

2

Ruby on Rails Tutorial

Learn Web Development with Rails

Michael Hartl

ii

Contents

1 From zero to deploy 1

1.1 Introduction . 4

1.1.1 Prerequisites . 5

1.1.2 Conventions in this book 7

1.2 Up and running . 9

1.2.1 Development environment 10

1.2.2 Installing Rails . 12

1.3 The first application . 15

1.3.1 Bundler . 20

1.3.2 rails server . 24

1.3.3 Model-View-Controller (MVC) 31

1.3.4 Hello, world! . 31

1.4 Version control with Git . 36

1.4.1 Installation and setup 36

1.4.2 What good does Git do you? 39

1.4.3 Bitbucket . 40

1.4.4 Branch, edit, commit, merge 45

1.5 Deploying . 51

1.5.1 Heroku setup . 51

1.5.2 Heroku deployment, step one 54

1.5.3 Heroku deployment, step two 54

1.5.4 Heroku commands 54

1.6 Conclusion . 56

1.6.1 What we learned in this chapter 57

iii

iv CONTENTS

1.7 Exercises . 57

2 A toy app 61

2.1 Planning the application . 62

2.1.1 A toy model for users 65

2.1.2 A toy model for microposts 65

2.2 The Users resource . 66

2.2.1 A user tour . 69

2.2.2 MVC in action . 76

2.2.3 Weaknesses of this Users resource 84

2.3 The Microposts resource . 84

2.3.1 A micropost microtour 85

2.3.2 Putting the micro in microposts 88

2.3.3 A user has_many microposts 91

2.3.4 Inheritance hierarchies 93

2.3.5 Deploying the toy app 96

2.4 Conclusion . 97

2.4.1 What we learned in this chapter 99

2.5 Exercises . 100

3 Mostly static pages 103

3.1 Sample app setup . 104

3.2 Static pages . 108

3.2.1 Generated static pages 108

3.2.2 Custom static pages 118

3.3 Getting started with testing 121

3.3.1 Our first test . 123

3.3.2 Red . 125

3.3.3 Green . 126

3.3.4 Refactor . 130

3.4 Slightly dynamic pages . 130

3.4.1 Testing titles (Red) 131

3.4.2 Adding page titles (Green) 133

3.4.3 Layouts and embedded Ruby (Refactor) 136

CONTENTS v

3.4.4 Setting the root route 142

3.5 Conclusion . 143

3.5.1 What we learned in this chapter 145

3.6 Exercises . 146

3.7 Advanced testing setup . 148

3.7.1 MiniTest reporters 149

3.7.2 Backtrace silencer 150

3.7.3 Automated tests with Guard 150

4 Rails-flavored Ruby 159

4.1 Motivation . 159

4.2 Strings and methods . 164

4.2.1 Comments . 165

4.2.2 Strings . 166

4.2.3 Objects and message passing 169

4.2.4 Method definitions 172

4.2.5 Back to the title helper 174

4.3 Other data structures . 175

4.3.1 Arrays and ranges 175

4.3.2 Blocks . 179

4.3.3 Hashes and symbols 182

4.3.4 CSS revisited . 187

4.4 Ruby classes . 189

4.4.1 Constructors . 189

4.4.2 Class inheritance . 191

4.4.3 Modifying built-in classes 195

4.4.4 A controller class . 196

4.4.5 A user class . 197

4.5 Conclusion . 201

4.5.1 What we learned in this chapter 202

4.6 Exercises . 202

5 Filling in the layout 205

5.1 Adding some structure . 206

vi CONTENTS

5.1.1 Site navigation . 206

5.1.2 Bootstrap and custom CSS 215

5.1.3 Partials . 222

5.2 Sass and the asset pipeline 227

5.2.1 The asset pipeline . 229

5.2.2 Syntactically awesome stylesheets 232

5.3 Layout links . 239

5.3.1 Contact page . 240

5.3.2 Rails routes . 242

5.3.3 Using named routes 244

5.3.4 Layout link tests . 247

5.4 User signup: A first step . 250

5.4.1 Users controller . 250

5.4.2 Signup URL . 251

5.5 Conclusion . 254

5.5.1 What we learned in this chapter 254

5.6 Exercises . 256

6 Modeling users 259

6.1 User model . 260

6.1.1 Database migrations 262

6.1.2 The model file . 269

6.1.3 Creating user objects 270

6.1.4 Finding user objects 273

6.1.5 Updating user objects 275

6.2 User validations . 276

6.2.1 A validity test . 277

6.2.2 Validating presence 278

6.2.3 Length validation . 282

6.2.4 Format validation . 284

6.2.5 Uniqueness validation 290

6.3 Adding a secure password 298

6.3.1 A hashed password 298

6.3.2 User has secure password 301

CONTENTS vii

6.3.3 Minimum password length 303

6.3.4 Creating and authenticating a user 304

6.4 Conclusion . 308

6.4.1 What we learned in this chapter 309

6.5 Exercises . 309

7 Sign up 313

7.1 Showing users . 313

7.1.1 Debug and Rails environments 314

7.1.2 A Users resource . 320

7.1.3 Debugger . 326

7.1.4 A Gravatar image and a sidebar 329

7.2 Signup form . 334

7.2.1 Using form_for 338

7.2.2 Signup form HTML 341

7.3 Unsuccessful signups . 345

7.3.1 A working form . 345

7.3.2 Strong parameters 351

7.3.3 Signup error messages 353

7.3.4 A test for invalid submission 359

7.4 Successful signups . 362

7.4.1 The finished signup form 362

7.4.2 The flash . 366

7.4.3 The first signup . 369

7.4.4 A test for valid submission 372

7.5 Professional-grade deployment 373

7.5.1 SSL in production 374

7.5.2 Production webserver 375

7.5.3 Ruby version number 377

7.6 Conclusion . 379

7.6.1 What we learned in this chapter 379

7.7 Exercises . 380

viii CONTENTS

8 Log in, log out 385

8.1 Sessions . 386

8.1.1 Sessions controller 387

8.1.2 Login form . 389

8.1.3 Finding and authenticating a user 394

8.1.4 Rendering with a flash message 398

8.1.5 A flash test . 401

8.2 Logging in . 403

8.2.1 The log_in method 404

8.2.2 Current user . 406

8.2.3 Changing the layout links 411

8.2.4 Testing layout changes 417

8.2.5 Login upon signup 421

8.3 Logging out . 424

8.4 Remember me . 427

8.4.1 Remember token and digest 427

8.4.2 Login with remembering 433

8.4.3 Forgetting users . 443

8.4.4 Two subtle bugs . 445

8.4.5 “Remember me” checkbox 449

8.4.6 Remember tests . 457

8.5 Conclusion . 465

8.5.1 What we learned in this chapter 466

8.6 Exercises . 467

9 Updating, showing, and deleting users 471

9.1 Updating users . 471

9.1.1 Edit form . 472

9.1.2 Unsuccessful edits 478

9.1.3 Testing unsuccessful edits 479

9.1.4 Successful edits (with TDD) 482

9.2 Authorization . 485

9.2.1 Requiring logged-in users 488

9.2.2 Requiring the right user 493

CONTENTS ix

9.2.3 Friendly forwarding 498

9.3 Showing all users . 503

9.3.1 Users index . 503

9.3.2 Sample users . 509

9.3.3 Pagination . 510

9.3.4 Users index test . 514

9.3.5 Partial refactoring . 518

9.4 Deleting users . 520

9.4.1 Administrative users 520

9.4.2 The destroy action 525

9.4.3 User destroy tests . 528

9.5 Conclusion . 531

9.5.1 What we learned in this chapter 532

9.6 Exercises . 534

10 Account activation and password reset 537

10.1 Account activation . 538

10.1.1 Account activations resource 539

10.1.2 Account activation mailer method 547

10.1.3 Activating the account 561

10.1.4 Activation test and refactoring 569

10.2 Password reset . 575

10.2.1 Password resets resource 579

10.2.2 Password resets controller and form 583

10.2.3 Password reset mailer method 589

10.2.4 Resetting the password 596

10.2.5 Password reset test 602

10.3 Email in production . 607

10.4 Conclusion . 609

10.4.1 What we learned in this chapter 611

10.5 Exercises . 611

10.6 Proof of expiration comparison 614

x CONTENTS

11 User microposts 617

11.1 A Micropost model . 617

11.1.1 The basic model . 618

11.1.2 Micropost validations 620

11.1.3 User/Micropost associations 623

11.1.4 Micropost refinements 627

11.2 Showing microposts . 632

11.2.1 Rendering microposts 633

11.2.2 Sample microposts 637

11.2.3 Profile micropost tests 642

11.3 Manipulating microposts . 649

11.3.1 Micropost access control 650

11.3.2 Creating microposts 652

11.3.3 A proto-feed . 660

11.3.4 Destroying microposts 669

11.3.5 Micropost tests . 672

11.4 Micropost images . 676

11.4.1 Basic image upload 677

11.4.2 Image validation . 683

11.4.3 Image resizing . 686

11.4.4 Image upload in production 688

11.5 Conclusion . 692

11.5.1 What we learned in this chapter 694

11.6 Exercises . 695

12 Following users 701

12.1 The Relationship model . 702

12.1.1 A problem with the data model (and a solution) 702

12.1.2 User/relationship associations 711

12.1.3 Relationship validations 713

12.1.4 Followed users . 715

12.1.5 Followers . 719

12.2 A web interface for following users 721

12.2.1 Sample following data 721

CONTENTS xi

12.2.2 Stats and a follow form 723
12.2.3 Following and followers pages 734
12.2.4 A working follow button the standard way 744
12.2.5 A working follow button with Ajax 746
12.2.6 Following tests . 753

12.3 The status feed . 755
12.3.1 Motivation and strategy 756
12.3.2 A first feed implementation 758
12.3.3 Subselects . 762

12.4 Conclusion . 768
12.4.1 Guide to further resources 768
12.4.2 What we learned in this chapter 769

12.5 Exercises . 770

xii CONTENTS

Foreword

My former company (CD Baby) was one of the first to loudly switch to Ruby
on Rails, and then even more loudly switch back to PHP (Google me to read
about the drama). This book by Michael Hartl came so highly recommended
that I had to try it, and the Ruby on Rails Tutorial is what I used to switch back
to Rails again.

