, feel free to skip this section. In particular, if you are unfamiliar with classes (discussed in Section 4.4), I suggest looping back to this section at a later time.

We start with the inheritance structure for models. Comparing Listing 2.13 and Listing 2.14, we see that both the User model and the Micropost model inherit (via the left angle bracket <) from ActiveRecord::Base, which is the base class for models provided by ActiveRecord; a diagram summarizing this relationship appears in Figure 2.16. It is by inheriting from ActiveRecord::Base that our model objects gain the ability to communicate with the database, treat the database columns as Ruby attributes, and so on.

Listing 2.13:

The User class, highlighting inheritance. app/models/user.rb

class User < ActiveRecord::Base
 .
 .
 .
end

Listing 2.14:

The Micropost class, highlighting inheritance. app/models/micropost.rb

class Micropost < ActiveRecord::Base
 .
 .
 .
end

[image: images/figures/demo_model_inheritance]
Figure 2.16: The inheritance hierarchy for the User and Micropost models.

The inheritance structure for controllers is only slightly more complicated. Comparing Listing 2.15 and Listing 2.16, we see that both the Users controller and the Microposts controller inherit from the Application controller. Examining Listing 2.17, we see that ApplicationController itself inherits from ActionController::Base; this is the base class for controllers provided by the Rails library Action Pack. The relationships between these classes is illustrated in Figure 2.17.

Listing 2.15:

The UsersController class, highlighting inheritance. app/controllers/users_controller.rb

class UsersController < ApplicationController
 .
 .
 .
end

Listing 2.16:

The MicropostsController class, highlighting inheritance. app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController
 .
 .
 .
end

Listing 2.17:

The ApplicationController class, highlighting inheritance. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
 .
 .
 .
end

[image: images/figures/demo_controller_inheritance]
Figure 2.17: The inheritance hierarchy for the Users and Microposts controllers.

As with model inheritance, both the Users and Microposts controllers gain a large amount of functionality by inheriting from a base class (in this case, ActionController::Base), including the ability to manipulate model objects, filter inbound HTTP requests, and render views as HTML. Since all Rails controllers inherit from ApplicationController, rules defined in the Application controller automatically apply to every action in the application. For example, in Section 8.4 we’ll see how to include helpers for logging in and logging out of all of the sample application’s controllers.

2.3.5 Deploying the toy app

With the completion of the Microposts resource, now is a good time to push the repository up to Bitbucket:

$ git status
$ git add -A
$ git commit -m "Finish toy app"
$ git push

Ordinarily, you should make smaller, more frequent commits, but for the purposes of this chapter a single big commit at the end is fine.

At this point, you can also deploy the toy app to Heroku as in Section 1.5:

$ git push heroku

(This assumes you created the Heroku app in Section 2.1. Otherwise, you should run heroku create and then git push heroku master.)

To get the application’s database to work, you’ll also have to migrate the production database:

$ heroku run rake db:migrate

This updates the database at Heroku with the necessary user and micropost data models. After running the migration, you should be able to use the toy app in production, with a real PostgreSQL database back-end (Figure 2.18).

[image: images/figures/toy_app_production]
Figure 2.18: Running the toy app in production.

2.4 Conclusion

We’ve come now to the end of the high-level overview of a Rails application. The toy app developed in this chapter has several strengths and a host of weaknesses.

Strengths

	High-level overview of Rails

	Introduction to MVC

	First taste of the REST architecture

	Beginning data modeling

	A live, database-backed web application in production

Weaknesses

	No custom layout or styling

	No static pages (such as “Home” or “About”)

	No user passwords

	No user images

	No logging in

	No security

	No automatic user/micropost association

	No notion of “following” or “followed”

	No micropost feed

	No meaningful tests

	No real understanding

The rest of this tutorial is dedicated to building on the strengths and eliminating the weaknesses.

2.4.1 What we learned in this chapter

	Scaffolding automatically creates code to model data and interact with it through the web.

	Scaffolding is good for getting started quickly but is bad for understanding.

	Rails uses the Model-View-Controller (MVC) pattern for structuring web applications.

	As interpreted by Rails, the REST architecture includes a standard set of URLs and controller actions for interacting with data models.

	Rails supports data validations to place constraints on the values of data model attributes.

	Rails comes with built-in functions for defining associations between different data models.

	We can interact with Rails applications at the command line using the Rails console.