Though I’ve worked my way through many Rails books, this is the one that
finally made me “get” it. Everything is done very much “the Rails way”—a
way that felt very unnatural to me before, but now after doing this book finally
feels natural. This is also the only Rails book that does test-driven development
the entire time, an approach highly recommended by the experts but which has
never been so clearly demonstrated before. Finally, by including Git, GitHub,
and Heroku in the demo examples, the author really gives you a feel for what
it’s like to do a real-world project. The tutorial’s code examples are not in
isolation.

The linear narrative is such a great format. Personally, I powered through
the Rails Tutorial in three long days,1 doing all the examples and challenges at
the end of each chapter. Do it from start to finish, without jumping around, and
you’ll get the ultimate benefit.

Enjoy!

Derek Sivers (sivers.org)
Founder, CD Baby

1This is not typical! Getting through the entire book usually takes much longer than three days.

xiii

http://sivers.org/
http://sivers.org/

xiv CONTENTS

Acknowledgments

The Ruby on Rails Tutorial owes a lot to my previous Rails book, RailsSpace,
and hence to my coauthor Aurelius Prochazka. I’d like to thank Aure both
for the work he did on that book and for his support of this one. I’d also like
to thank Debra Williams Cauley, my editor on both RailsSpace and the Ruby

on Rails Tutorial; as long as she keeps taking me to baseball games, I’ll keep
writing books for her.

I’d like to acknowledge a long list of Rubyists who have taught and in-
spired me over the years: David Heinemeier Hansson, Yehuda Katz, Carl
Lerche, Jeremy Kemper, Xavier Noria, Ryan Bates, Geoffrey Grosenbach, Pe-
ter Cooper, Matt Aimonetti, Mark Bates, Gregg Pollack, Wayne E. Seguin,
Amy Hoy, Dave Chelimsky, Pat Maddox, Tom Preston-Werner, Chris Wan-
strath, Chad Fowler, Josh Susser, Obie Fernandez, Ian McFarland, Steven Bris-
tol, Pratik Naik, Sarah Mei, Sarah Allen, Wolfram Arnold, Alex Chaffee, Giles
Bowkett, Evan Dorn, Long Nguyen, James Lindenbaum, Adam Wiggins,
Tikhon Bernstam, Ron Evans, Wyatt Greene, Miles Forrest, the good people
at Pivotal Labs, the Heroku gang, the thoughtbot guys, and the GitHub crew.
Finally, many, many readers—far too many to list—have contributed a huge
number of bug reports and suggestions during the writing of this book, and I
gratefully acknowledge their help in making it as good as it can be.

xv

http://aure.com/

xvi CONTENTS

About the author

Michael Hartl is the author of the Ruby on Rails Tutorial, one of the lead-
ing introductions to web development, and is a cofounder of the Softcover
self-publishing platform. His prior experience includes writing and developing
RailsSpace, an extremely obsolete Rails tutorial book, and developing Insoshi,
a once-popular and now-obsolete social networking platform in Ruby on Rails.
In 2011, Michael received a Ruby Hero Award for his contributions to the Ruby
community. He is a graduate of Harvard College, has a Ph.D. in Physics from
Caltech, and is an alumnus of the Y Combinator entrepreneur program.

xvii

http://www.michaelhartl.com/
http://www.railstutorial.org/
http://www.softcover.io/
http://rubyheroes.com/heroes
http://college.harvard.edu/
http://resolver.caltech.edu/CaltechETD:etd-05222003-161626
http://www.caltech.edu/
http://ycombinator.com/

xviii CONTENTS

Copyright and license

Ruby on Rails Tutorial: Learn Web Development with Rails. Copyright © 2014
by Michael Hartl. All source code in the Ruby on Rails Tutorial is available
jointly under the MIT License and the Beerware License.

The MIT License

Copyright (c) 2014 Michael Hartl

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

/*

* --

* "THE BEERWARE LICENSE" (Revision 43):

* Michael Hartl wrote this code. As long as you retain this notice you

* can do whatever you want with this stuff. If we meet some day, and you think

* this stuff is worth it, you can buy me a beer in return.

* --

*/

xix

http://opensource.org/licenses/MIT
http://people.freebsd.org/~phk/

xx CONTENTS

Chapter 1

From zero to deploy

Welcome to Ruby on Rails Tutorial: Learn Web Development with Rails. The
purpose of this book is to teach you how to develop custom web applications,
and our tool of choice is the popular Ruby on Rails web framework. If you are
new to the subject, the Ruby on Rails Tutorial will give you a thorough intro-
duction to web application development, including a basic grounding in Ruby,
Rails, HTML & CSS, databases, version control, testing, and deployment—
sufficient to launch you on a career as a web developer or technology en-
trepreneur. On the other hand, if you already know web development, this
book will quickly teach you the essentials of the Rails framework, including
MVC and REST, generators, migrations, routing, and embedded Ruby. In ei-
ther case, when you finish the Ruby on Rails Tutorial you will be in a position
to benefit from the many more advanced books, blogs, and screencasts that are
part of the thriving programming educational ecosystem.1

The Ruby on Rails Tutorial takes an integrated approach to web develop-
ment by building three example applications of increasing sophistication, start-
ing with a minimal hello app (Section 1.3), a slightly more capable toy app
(Chapter 2), and a real sample app (Chapter 3 through Chapter 12). As im-
plied by their generic names, the applications developed in the Ruby on Rails

Tutorial are not specific to any particular kind of website; although the final

1The most up-to-date version of the Ruby on Rails Tutorial can be found on the book’s website at

http://www.railstutorial.org/. If you are reading this book offline, be sure to check the online version of the

Rails Tutorial book at http://www.railstutorial.org/book for the latest updates.

1

http://www.railstutorial.org/book
http://rubyonrails.org
http://www.railstutorial.org/
http://www.railstutorial.org/book
http://www.railstutorial.org/book
http://www.railstutorial.org/book

2 CHAPTER 1. FROM ZERO TO DEPLOY

sample application will bear more than a passing resemblance to a certain pop-
ular social microblogging site (a site which, coincidentally, was also originally
written in Rails), the emphasis throughout the tutorial is on general principles,
so you will have a solid foundation no matter what kinds of web applications
you want to build.

One common question is how much background is necessary to learn web
development using the Ruby on Rails Tutorial. As discussed in more depth in
Section 1.1.1, web development is a challenging subject, especially for com-
plete beginners. Although the tutorial was originally designed for readers with
some prior programming or web-development experience, in fact it has found a
significant audience among beginning developers. In acknowledgment of this,
the present third edition of the Rails Tutorial has taken several important steps
toward lowering the barrier to getting started with Rails (Box 1.1).

Box 1.1. Lowering the barrier

This third edition of the Ruby on Rails Tutorial aims to lower the barrier to
getting started with Rails in a number of ways:

• Use of a standard development environment in the cloud (Section 1.2),
which sidesteps many of the problems associated with installing and con-
figuring a new system

• Use of the Rails “default stack”, including the built-in MiniTest testing
framework

• Elimination of many external dependencies (RSpec, Cucumber, Capybara,
Factory Girl)

• A lighter-weight and more flexible approach to testing

• Deferral or elimination of more complex configuration options (Spork,
RubyTest)

http://twitter.com/

3

• Less emphasis on features specific to any given version of Rails, with greater
emphasis on general principles of web development

It is my hope that these changes will make the third edition of the Ruby on Rails

Tutorial accessible to an even broader audience than previous versions.

In this first chapter, we’ll get started with Ruby on Rails by installing all
the necessary software and by setting up our development environment (Sec-
tion 1.2). We’ll then create our first Rails application, called hello_app. The
Rails Tutorial emphasizes good software development practices, so immedi-
ately after creating our fresh new Rails project we’ll put it under version con-
trol with Git (Section 1.4). And, believe it or not, in this chapter we’ll even put
our first app on the wider web by deploying it to production (Section 1.5).

In Chapter 2, we’ll make a second project, whose purpose is to demonstrate
the basic workings of a Rails application. To get up and running quickly, we’ll
build this toy app (called toy_app) using scaffolding (Box 1.2) to generate
code; because this code is both ugly and complex, Chapter 2 will focus on
interacting with the toy app through its URIs (often called URLs)2 using a web
browser.

The rest of the tutorial focuses on developing a single large real sample

application (called sample_app), writing all the code from scratch. We’ll
develop the sample app using a combination of mockups, test-driven develop-

ment (TDD), and integration tests. We’ll get started in Chapter 3 by creating
static pages and then add a little dynamic content. We’ll take a quick detour
in Chapter 4 to learn a little about the Ruby language underlying Rails. Then,
in Chapter 5 through Chapter 10, we’ll complete the foundation for the sample
application by making a site layout, a user data model, and a full registration
and authentication system (including account activation and password resets).
Finally, in Chapter 11 and Chapter 12 we’ll add microblogging and social fea-
tures to make a working example site.

2URI stands for Uniform Resource Identifier, while the slightly less general URL stands for Uniform Resource

Locator. In practice, the URL is usually equivalent to “the thing you see in the address bar of your browser”.

4 CHAPTER 1. FROM ZERO TO DEPLOY

Box 1.2. Scaffolding: Quicker, easier, more seductive

From the beginning, Rails has benefited from a palpable sense of excitement,
starting with the famous 15-minute weblog video by Rails creator David Heine-
meier Hansson. That video and its successors are a great way to get a taste of
Rails’ power, and I recommend watching them. But be warned: they accomplish
their amazing fifteen-minute feat using a feature called scaffolding, which relies
heavily on generated code, magically created by the Rails generate scaffold

command.
When writing a Ruby on Rails tutorial, it is tempting to rely on the scaffold-

ing approach—it’s quicker, easier, more seductive. But the complexity and sheer
amount of code in the scaffolding can be utterly overwhelming to a beginning Rails
developer; you may be able to use it, but you probably won’t understand it. Fol-
lowing the scaffolding approach risks turning you into a virtuoso script generator
with little (and brittle) actual knowledge of Rails.

In the Ruby on Rails Tutorial, we’ll take the (nearly) polar opposite approach:
although Chapter 2 will develop a small toy app using scaffolding, the core of the
Rails Tutorial is the sample app, which we’ll start writing in Chapter 3. At each
stage of developing the sample application, we will write small, bite-sized pieces
of code—simple enough to understand, yet novel enough to be challenging. The
cumulative effect will be a deeper, more flexible knowledge of Rails, giving you a
good background for writing nearly any type of web application.

1.1 Introduction

Ruby on Rails (or just “Rails” for short) is a web development framework writ-
ten in the Ruby programming language. Since its debut in 2004, Ruby on Rails
has rapidly become one of the most powerful and popular tools for building
dynamic web applications. Rails is used by companies as diverse as Airbnb,
Basecamp, Disney, GitHub, Hulu, Kickstarter, Shopify, Twitter, and the Yel-

http://www.youtube.com/watch?v=Gzj723LkRJY
http://en.wikipedia.org/wiki/Dark_side_(Star_Wars)
http://airbnb.com/
http://basecamp.com/
http://disney.com/
http://github.com/
http://hulu.com/
http://kickstarter.com/
http://shopify.com/
http://twitter.com/
http://yellowpages.com/

1.1. INTRODUCTION 5

low Pages. There are also many web development shops that specialize in
Rails, such as ENTP, thoughtbot, Pivotal Labs, Hashrocket, and HappyFun-
Corp, plus innumerable independent consultants, trainers, and contractors.

What makes Rails so great? First of all, Ruby on Rails is 100% open-
source, available under the permissive MIT License, and as a result it also
costs nothing to download or use. Rails also owes much of its success to its
elegant and compact design; by exploiting the malleability of the underlying
Ruby language, Rails effectively creates a domain-specific language for writing
web applications. As a result, many common web programming tasks—such
as generating HTML, making data models, and routing URLs—are easy with
Rails, and the resulting application code is concise and readable.

Rails also adapts rapidly to new developments in web technology and
framework design. For example, Rails was one of the first frameworks to fully
digest and implement the REST architectural style for structuring web applica-
tions (which we’ll be learning about throughout this tutorial). And when other
frameworks develop successful new techniques, Rails creator David Heine-
meier Hansson and the Rails core team don’t hesitate to incorporate their ideas.
Perhaps the most dramatic example is the merger of Rails and Merb, a rival
Ruby web framework, so that Rails now benefits from Merb’s modular design,
stable API, and improved performance.

Finally, Rails benefits from an unusually enthusiastic and diverse commu-
nity. The results include hundreds of open-source contributors, well-attended
conferences, a huge number of gems (self-contained solutions to specific prob-
lems such as pagination and image upload), a rich variety of informative blogs,
and a cornucopia of discussion forums and IRC channels. The large number
of Rails programmers also makes it easier to handle the inevitable application
errors: the “Google the error message” algorithm nearly always produces a
relevant blog post or discussion-forum thread.

1.1.1 Prerequisites

There are no formal prerequisites to this book—the Ruby on Rails Tutorial

contains integrated tutorials not only for Rails, but also for the underlying Ruby
language, the default Rails testing framework (MiniTest), the Unix command

http://yellowpages.com/
http://yellowpages.com/
http://entp.com/
http://thoughtbot.com/
http://pivotallabs.com/
http://hashrocket.com/
http://www.happyfuncorp.com/
http://www.happyfuncorp.com/
http://www.opensource.org/licenses/mit-license.php
http://ruby-lang.org/
http://en.wikipedia.org/wiki/Domain_Specific_Language
http://loudthinking.com/
http://loudthinking.com/
http://rubyonrails.org/core
http://en.wikipedia.org/wiki/Application_programming_interface
http://contributors.rubyonrails.org/
http://railsconf.com/
https://rubygems.org/

6 CHAPTER 1. FROM ZERO TO DEPLOY

line, HTML, CSS, a small amount of JavaScript, and even a little SQL. That’s
a lot of material to absorb, though, and I generally recommend having some
HTML and programming background before starting this tutorial. That said, a
surprising number of beginners have used the Ruby on Rails Tutorial to learn
web development from scratch, so even if you have limited experience I suggest
giving it a try. If you feel overwhelmed, you can always go back and start with
one of the resources listed below. Another strategy recommended by multiple
readers is simply to do the tutorial twice; you may be surprised at how much
you learned the first time (and how much easier it is the second time through).

One common question when learning Rails is whether to learn Ruby first.
The answer depends on your personal learning style and how much program-
ming experience you already have. If you prefer to learn everything system-
atically from the ground up, or if you have never programmed before, then
learning Ruby first might work well for you, and in this case I recommend
Learn to Program by Chris Pine and Beginning Ruby by Peter Cooper. On the
other hand, many beginning Rails developers are excited about making web

applications, and would rather not wait to finish a whole book on Ruby be-
fore ever writing a single web page. In this case, I recommend following the
short interactive tutorial at Try Ruby3 to get a general overview before starting
with the Rails Tutorial. If you still find this tutorial too difficult, you might try
starting with Learn Ruby on Rails by Daniel Kehoe or One Month Rails, both
of which are geared more toward complete beginners than the Ruby on Rails

Tutorial.

At the end of this tutorial, no matter where you started, you should be ready
for the many more intermediate-to-advanced Rails resources out there. Here
are some I particularly recommend:

• Code School: Good interactive online programming courses

• The Turing School of Software & Design: a full-time, 27-week training
program in Denver, Colorado, with a $500 discount for Rails Tutorial
readers using the code RAILSTUTORIAL500

3http://tryruby.org/

http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/CSS
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/SQL
http://pragprog.com/book/ltp2/learn-to-program
http://www.amazon.com/gp/product/1430223634
http://tryruby.org/
http://learn-rails.com/learn-ruby-on-rails.html
http://mbsy.co/7Zdc7
http://mbsy.co/6VQ8l
http://turing.io/friends/tutorial
http://turing.io/friends/tutorial

1.1. INTRODUCTION 7

• Tealeaf Academy: A good online Rails development bootcamp (includes
advanced material)

• Thinkful: An online class that pairs you with a professional engineer as
you work through a project-based curriculum

• Pragmatic Studio: Online Ruby and Rails courses from Mike and Nicole
Clark. Along with Programming Ruby author Dave Thomas, Mike taught
the first Rails course I took, way back in 2006.

• RailsCasts by Ryan Bates: Excellent (mostly free) Rails screencasts

• RailsApps: A large variety of detailed topic-specific Rails projects and
tutorials

• Rails Guides: Topical and up-to-date Rails references

1.1.2 Conventions in this book

The conventions in this book are mostly self-explanatory. In this section, I’ll
mention some that may not be.

Many examples in this book use command-line commands. For simplicity,
all command line examples use a Unix-style command line prompt (a dollar
sign), as follows:

$ echo "hello, world"

hello, world

As mentioned in Section 1.2, I recommend that users of all operating systems
(especially Windows) use a cloud development environment (Section 1.2.1),
which comes with a built-in Unix (Linux) command line. This is particularly
useful because Rails comes with many commands that can be run at the com-
mand line. For example, in Section 1.3.2 we’ll run a local development web
server with the rails server command:

http://www.gotealeaf.com/railstutorial
http://www.thinkful.com/a/railstutorial
https://pragmaticstudio.com/refs/railstutorial
http://railscasts.com/
https://tutorials.railsapps.org/hartl
http://guides.rubyonrails.org/

8 CHAPTER 1. FROM ZERO TO DEPLOY

$ rails server

As with the command-line prompt, the Rails Tutorial uses the Unix conven-
tion for directory separators (i.e., a forward slash /). For example, the sample
application production.rb configuration file appears as follows:

config/environments/production.rb

This file path should be understood as being relative to the application’s root
directory, which will vary by system; on the cloud IDE (Section 1.2.1), it looks
like this:

/home/ubuntu/workspace/sample_app/

Thus, the full path to production.rb is

/home/ubuntu/workspace/sample_app/config/environments/production.rb

For brevity, I will typically omit the application path and write just config/-
environments/production.rb.

The Rails Tutorial often shows output from various programs (shell com-
mands, version control status, Ruby programs, etc.). Because of the innumer-
able small differences between different computer systems, the output you see
may not always agree exactly with what is shown in the text, but this is not
cause for concern. In addition, some commands may produce errors depend-
ing on your system; rather than attempt the Sisyphean task of documenting all
such errors in this tutorial, I will delegate to the “Google the error message”
algorithm, which among other things is good practice for real-life software de-
velopment. If you run into any problems while following the tutorial, I suggest
consulting the resources listed in the Rails Tutorial help section.4

4http://www.railstutorial.org/#help

http://en.wikipedia.org/wiki/Sisyphus
http://www.railstutorial.org/#help

1.2. UP AND RUNNING 9

Because the Rails Tutorial covers testing of Rails applications, it is often
helpful to know if a particular piece of code causes the test suite to fail (indi-
cated by the color red) or pass (indicated by the color green). For convenience,
code resulting in a failing test is thus indicated with RED, while code resulting
in a passing test is indicated with GREEN.

Each chapter in the tutorial includes exercises, the completion of which is
optional but recommended. In order to keep the main discussion independent of
the exercises, the solutions are not generally incorporated into subsequent code
listings. In the rare circumstance that an exercise solution is used subsequently,
it is explicitly solved in the main text.

Finally, for convenience the Ruby on Rails Tutorial adopts two conventions
designed to make the many code samples easier to understand. First, some
code listings include one or more highlighted lines, as seen below:

class User < ActiveRecord::Base

validates :name, presence: true

validates :email, presence: true

end

Such highlighted lines typically indicate the most important new code in the
given sample, and often (though not always) represent the difference between
the present code listing and previous listings. Second, for brevity and simplicity
many of the book’s code listings include vertical dots, as follows:

class User < ActiveRecord::Base

.

.

.

has_secure_password

end

These dots represent omitted code and should not be copied literally.

1.2 Up and running

Even for experienced Rails developers, installing Ruby, Rails, and all the as-
sociated supporting software can be an exercise in frustration. Compounding

10 CHAPTER 1. FROM ZERO TO DEPLOY

the problem is the multiplicity of environments: different operating systems,
version numbers, preferences in text editor and integrated development envi-
ronment (IDE), etc. Users who already have a development environment in-
stalled on their local machine are welcome to use their preferred setup, but
(as mentioned in Box 1.1) new users are encouraged to sidestep such installa-
tion and configuration issues by using a cloud integrated development environ-

ment. The cloud IDE runs inside an ordinary web browser and hence works
the same across different platforms, which is especially useful for operating
systems (such as Windows) on which Rails development has historically been
difficult. If, despite the challenges involved, you would still prefer to complete
the Ruby on Rails Tutorial using a local development environment, I recom-
mend following the instructions at InstallRails.com.5

1.2.1 Development environment

Considering various idiosyncratic customizations, there are probably as many
development environments as there are Rails programmers. To avoid this com-
plexity, the Ruby on Rails Tutorial standardizes on the excellent cloud develop-
ment environment Cloud9. In particular, for this third edition I am pleased to
partner with Cloud9 to offer a development environment specifically tailored
to the needs of this tutorial. The resulting Rails Tutorial Cloud9 workspace
comes pre-configured with most of the software needed for professional-grade
Rails development, including Ruby, RubyGems, Git. (Indeed, the only big
piece of software we’ll install separately is Rails itself, and this is intentional
(Section 1.2.2).) The cloud IDE also includes the three essential components
needed to develop web applications: a text editor, a filesystem navigator, and a
command-line terminal (Figure 1.1). Among other features, the cloud IDE text
editor supports the “Find in Files” global search that I consider essential to nav-
igating any large Ruby or Rails project.6 Finally, even if you decide not to use
the cloud IDE exclusively in real life (and I certainly recommend learning other
tools as well), it provides an excellent introduction to the general capabilities

5Even then, Windows users should be warned that the Rails installer recommended by InstallRails is often out

of date, and is likely to be incompatible with the present tutorial.
6For example, to find the definition of a function called foo, you can do a global search for “def foo”.

http://installrails.com/
http://c9.io/

1.2. UP AND RUNNING 11

Figure 1.1: The anatomy of the cloud IDE.

of text editors and other development tools.