2.5 Exercises

Note: The Solutions Manual for Exercises, with solutions to every exercise in the Ruby on Rails Tutorial book, is included for free with every purchase at www.railstutorial.org.

	The code in Listing 2.18 shows how to add a validation for the presence of micropost content in order to ensure that microposts can’t be blank. Verify that you get the behavior shown in Figure 2.19.

	Update Listing 2.19 by replacing FILL_IN with the appropriate code to validate the presence of name and email attributes in the User model (Figure 2.20).

Listing 2.18:

Code to validate the presence of micropost content. app/models/micropost.rb

class Micropost < ActiveRecord::Base
 belongs_to :user
 validates :content, length: { maximum: 140 },
 presence: true
end

[image: images/figures/micropost_content_cant_be_blank]
Figure 2.19: The effect of a micropost presence validation.

Listing 2.19:

Adding presence validations to the User model. app/models/user.rb

class User < ActiveRecord::Base
 has_many :microposts
 validates FILL_IN, presence: true
 validates FILL_IN, presence: true
end

[image: images/figures/user_presence_validations]
Figure 2.20: The effect of presence validations on the User model.

 	The main reason for this is that the default Rails page typically breaks at Heroku, which makes it hard to tell if the deployment was successful or not. ↑

 	Because microposts are short by design, the string type is actually big enough to contain them, but using text better expresses our intent, while also giving us greater flexibility should we ever wish to relax the length constraint. ↑

 	The name of the scaffold follows the convention of models, which are singular, rather than resources and controllers, which are plural. Thus, we have User instead of Users. ↑

 	The rails script is designed so that you don’t need to use bundle exec. ↑

 	Some references indicate that the view returns the HTML directly to the browser (via a web server such as Apache or Nginx). Regardless of the implementation details, I prefer to think of the controller as a central hub through which all the application’s information flows. ↑

 	Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral dissertation, University of California, Irvine, 2000. ↑

 	Earlier versions of Rails used PUT for data updates, but PATCH is the more appropriate method according to the HTTP standard. ↑

 	As with the User scaffold, the scaffold generator for microposts follows the singular convention of Rails models; thus, we have generate Micropost. ↑

 	The scaffold code may have extra newlines compared to Listing 2.8. This is not a cause for concern, as Ruby ignores extra newlines. ↑

 	Your console prompt might be something like 2.1.1 :001 >, but the examples use >> since Ruby versions will vary. ↑

 	As with “Ctrl-C”, the convention is to write “Ctrl-D” even though it’s really “Ctrl-d”. ↑

Table of Contents

		Frontmatter

	Chapter 1

	Chapter 2

OEBPS/Images/image00146.jpeg

OEBPS/Images/image00145.jpeg

OEBPS/Images/image00144.jpeg

OEBPS/Images/image00143.jpeg

OEBPS/Images/image00142.jpeg

OEBPS/Images/image00141.jpeg

OEBPS/Images/image00140.jpeg

OEBPS/Images/image00139.jpeg

OEBPS/Images/image00138.jpeg

OEBPS/Images/image00137.jpeg

OEBPS/Images/image00136.jpeg

OEBPS/Images/image00135.jpeg

OEBPS/Images/image00134.jpeg

OEBPS/Images/image00133.jpeg

OEBPS/Images/image00132.jpeg

OEBPS/Images/image00131.jpeg

OEBPS/Images/image00130.jpeg

OEBPS/Images/image00129.jpeg

OEBPS/Images/image00128.jpeg

OEBPS/Images/image00127.jpeg

OEBPS/Images/cover00115.jpeg

OEBPS/Images/image00126.jpeg

OEBPS/Images/image00125.jpeg

OEBPS/Images/image00124.jpeg

OEBPS/Images/image00123.jpeg

OEBPS/Images/image00122.jpeg

OEBPS/Images/image00121.jpeg

OEBPS/Images/image00120.jpeg

OEBPS/Images/image00119.jpeg

OEBPS/Images/image00118.jpeg

OEBPS/Images/image00117.jpeg

OEBPS/Images/image00157.jpeg

OEBPS/Images/image00156.jpeg

OEBPS/Images/image00155.jpeg

OEBPS/Images/image00154.jpeg

OEBPS/Images/image00153.jpeg

OEBPS/Images/image00152.jpeg

OEBPS/Images/image00151.jpeg

OEBPS/Images/image00150.jpeg

OEBPS/Images/image00149.jpeg

OEBPS/Images/image00148.jpeg

OEBPS/Images/image00147.jpeg