Here are the steps for getting started with the cloud development environ-
ment:

1. Sign up for a free account at Cloud97

2. Click on “Go to your Dashboard”

3. Select “Create New Workspace”

4. As shown in Figure 1.2, create a workspace called “rails-tutorial” (not

7https://c9.io/web/sign-up/free

https://c9.io/web/sign-up/free

12 CHAPTER 1. FROM ZERO TO DEPLOY

“rails_tutorial”), set it to “Private to the people I invite”, and select the
icon for the Rails Tutorial (not the icon for Ruby on Rails)

5. Click “Create”

6. After Cloud9 has finished provisioning the workspace, select it and click
“Start editing”

Because using two spaces for indentation is a near-universal convention in
Ruby, I also recommend changing the editor to use two spaces instead of the
default four. As shown in Figure 1.3, you can do this by clicking the gear
icon in the upper right and then selecting “Code Editor (Ace)” to edit the “Soft
Tabs” setting. (Note that this takes effect immediately; you don’t need to click
a “Save” button.)

1.2.2 Installing Rails

The development environment from Section 1.2.1 includes all the software we
need to get started except for Rails itself.8 To install Rails, we’ll use the gem
command provided by the RubyGems package manager, which involves typing
the command shown in Listing 1.1 into your command-line terminal. (If de-
veloping on your local system, this means using a regular terminal window; if
using the cloud IDE, this means using the command-line area shown in Fig-
ure 1.1.)

Listing 1.1: Installing Rails with a specific version number.

$ gem install rails -v 4.2.0

Here the -v flag ensures that the specified version of Rails gets installed, which
is important to get results consistent with this tutorial.

8At present, Cloud9 includes an older version of Rails that is incompatible with the present tutorial, which is

one reason why it’s so important to install it ourselves.

1.2. UP AND RUNNING 13

Figure 1.2: Creating a new workspace at Cloud9.

14 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.3: Setting Cloud9 to use two spaces for indentation.

1.3. THE FIRST APPLICATION 15

1.3 The first application

Following a long tradition in computer programming, our goal for the first ap-
plication is to write a “hello, world” program. In particular, we will create a
simple application that displays the string “hello, world!” on a web page, both
on our development environment (Section 1.3.4) and on the live web (Sec-
tion 1.5).

Virtually all Rails applications start the same way, by running the rails

new command. This handy command creates a skeleton Rails application in
a directory of your choice. To get started, users not using the Cloud9 IDE
recommended in Section 1.2.1 should make a workspace directory for your
Rails projects if it doesn’t already exist (Listing 1.2) and then change into the
directory. (Listing 1.2 uses the Unix commands cd and mkdir; see Box 1.3 if
you are not already familiar with these commands.)

Listing 1.2: Making a workspace directory for Rails projects (unnecessary
in the cloud).

$ cd # Change to the home directory.

$ mkdir workspace # Make a workspace directory.

$ cd workspace/ # Change into the workspace directory.

Box 1.3. A crash course on the Unix command line

For readers coming from Windows or (to a lesser but still significant extent)
Macintosh OS X, the Unix command line may be unfamiliar. Luckily, if you
are using the recommended cloud environment, you automatically have access to
a Unix (Linux) command line running a standard shell command-line interface
known as Bash.

The basic idea of the command line is simple: by issuing short commands,
users can perform a large number of operations, such as creating directories
(mkdir), moving and copying files (mv and cp), and navigating the filesystem
by changing directories (cd). Although the command line may seem primitive to

http://www.catb.org/jargon/html/H/hello-world.html
http://en.wikipedia.org/wiki/Shell_(computing)
http://en.wikipedia.org/wiki/Bash_(Unix_shell)

16 CHAPTER 1. FROM ZERO TO DEPLOY

Description Command Example

list contents ls $ ls -l

make directory mkdir <dirname> $ mkdir workspace

change directory cd <dirname> $ cd workspace/

cd one directory up $ cd ..

cd to home directory $ cd ~ or just $ cd

cd to path incl. home dir $ cd ~/workspace/

move file (rename) mv <source> <target> $ mv README.rdoc README.md

copy file cp <source> <target> $ cp README.rdoc README.md

remove file rm <file> $ rm README.rdoc

remove empty directory rmdir <directory> $ rmdir workspace/

remove nonempty directory rm -rf <directory> $ rm -rf tmp/

concatenate & display file contents cat <file> $ cat ~/.ssh/id_rsa.pub

Table 1.1: Some common Unix commands.

users mainly familiar with graphical user interfaces (GUIs), appearances are de-
ceiving: the command line is one of the most powerful tools in the developer’s
toolbox. Indeed, you will rarely see the desktop of an experienced developer with-
out several open terminal windows running command-line shells.

The general subject is deep, but for the purposes of this tutorial we will need
only a few of the most common Unix command-line commands, as summarized
in Table 1.1. For a more in-depth treatment of the Unix command line, see Con-

quering the Command Line by Mark Bates (available as a free online version and
as ebooks and screencasts).

The next step on both local systems and the cloud IDE is to create the first
application using the command in Listing 1.3. Note that Listing 1.3 explicitly
includes the Rails version number (_4.2.0_) as part of the command. This
ensures that the same version of Rails we installed in Listing 1.1 is used to
create the first application’s file structure. (If the command in Listing 1.3 re-
turns an error like “Could not find ’railties”’, it means you don’t have the right
version of Rails installed, and you should double-check that you followed the
command in Listing 1.1 exactly as written.)

http://conqueringthecommandline.com/
http://conqueringthecommandline.com/
http://conqueringthecommandline.com/book
http://conqueringthecommandline.com/#pricing

1.3. THE FIRST APPLICATION 17

Listing 1.3: Running rails new (with a specific version number).

$ cd ~/workspace

$ rails _4.2.0_ new hello_app

create

create README.rdoc

create Rakefile

create config.ru

create .gitignore

create Gemfile

create app

create app/assets/javascripts/application.js

create app/assets/stylesheets/application.css

create app/controllers/application_controller.rb

.

.

.

create test/test_helper.rb

create tmp/cache

create tmp/cache/assets

create vendor/assets/javascripts

create vendor/assets/javascripts/.keep

create vendor/assets/stylesheets

create vendor/assets/stylesheets/.keep

run bundle install

Fetching gem metadata from https://rubygems.org/..........

Fetching additional metadata from https://rubygems.org/..

Resolving dependencies...

Using rake 10.3.2

Using i18n 0.6.11

.

.

.

Your bundle is complete!

Use `bundle show [gemname]` to see where a bundled gem is installed.

run bundle exec spring binstub --all

* bin/rake: spring inserted

* bin/rails: spring inserted

As seen at the end of Listing 1.3, running rails new automatically runs the
bundle install command after the file creation is done. We’ll discuss what
this means in more detail starting in Section 1.3.1.

Notice how many files and directories the rails command creates. This
standard directory and file structure (Figure 1.4) is one of the many advantages
of Rails; it immediately gets you from zero to a functional (if minimal) ap-
plication. Moreover, since the structure is common to all Rails apps, you can

18 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.4: The directory structure for a newly created Rails app.

immediately get your bearings when looking at someone else’s code. A sum-
mary of the default Rails files appears in Table 1.2; we’ll learn about most of
these files and directories throughout the rest of this book. In particular, start-
ing in Section 5.2.1 we’ll discuss the app/assets directory, part of the asset

pipeline that makes it easier than ever to organize and deploy assets such as
cascading style sheets and JavaScript files.

1.3. THE FIRST APPLICATION 19

File/Directory Purpose

app/ Core application (app) code, including models, views, controllers, and helpers

app/assets Applications assets such as cascading style sheets (CSS), JavaScript files, and images

bin/ Binary executable files

config/ Application configuration

db/ Database files

doc/ Documentation for the application

lib/ Library modules

lib/assets Library assets such as cascading style sheets (CSS), JavaScript files, and images

log/ Application log files

public/ Data accessible to the public (e.g., via web browsers), such as error pages

bin/rails A program for generating code, opening console sessions, or starting a local server

test/ Application tests

tmp/ Temporary files

vendor/ Third-party code such as plugins and gems

vendor/assets Third-party assets such as cascading style sheets (CSS), JavaScript files, and images

README.rdoc A brief description of the application

Rakefile Utility tasks available via the rake command

Gemfile Gem requirements for this app

Gemfile.lock A list of gems used to ensure that all copies of the app use the same gem versions

config.ru A configuration file for Rack middleware

.gitignore Patterns for files that should be ignored by Git

Table 1.2: A summary of the default Rails directory structure.

http://rack.github.io/

20 CHAPTER 1. FROM ZERO TO DEPLOY

1.3.1 Bundler

After creating a new Rails application, the next step is to use Bundler to in-
stall and include the gems needed by the app. As noted briefly in Section 1.3,
Bundler is run automatically (via bundle install) by the rails command,
but in this section we’ll make some changes to the default application gems
and run Bundler again. This involves opening the Gemfile with a text editor.
(With the cloud IDE, this involves clicking the arrow in the file navigator to
open the sample app directory and double-clicking the Gemfile icon.) Al-
though the exact version numbers and details may differ slightly, the results
should look something like Figure 1.5 and Listing 1.4. (The code in this file is
Ruby, but don’t worry at this point about the syntax; Chapter 4 will cover Ruby
in more depth.) If the files and directories don’t appear as shown in Figure 1.5,
click on the file navigator’s gear icon and select “Refresh File Tree”. (As a
general rule, you should refresh the file tree any time files or directories don’t
appear as expected.)

Listing 1.4: The default Gemfile in the hello_app directory.

source 'https://rubygems.org'

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'

gem 'rails', '4.2.0'

Use sqlite3 as the database for Active Record

gem 'sqlite3'

Use SCSS for stylesheets

gem 'sass-rails', '~> 5.0'

Use Uglifier as compressor for JavaScript assets

gem 'uglifier', '>= 1.3.0'

Use CoffeeScript for .js.coffee assets and views

gem 'coffee-rails', '~> 4.0.0'

See https://github.com/sstephenson/execjs#readme for more supported runtimes

gem 'therubyracer', platforms: :ruby

Use jquery as the JavaScript library

gem 'jquery-rails'

Turbolinks makes following links in your web application faster. Read more:

https://github.com/rails/turbolinks

gem 'turbolinks'

Build JSON APIs with ease. Read more: https://github.com/rails/jbuilder

gem 'jbuilder', '~> 2.0'

bundle exec rake doc:rails generates the API under doc/api.

1.3. THE FIRST APPLICATION 21

Figure 1.5: The default Gemfile open in a text editor.

22 CHAPTER 1. FROM ZERO TO DEPLOY

gem 'sdoc', '~> 0.4.0', group: :doc

Use ActiveModel has_secure_password

gem 'bcrypt', '~> 3.1.7'

Use Unicorn as the app server

gem 'unicorn'

Use Capistrano for deployment

gem 'capistrano-rails', group: :development

group :development, :test do

Call 'debugger' anywhere in the code to stop execution and get a

debugger console

gem 'byebug'

Access an IRB console on exceptions page and /console in development

gem 'web-console', '~> 2.0.0.beta2'

Spring speeds up development by keeping your application running in the

background. Read more: https://github.com/rails/spring

gem 'spring'

end

Many of these lines are commented out with the hash symbol #; they are there
to show you some commonly needed gems and to give examples of the Bundler
syntax. For now, we won’t need any gems other than the defaults.

Unless you specify a version number to the gem command, Bundler will
automatically install the latest requested version of the gem. This is the case,
for example, in the code

gem 'sqlite3'

There are also two common ways to specify a gem version range, which allows
us to exert some control over the version used by Rails. The first looks like
this:

gem 'uglifier', '>= 1.3.0'

This installs the latest version of the uglifier gem (which handles file com-
pression for the asset pipeline) as long as it’s greater than or equal to ver-

1.3. THE FIRST APPLICATION 23

sion 1.3.0—even if it’s, say, version 7.2. The second method looks like
this:

gem 'coffee-rails', '~> 4.0.0'

This installs the gem coffee-rails as long as it’s newer than version 4.0.0
and not newer than 4.1. In other words, the >= notation always installs the
latest gem, whereas the ~> 4.0.0 notation only installs updated gems repre-
senting minor point releases (e.g., from 4.0.0 to 4.0.1), but not major point
releases (e.g., from 4.0 to 4.1). Unfortunately, experience shows that even
minor point releases can break things, so for the Ruby on Rails Tutorial we’ll
err on the side of caution by including exact version numbers for all gems. You
are welcome to use the most up-to-date version of any gem, including using
the ~> construction in the Gemfile (which I generally recommend for more
advanced users), but be warned that this may cause the tutorial to act unpre-
dictably.

Converting the Gemfile in Listing 1.4 to use exact gem versions results
in the code shown in Listing 1.5. Note that we’ve also taken this opportunity
to arrange for the sqlite3 gem to be included only in a development or
test environment (Section 7.1.1), which prevents potential conflicts with the
database used by Heroku (Section 1.5).

Listing 1.5: A Gemfile with an explicit version for each Ruby gem.

source 'https://rubygems.org'

gem 'rails', '4.2.0'

gem 'sass-rails', '5.0.2'

gem 'uglifier', '2.5.3'

gem 'coffee-rails', '4.1.0'

gem 'jquery-rails', '4.0.3'

gem 'turbolinks', '2.3.0'

gem 'jbuilder', '2.2.3'

gem 'sdoc', '0.4.0', group: :doc

group :development, :test do

gem 'sqlite3', '1.3.9'

gem 'byebug', '3.4.0'

gem 'web-console', '2.0.0.beta3'

24 CHAPTER 1. FROM ZERO TO DEPLOY

gem 'spring', '1.1.3'

end

Once you’ve placed the contents of Listing 1.5 into the application’s Gem-
file, install the gems using bundle install:9

$ cd hello_app/

$ bundle install

Fetching source index for https://rubygems.org/

.

.

.

The bundle install command might take a few moments, but when it’s
done our application will be ready to run.

1.3.2 rails server

Thanks to running rails new in Section 1.3 and bundle install in Sec-
tion 1.3.1, we already have an application we can run—but how? Happily, Rails
comes with a command-line program, or script, that runs a local web server to
assist us in developing our application. The exact command depends on the
environment you’re using: on a local system, you just run rails server

(Listing 1.6), whereas on Cloud9 you need to supply an additional IP bind-

ing address and port number to tell the Rails server the address it can use to
make the application visible to the outside world (Listing 1.7).10 (Cloud9 uses
the special environment variables $IP and $PORT to assign the IP address and
port number dynamically. If you want to see the values of these variables, type
echo $IP or echo $PORT at the command line.) If your system complains
about the lack of a JavaScript runtime, visit the execjs page at GitHub for a list
of possibilities. I particularly recommend installing Node.js.

9As noted in Table 3.1, you can even leave off install, as the bundle command by itself is an alias for

bundle install.
10Normally, websites run on port 80, but this usually requires special privileges, so it’s conventional to use a

less restricted higher-numbered port for the development server.

http://en.wikipedia.org/wiki/TCP_and_UDP_port
https://github.com/sstephenson/execjs
http://nodejs.org/

1.3. THE FIRST APPLICATION 25

Listing 1.6: Running the Rails server on a local machine.

$ cd ~/workspace/hello_app/

$ rails server

=> Booting WEBrick

=> Rails application starting on http://localhost:3000

=> Run `rails server -h` for more startup options

=> Ctrl-C to shutdown server

Listing 1.7: Running the Rails server on the cloud IDE.

$ cd ~/workspace/hello_app/

$ rails server -b $IP -p $PORT

=> Booting WEBrick

=> Rails application starting on http://0.0.0.0:8080

=> Run `rails server -h` for more startup options

=> Ctrl-C to shutdown server

Whichever option you choose, I recommend running the rails server

command in a second terminal tab so that you can still issue commands in the
first tab, as shown in Figure 1.6 and Figure 1.7. (If you already started a server
in your first tab, press Ctrl-C to shut it down.)11 On a local server, point your
browser at the address http://localhost:3000/; on the cloud IDE, go to Share
and click on the Application address to open it (Figure 1.8). In either case, the
result should look something like Figure 1.9.

To see information about the first application, click on the link “About your
application’s environment”. Although exact version numbers may differ, the
result should look something like Figure 1.10. Of course, we don’t need the
default Rails page in the long run, but it’s nice to see it working for now. We’ll
remove the default page (and replace it with a custom home page) in Sec-
tion 1.3.4.

11It’s really “Ctrl-c”—there’s no need to hold down the Shift key to get a capital “C”—but for some reason it’s

always written as “Ctrl-C”.

http://localhost:3000/

26 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.6: Opening a new terminal tab.

1.3. THE FIRST APPLICATION 27

Figure 1.7: Running the Rails server in a separate tab.

28 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.8: Sharing the local server running on the cloud workspace.

1.3. THE FIRST APPLICATION 29

Figure 1.9: The default Rails page served by rails server.

30 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.10: The default page with the application’s environment.

1.3. THE FIRST APPLICATION 31

1.3.3 Model-View-Controller (MVC)

Even at this early stage, it’s helpful to get a high-level overview of how Rails
applications work (Figure 1.11). You might have noticed that the standard Rails
application structure (Figure 1.4) has an application directory called app/ with
three subdirectories: models, views, and controllers. This is a hint that
Rails follows the model-view-controller (MVC) architectural pattern, which
enforces a separation between “domain logic” (also called “business logic”)
from the input and presentation logic associated with a graphical user interface
(GUI). In the case of web applications, the “domain logic” typically consists of
data models for things like users, articles, and products, and the GUI is just a
web page in a web browser.

When interacting with a Rails application, a browser sends a request, which
is received by a web server and passed on to a Rails controller, which is in
charge of what to do next. In some cases, the controller will immediately render
a view, which is a template that gets converted to HTML and sent back to the
browser. More commonly for dynamic sites, the controller interacts with a
model, which is a Ruby object that represents an element of the site (such as a
user) and is in charge of communicating with the database. After invoking the
model, the controller then renders the view and returns the complete web page
to the browser as HTML.

If this discussion seems a bit abstract right now, worry not; we’ll refer back
to this section frequently. Section 1.3.4 shows a first tentative application of
MVC, while Section 2.2.2 includes a more detailed discussion of MVC in the
context of the toy app. Finally, the sample app will use all aspects of MVC;
we’ll cover controllers and views starting in Section 3.2, models starting in
Section 6.1, and we’ll see all three working together in Section 7.1.2.

1.3.4 Hello, world!

As a first application of the MVC framework, we’ll make a wafer-thin change
to the first app by adding a controller action to render the string “hello, world!”.
(We’ll learn more about controller actions starting in Section 2.2.2.) The result
will be to replace the default Rails page from Figure 1.9 with the “hello, world”

http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Mr_Creosote

32 CHAPTER 1. FROM ZERO TO DEPLOY

Controller Model

View

Database

Figure 1.11: A schematic representation of the model-view-controller (MVC) architecture.

1.3. THE FIRST APPLICATION 33

page that is the goal of this section.

As implied by their name, controller actions are defined inside controllers.
We’ll call our action hello and place it in the Application controller. Indeed,
at this point the Application controller is the only controller we have, which
you can verify by running

$ ls app/controllers/*_controller.rb

to view the current controllers. (We’ll start creating our own controllers in
Chapter 2.) Listing 1.8 shows the resulting definition of hello, which uses
the render function to return the text “hello, world!”. (Don’t worry about the
Ruby syntax right now; it will be covered in more depth in Chapter 4.)

Listing 1.8: Adding a hello action to the Application controller.
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

Prevent CSRF attacks by raising an exception.

For APIs, you may want to use :null_session instead.

protect_from_forgery with: :exception

def hello

render text: "hello, world!"

end

end

Having defined an action that returns the desired string, we need to tell
Rails to use that action instead of the default page in Figure 1.10. To do this,
we’ll edit the Rails router, which sits in front of the controller in Figure 1.11
and determines where to send requests that come in from the browser. (I’ve
omitted the router from Figure 1.11 for simplicity, but we’ll discuss the router
in more detail starting in Section 2.2.2.) In particular, we want to change the
default page, the root route, which determines the page that is served on the
root URL. Because it’s the URL for an address like http://www.example.com/
(where nothing comes after the final forward slash), the root URL is often re-
ferred to as / (“slash”) for short.

34 CHAPTER 1. FROM ZERO TO DEPLOY

As seen in Listing 1.9, the Rails routes file (config/routes.rb) includes
a commented-out line that shows how to structure the root route. Here “wel-
come” is the controller name and “index” is the action within that controller.
To activate the root route, uncomment this line by removing the hash charac-
ter and then replace it with the code in Listing 1.10, which tells Rails to send
the root route to the hello action in the Application controller. (As noted
in Section 1.1.2, vertical dots indicate omitted code and should not be copied
literally.)

Listing 1.9: The default (commented-out) root route.
config/routes.rb

Rails.application.routes.draw do

.

.

.

You can have the root of your site routed with "root"

root 'welcome#index'

.

.

.

end

Listing 1.10: Setting the root route.
config/routes.rb

Rails.application.routes.draw do

.

.

.

You can have the root of your site routed with "root"

root 'application#hello'

.

.

.

end

With the code from Listing 1.8 and Listing 1.10, the root route returns
“hello, world!” as required (Figure 1.12).

1.3. THE FIRST APPLICATION 35

Figure 1.12: Viewing “hello, world!” in the browser.

36 CHAPTER 1. FROM ZERO TO DEPLOY

1.4 Version control with Git

Now that we have a fresh and working Rails application, we’ll take a moment
for a step that, while technically optional, would be viewed by experienced soft-
ware developers as practically essential: placing our application source code
under version control. Version control systems allow us to track changes to
our project’s code, collaborate more easily, and roll back any inadvertent er-
rors (such as accidentally deleting files). Knowing how to use a version control
system is a required skill for every professional-grade software developer.

There are many options for version control, but the Rails community has
largely standardized on Git, a distributed version control system originally de-
veloped by Linus Torvalds to host the Linux kernel. Git is a large subject, and
we’ll only be scratching the surface in this book, but there are many good free
resources online; I especially recommend Bitbucket 101 for a short overview
and Pro Git by Scott Chacon for a book-length introduction. Putting your
source code under version control with Git is strongly recommended, not only
because it’s nearly a universal practice in the Rails world, but also because it
will allow you to back up and share your code more easily (Section 1.4.3) and
deploy your application right here in the first chapter (Section 1.5).

1.4.1 Installation and setup

The cloud IDE recommended in Section 1.2.1 includes Git by default, so no
installation is necessary in this case. Otherwise, InstallRails.com (Section 1.2)
includes instructions for installing Git on your system.

First-time system setup

Before using Git, you should perform a set of one-time setup steps. These are
system setups, meaning you only have to do them once per computer:

$ git config --global user.name "Your Name"

$ git config --global user.email your.email@example.com

$ git config --global push.default matching

$ git config --global alias.co checkout

http://git-scm.com/
https://confluence.atlassian.com/display/BITBUCKET/Clone+your+Git+repository+and+add+source+files
http://git-scm.com/book
http://installrails.com/

1.4. VERSION CONTROL WITH GIT 37

Note that the name and email address you use in your Git configuration will
be available in any repositories you make public. (Only the first two lines
above are strictly necessary. The third line is included only to ensure forward-
compatibility with an upcoming release of Git. The optional fourth line is
included so that you can use co in place of the more verbose checkout com-
mand. For maximum compatibility with systems that don’t have co configured,
this tutorial will use the full checkout command, but in real life I nearly al-
ways use git co.)

First-time repository setup

Now we come to some steps that are necessary each time you create a new
repository (sometimes called a repo for short). First navigate to the root direc-
tory of the first app and initialize a new repository:

$ git init

Initialized empty Git repository in /home/ubuntu/workspace/hello_app/.git/

The next step is to add all the project files to the repository using git add

-A:

$ git add -A

This command adds all the files in the current directory apart from those that
match the patterns in a special file called .gitignore. The rails new

command automatically generates a .gitignore file appropriate to a Rails
project, but you can add additional patterns as well.12

The added files are initially placed in a staging area, which contains pend-
ing changes to your project. You can see which files are in the staging area
using the status command:

12Although we’ll never need to edit it in the main tutorial, an example of adding a rule to the .gitignore file

appears in Section 3.7.3, which is part of the optional advanced testing setup in Section 3.7.

38 CHAPTER 1. FROM ZERO TO DEPLOY

$ git status

On branch master

Initial commit

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

new file: .gitignore

new file: Gemfile

new file: Gemfile.lock

new file: README.rdoc

new file: Rakefile

.

.

.

(The results are long, so I’ve used vertical dots to indicate omitted output.)
To tell Git you want to keep the changes, use the commit command:

$ git commit -m "Initialize repository"

[master (root-commit) df0a62f] Initialize repository

.

.

.

The -m flag lets you add a message for the commit; if you omit -m, Git will
open the system’s default editor and have you enter the message there. (All the
examples in this book will use the -m flag.)

It is important to note that Git commits are local, recorded only on the
machine on which the commits occur. We’ll see how to push the changes up to
a remote repository (using git push) in Section 1.4.4.

By the way, you can see a list of your commit messages using the log

command:

$ git log

commit df0a62f3f091e53ffa799309b3e32c27b0b38eb4

Author: Michael Hartl <michael@michaelhartl.com>

Date: Wed August 20 19:44:43 2014 +0000

Initialize repository

1.4. VERSION CONTROL WITH GIT 39

Depending on the length of your repository’s log history, you may have to type
q to quit.

1.4.2 What good does Git do you?

If you’ve never used version control before, it may not be entirely clear at
this point what good it does you, so let me give just one example. Suppose
you’ve made some accidental changes, such as (D’oh!) deleting the critical
app/controllers/ directory.

$ ls app/controllers/

application_controller.rb concerns/

$ rm -rf app/controllers/

$ ls app/controllers/

ls: app/controllers/: No such file or directory

Here we’re using the Unix ls command to list the contents of the app/con-
trollers/ directory and the rm command to remove it (Table 1.1). The -rf
flag means “recursive force”, which recursively removes all files, directories,
subdirectories, and so on, without asking for explicit confirmation of each dele-
tion.

Let’s check the status to see what changed:

$ git status

On branch master

Changed but not updated:

(use "git add/rm <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

deleted: app/controllers/application_controller.rb

no changes added to commit (use "git add" and/or "git commit -a")

We see here that a file has been deleted, but the changes are only on the “work-
ing tree”; they haven’t been committed yet. This means we can still undo the
changes using the checkout command with the -f flag to force overwriting
the current changes:

40 CHAPTER 1. FROM ZERO TO DEPLOY

$ git checkout -f

$ git status

On branch master

nothing to commit (working directory clean)

$ ls app/controllers/

application_controller.rb concerns/

The missing files and directories are back. That’s a relief!

1.4.3 Bitbucket

Now that we’ve put our project under version control with Git, it’s time to push
our code up to Bitbucket, a site optimized for hosting and sharing Git reposi-
tories. (Previous editions of this tutorial used GitHub instead; see Box 1.4 to
learn the reasons for the switch.) Putting a copy of your Git repository at Bit-
bucket serves two purposes: it’s a full backup of your code (including the full
history of commits), and it makes any future collaboration much easier.

Box 1.4. GitHub and Bitbucket

By far the two most popular sites for hosting Git repositories are GitHub and
Bitbucket. The two services share many similarities: both sites allow for Git repos-
itory hosting and collaboration, as well as offering convenient ways to browse and
search repositories. The important differences (from the perspective of this tu-
torial) are that GitHub offers unlimited free repositories (with collaboration) for
open-source repositories while charging for private repos, whereas Bitbucket al-
lows unlimited free private repos while charging for more than a certain number
of collaborators. Which service you use for a particular repo thus depends on your
specific needs.

Previous editions of this book used GitHub because of its emphasis on sup-
porting open-source code, but growing concerns about security have led me to
recommend that all web application repositories be private by default. The issue
is that web application repositories might contain potentially sensitive information

http://www.bitbucket.com
http://www.github.com/

1.4. VERSION CONTROL WITH GIT 41

such as cryptographic keys and passwords, which could be used to compromise
the security of a site running the code. It is possible, of course, to arrange for this
information to be handled securely (by having Git ignore it, for example), but this
is error-prone and requires significant expertise.

As it happens, the sample application created in this tutorial is safe for expo-
sure on the web, but it is dangerous to rely on this fact in general. Thus, to be as
secure as possible, we will err on the side of caution and use private repositories
by default. Since GitHub charges for private repositories while Bitbucket offers an
unlimited number for free, for our purposes Bitbucket is a better fit than GitHub.

Getting started with Bitbucket is simple:

1. Sign up for a Bitbucket account if you don’t already have one.

2. Copy your public key to your clipboard. As indicated in Listing 1.11,
users of the cloud IDE can view their public key using the cat command,
which can then be selected and copied. If you’re using your own system
and see no output when running the command in Listing 1.11, follow the
instructions on how to install a public key on your Bitbucket account.

3. Add your public key to Bitbucket by clicking on the avatar image in
the upper right and selecting “Manage account” and then “SSH keys”
(Figure 1.13).

Listing 1.11: Printing the public key using cat.

$ cat ~/.ssh/id_rsa.pub

Once you’ve added your public key, click on “Create” to create a new repos-
itory, as shown in Figure 1.14. When filling in the information for the project,
take care to leave the box next to “This is a private repository.” checked. After
clicking “Create repository”, follow the instructions under “Command line > I
have an existing project”, which should look something like Listing 1.12. (If

https://bitbucket.org/account/signup/
https://en.wikipedia.org/wiki/Public-key_cryptography
https://confluence.atlassian.com/x/YwV9E
https://bitbucket.org/repo/create
https://bitbucket.org/repo/create

42 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.13: Adding the SSH public key.

1.4. VERSION CONTROL WITH GIT 43

Figure 1.14: Creating the first app repository at Bitbucket.

it doesn’t look like Listing 1.12, it might be because the public key didn’t get
added correctly, in which case I suggest trying that step again.) When pushing
up the repository, answer yes if you see the question “Are you sure you want to
continue connecting (yes/no)?”

Listing 1.12: Adding Bitbucket and pushing up the repository.

$ git remote add origin git@bitbucket.org:<username>/hello_app.git

$ git push -u origin --all # pushes up the repo and its refs for the first time

The commands in Listing 1.12 first tell Git that you want to add Bitbucket
as the origin for your repository, and then push your repository up to the remote

44 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.15: A Bitbucket repository page.

origin. (Don’t worry about what the -u flag does; if you’re curious, do a web
search for “git set upstream”.) Of course, you should replace <username>
with your actual username. For example, the command I ran was

$ git remote add origin git@bitbucket.org:mhartl/hello_app.git

The result is a page at Bitbucket for the hello_app repository, with file brows-
ing, full commit history, and lots of other goodies (Figure 1.15).

1.4. VERSION CONTROL WITH GIT 45

1.4.4 Branch, edit, commit, merge

If you’ve followed the steps in Section 1.4.3, you might notice that Bitbucket
didn’t automatically detect the README.rdoc file from our repository, instead
complaining on the main repository page that there is no README present
(Figure 1.16). This is an indication that the rdoc format isn’t common enough
for Bitbucket to support it automatically, and indeed I and virtually every other
developer I know prefer to use Markdown instead. In this section, we’ll change
the README.rdoc file to README.md, while taking the opportunity to add
some Rails Tutorial–specific content to the README file. In the process,
we’ll see a first example of the branch, edit, commit, merge workflow that I
recommend using with Git.13

Branch

Git is incredibly good at making branches, which are effectively copies of a
repository where we can make (possibly experimental) changes without modi-
fying the parent files. In most cases, the parent repository is the master branch,
and we can create a new topic branch by using checkout with the -b flag:

$ git checkout -b modify-README

Switched to a new branch 'modify-README'

$ git branch

master

* modify-README

Here the second command, git branch, just lists all the local branches,
and the asterisk * identifies which branch we’re currently on. Note that git
checkout -b modify-README both creates a new branch and switches to
it, as indicated by the asterisk in front of the modify-README branch. (If you
set up the co alias in Section 1.4, you can use git co -b modify-README

instead.)
The full value of branching only becomes clear when working on a project

with multiple developers,14 but branches are helpful even for a single-developer

13For a convenient way to visualize Git repositories, take a look at Atlassian’s SourceTree app.
14See the chapter Git Branching in Pro Git for details.

http://www.sourcetreeapp.com/
http://git-scm.com/book/en/git-branching

46 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.16: Bitbucket’s message for a missing README.

1.4. VERSION CONTROL WITH GIT 47

tutorial such as this one. In particular, the master branch is insulated from any
changes we make to the topic branch, so even if we really screw things up
we can always abandon the changes by checking out the master branch and
deleting the topic branch. We’ll see how to do this at the end of the section.

By the way, for a change as small as this one I wouldn’t normally bother
with a new branch, but in the present context it’s a prime opportunity to start
practicing good habits.

Edit

After creating the topic branch, we’ll edit it to make it a little more descriptive.
I prefer the Markdown markup language to the default RDoc for this purpose,
and if you use the file extension .md then Bitbucket will automatically format it
nicely for you. So, first we’ll use Git’s version of the Unix mv (move) command
to change the name:

$ git mv README.rdoc README.md

Then fill README.md with the contents of Listing 1.13.

Listing 1.13: The new README file, README.md.

Ruby on Rails Tutorial: "hello, world!"

This is the first application for the

[*Ruby on Rails Tutorial*](http://www.railstutorial.org/)

by [Michael Hartl](http://www.michaelhartl.com/).

Commit

With the changes made, we can take a look at the status of our branch:

$ git status

On branch modify-README

Changes to be committed:

http://daringfireball.net/projects/markdown/

48 CHAPTER 1. FROM ZERO TO DEPLOY

(use "git reset HEAD <file>..." to unstage)

renamed: README.rdoc -> README.md

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: README.md

At this point, we could use git add -A as in Section 1.4.1, but git commit

provides the -a flag as a shortcut for the (very common) case of committing
all modifications to existing files (or files created using git mv, which don’t
count as new files to Git):

$ git commit -a -m "Improve the README file"

2 files changed, 5 insertions(+), 243 deletions(-)

delete mode 100644 README.rdoc

create mode 100644 README.md

Be careful about using the -a flag improperly; if you have added any new files
to the project since the last commit, you still have to tell Git about them using
git add -A first.

Note that we write the commit message in the present tense (and, tech-
nically speaking, the imperative mood). Git models commits as a series of
patches, and in this context it makes sense to describe what each commit does,
rather than what it did. Moreover, this usage matches up with the commit
messages generated by Git commands themselves. See the article “Shiny new
commit styles” for more information.

Merge

Now that we’ve finished making our changes, we’re ready to merge the results
back into our master branch:

http://en.wikipedia.org/wiki/Imperative_mood
https://github.com/blog/926-shiny-new-commit-styles
https://github.com/blog/926-shiny-new-commit-styles

1.4. VERSION CONTROL WITH GIT 49

$ git checkout master

Switched to branch 'master'

$ git merge modify-README

Updating 34f06b7..2c92bef

Fast forward

README.rdoc | 243 --

README.md | 5 +

2 files changed, 5 insertions(+), 243 deletions(-)

delete mode 100644 README.rdoc

create mode 100644 README.md

Note that the Git output frequently includes things like 34f06b7, which are
related to Git’s internal representation of repositories. Your exact results will
differ in these details, but otherwise should essentially match the output shown
above.

After you’ve merged in the changes, you can tidy up your branches by
deleting the topic branch using git branch -d if you’re done with it:

$ git branch -d modify-README

Deleted branch modify-README (was 2c92bef).

This step is optional, and in fact it’s quite common to leave the topic branch
intact. This way you can switch back and forth between the topic and master
branches, merging in changes every time you reach a natural stopping point.

As mentioned above, it’s also possible to abandon your topic branch
changes, in this case with git branch -D:

For illustration only; don't do this unless you mess up a branch

$ git checkout -b topic-branch

$ <really screw up the branch>

$ git add -A

$ git commit -a -m "Major screw up"

$ git checkout master

$ git branch -D topic-branch

Unlike the -d flag, the -D flag will delete the branch even though we haven’t
merged in the changes.

50 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.17: The improved README file formatted with Markdown.

Push

Now that we’ve updated the README, we can push the changes up to Bitbucket
to see the result. Since we have already done one push (Section 1.4.3), on most
systems we can omit origin master, and simply run git push:

$ git push

As promised in Section 1.4.4, Bitbucket nicely formats the new file using Mark-
down (Figure 1.17).

1.5. DEPLOYING 51

1.5 Deploying

Even at this early stage, we’re already going to deploy our (nearly empty) Rails
application to production. This step is optional, but deploying early and of-
ten allows us to catch any deployment problems early in our development cy-
cle. The alternative—deploying only after laborious effort sealed away in a
development environment—often leads to terrible integration headaches when
launch time comes.15

Deploying Rails applications used to be a pain, but the Rails deployment
ecosystem has matured rapidly in the past few years, and now there are several
great options. These include shared hosts or virtual private servers running
Phusion Passenger (a module for the Apache and Nginx16 web servers), full-
service deployment companies such as Engine Yard and Rails Machine, and
cloud deployment services such as Engine Yard Cloud, Ninefold, and Heroku.

My favorite Rails deployment option is Heroku, which is a hosted plat-
form built specifically for deploying Rails and other web applications. Heroku
makes deploying Rails applications ridiculously easy—as long as your source
code is under version control with Git. (This is yet another reason to follow
the Git setup steps in Section 1.4 if you haven’t already.) In addition, for many
purposes, including for this tutorial, Heroku’s free tier is more than sufficient.
Indeed, the first two editions of this tutorial were hosted for free on Heroku,
which served several million requests without charging me a cent.

The rest of this section is dedicated to deploying our first application to
Heroku. Some of the ideas are fairly advanced, so don’t worry about under-
standing all the details; what’s important is that by the end of the process we’ll
have deployed our application to the live web.

1.5.1 Heroku setup

Heroku uses the PostgreSQL database (pronounced “post-gres-cue-ell”, and
often called “Postgres” for short), which means that we need to add the pg gem

15Though it shouldn’t matter for the example applications in the Rails Tutorial, if you’re worried about acci-

dentally making your app public too soon there are several options; see Section 1.5.4 for one.
16Pronounced “Engine X”.

http://www.modrails.com/
http://engineyard.com/
http://railsmachine.com/
http://cloud.engineyard.com
https://ninefold.com/
http://heroku.com/
http://www.postgresql.org/

52 CHAPTER 1. FROM ZERO TO DEPLOY

in the production environment to allow Rails to talk to Postgres:17

group :production do

gem 'pg', '0.17.1'

gem 'rails_12factor', '0.0.2'

end

Note also the addition of the rails_12factor gem, which is used by He-
roku to serve static assets such as images and stylesheets. The resulting Gem-

file appears as in Listing 1.14.

Listing 1.14: A Gemfile with added gems.

source 'https://rubygems.org'

gem 'rails', '4.2.0'

gem 'sass-rails', '5.0.2'

gem 'uglifier', '2.5.3'

gem 'coffee-rails', '4.1.0'

gem 'jquery-rails', '4.0.3'

gem 'turbolinks', '2.3.0'

gem 'jbuilder', '2.2.3'

gem 'sdoc', '0.4.0', group: :doc

group :development, :test do

gem 'sqlite3', '1.3.9'

gem 'byebug', '3.4.0'

gem 'web-console', '2.0.0.beta3'

gem 'spring', '1.1.3'

end

group :production do

gem 'pg', '0.17.1'

gem 'rails_12factor', '0.0.2'

end

To prepare the system for deployment to production, we run bundle install

with a special flag to prevent the local installation of any production gems
(which in this case consists of pg and rails_12factor):

17Generally speaking, it’s a good idea for the development and production environments to match as closely as

possible, which includes using the same database, but for the purposes of this tutorial we’ll always use SQLite

locally and PostgreSQL in production. See Section 3.1 for more information.

1.5. DEPLOYING 53

$ bundle install --without production

Because the only gems added in Listing 1.14 are restricted to a production envi-
ronment, right now this command doesn’t actually install any additional local
gems, but it’s needed to update Gemfile.lock with the pg and rails_-

12factor gems. We can commit the resulting change as follows:

$ git commit -a -m "Update Gemfile.lock for Heroku"

Next we have to create and configure a new Heroku account. The first step
is to sign up for Heroku. Then check to see if your system already has the
Heroku command-line client installed:

$ heroku version

Those using the cloud IDE should see the Heroku version number, indicating
that the heroku CLI is available, but on other systems it may be necessary to
install it using the Heroku Toolbelt.18

Once you’ve verified that the Heroku command-line interface is installed,
use the heroku command to log in and add your SSH key:

$ heroku login

$ heroku keys:add

Finally, use the heroku create command to create a place on the Heroku
servers for the sample app to live (Listing 1.15).

Listing 1.15: Creating a new application at Heroku.

$ heroku create

Creating damp-fortress-5769... done, stack is cedar

http://damp-fortress-5769.herokuapp.com/ | git@heroku.com:damp-fortress-5769.git

Git remote heroku added

18https://toolbelt.heroku.com/

http://api.heroku.com/signup
https://toolbelt.heroku.com/

54 CHAPTER 1. FROM ZERO TO DEPLOY

The heroku command creates a new subdomain just for our application, avail-
able for immediate viewing. There’s nothing there yet, though, so let’s get busy
deploying.

1.5.2 Heroku deployment, step one

To deploy the application, the first step is to use Git to push the master branch
up to Heroku:

$ git push heroku master

(You may see some warning messages, which you should ignore for now. We’ll
discuss them further in Section 7.5.)

1.5.3 Heroku deployment, step two

There is no step two! We’re already done. To see your newly deployed ap-
plication, visit the address that you saw when you ran heroku create (i.e.,
Listing 1.15). (If you’re working on your local machine instead of the cloud
IDE, you can also use heroku open.) The result appears in Figure 1.18. The
page is identical to Figure 1.12, but now it’s running in a production environ-
ment on the live web.

1.5.4 Heroku commands

There are many Heroku commands, and we’ll barely scratch the surface in this
book. Let’s take a minute to show just one of them by renaming the application
as follows:

$ heroku rename rails-tutorial-hello

Don’t use this name yourself; it’s already taken by me! In fact, you probably
shouldn’t bother with this step right now; using the default address supplied by

http://devcenter.heroku.com/heroku-command

1.5. DEPLOYING 55

Figure 1.18: The first Rails Tutorial application running on Heroku.

56 CHAPTER 1. FROM ZERO TO DEPLOY

Heroku is fine. But if you do want to rename your application, you can arrange
for it to be reasonably secure by using a random or obscure subdomain, such
as the following:

hwpcbmze.herokuapp.com

seyjhflo.herokuapp.com

jhyicevg.herokuapp.com

With a random subdomain like this, someone could visit your site only if you
gave them the address. (By the way, as a preview of Ruby’s compact awesome-
ness, here’s the code I used to generate the random subdomains:

('a'..'z').to_a.shuffle[0..7].join

Pretty sweet.)

In addition to supporting subdomains, Heroku also supports custom do-
mains. (In fact, the Ruby on Rails Tutorial site lives at Heroku; if you’re read-
ing this book online, you’re looking at a Heroku-hosted site right now!) See the
Heroku documentation for more information about custom domains and other
Heroku topics.

1.6 Conclusion

We’ve come a long way in this chapter: installation, development environment
setup, version control, and deployment. In the next chapter, we’ll build on the
foundation from Chapter 1 to make a database-backed toy app, which will give
us our first real taste of what Rails can do.

If you’d like to share your progress at this point, feel free to send a tweet or
Facebook status update with something like this:

I’m learning Ruby on Rails with the @railstutorial!
http://www.railstutorial.org/

http://www.railstutorial.org
http://devcenter.heroku.com/
http://twitter.com/?status=I'm%20learning%20Ruby%20on%20Rails%20with%20the%20@railstutorial!%20http://www.railstutorial.org/
http://twitter.com/?status=I'm%20learning%20Ruby%20on%20Rails%20with%20the%20@railstutorial!%20http://www.railstutorial.org/

1.7. EXERCISES 57

I also recommend signing up for the Rails Tutorial email list19, which will
ensure that you receive priority updates (and exclusive coupon codes) regarding
the Ruby on Rails Tutorial.

1.6.1 What we learned in this chapter

• Ruby on Rails is a web development framework written in the Ruby pro-
gramming language.

• Installing Rails, generating an application, and editing the resulting files
is easy using a pre-configured cloud environment.

• Rails comes with a command-line command called rails that can gen-
erate new applications (rails new) and run local servers (rails ser-

ver).

• We added a controller action and modified the root route to create a
“hello, world” application.

• We protected against data loss while enabling collaboration by placing
our application source code under version control with Git and pushing
the resulting code to a private repository at Bitbucket.

• We deployed our application to a production environment using Heroku.

1.7 Exercises

Note: The Solutions Manual for Exercises, with solutions to every exercise in
the Ruby on Rails Tutorial book, is included for free with every purchase at
www.railstutorial.org.

1. Change the content of the hello action in Listing 1.8 to read “hola,
mundo!” instead of “hello, world!”. Extra credit: Show that Rails sup-

19http://www.railstutorial.org/#email

http://www.railstutorial.org/#email
http://www.railstutorial.org/

58 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.19: Changing the root route to return “¡Hola, mundo!”.

ports non-ASCII characters by including an inverted exclamation point,
as in “¡Hola, mundo!” (Figure 1.19).20

2. By following the example of the hello action in Listing 1.8, add a sec-
ond action called goodbye that renders the text “goodbye, world!”. Edit
the routes file from Listing 1.10 so that the root route goes to goodbye

instead of to hello (Figure 1.20).

20Your editor may display a message like “invalid multibyte character”, but this is not a cause for concern. You

can Google the error message if you want to learn how to make it go away.

http://es.wikipedia.org/wiki/ASCII
http://lmgtfy.com/?q=invalid+multibyte+character

1.7. EXERCISES 59

Figure 1.20: Changing the root route to return “goodbye, world!”.

60 CHAPTER 1. FROM ZERO TO DEPLOY

Chapter 2

A toy app

In this chapter, we’ll develop a toy demo application to show off some of the
power of Rails. The purpose is to get a high-level overview of Ruby on Rails
programming (and web development in general) by rapidly generating an appli-
cation using scaffold generators, which create a large amount of functionality
automatically. As discussed in Box 1.2, the rest of the book will take the oppo-
site approach, developing a full sample application incrementally and explain-
ing each new concept as it arises, but for a quick overview (and some instant
gratification) there is no substitute for scaffolding. The resulting toy app will
allow us to interact with it through its URLs, giving us insight into the struc-
ture of a Rails application, including a first example of the REST architecture

favored by Rails.

As with the forthcoming sample application, the toy app will consist of
users and their associated microposts (thus constituting a minimalist Twitter-
style app). The functionality will be utterly under-developed, and many of the
steps will seem like magic, but worry not: the full sample app will develop a
similar application from the ground up starting in Chapter 3, and I will provide
plentiful forward-references to later material. In the mean time, have patience
and a little faith—the whole point of this tutorial is to take you beyond this su-
perficial, scaffold-driven approach to achieve a deeper understanding of Rails.

61

62 CHAPTER 2. A TOY APP

2.1 Planning the application

In this section, we’ll outline our plans for the toy application. As in Section 1.3,
we’ll start by generating the application skeleton using the rails new com-
mand with a specific Rails version number:

$ cd ~/workspace

$ rails _4.2.0_ new toy_app

$ cd toy_app/

If the command above returns an error like “Could not find ’railties”’, it means
you dont have the right version of Rails installed, and you should double-check
that you followed the command in Listing 1.1 exactly as written. (If you’re
using the cloud IDE as recommended in Section 1.2.1, note that this second
app can be created in the same workspace as the first. It is not necessary to
create a new workspace. In order to get the files to appear, you may need to
click the gear icon in the file navigator area and select “Refresh File Tree”.)

Next, we’ll use a text editor to update the Gemfile needed by Bundler with
the contents of Listing 2.1.

Listing 2.1: A Gemfile for the toy app.

source 'https://rubygems.org'

gem 'rails', '4.2.0'

gem 'sass-rails', '5.0.2'

gem 'uglifier', '2.5.3'

gem 'coffee-rails', '4.1.0'

gem 'jquery-rails', '4.0.3'

gem 'turbolinks', '2.3.0'

gem 'jbuilder', '2.2.3'

gem 'sdoc', '0.4.0', group: :doc

group :development, :test do

gem 'sqlite3', '1.3.9'

gem 'byebug', '3.4.0'

gem 'web-console', '2.0.0.beta3'

gem 'spring', '1.1.3'

end

group :production do

2.1. PLANNING THE APPLICATION 63

gem 'pg', '0.17.1'

gem 'rails_12factor', '0.0.2'

end

Note that Listing 2.1 is identical to Listing 1.14.
As in Section 1.5.1, we’ll install the local gems while suppressing the in-

stallation of production gems using the --without production option:

$ bundle install --without production

Finally, we’ll put the toy app under version control with Git:

$ git init

$ git add -A

$ git commit -m "Initialize repository"

You should also create a new repository by clicking on the “Create” button at
Bitbucket (Figure 2.1), and then push up to the remote repository:

$ git remote add origin git@bitbucket.org:<username>/toy_app.git

$ git push -u origin --all # pushes up the repo and its refs for the first time

Finally, it’s never too early to deploy, which I suggest doing by following
the same “hello, world!” steps in Listing 1.8 and Listing 1.9.1 Then commit the
changes and push up to Heroku:

$ git commit -am "Add hello"

$ heroku create

$ git push heroku master

(As in Section 1.5, you may see some warning messages, which you should
ignore for now. We’ll eliminate them in Section 7.5.) Apart from the address
of the Heroku app, the result should be the same as in Figure 1.18.

1The main reason for this is that the default Rails page typically breaks at Heroku, which makes it hard to tell

if the deployment was successful or not.

https://bitbucket.org/repo/create

64 CHAPTER 2. A TOY APP

Figure 2.1: Creating the toy app repository at Bitbucket.

2.1. PLANNING THE APPLICATION 65

email string

id

name string

integer

users

Figure 2.2: The data model for users.

Now we’re ready to start making the app itself. The typical first step when
making a web application is to create a data model, which is a representation
of the structures needed by our application. In our case, the toy app will be
a microblog, with only users and short (micro)posts. Thus, we’ll begin with
a model for users of the app (Section 2.1.1), and then we’ll add a model for
microposts (Section 2.1.2).

2.1.1 A toy model for users

There are as many choices for a user data model as there are different registra-
tion forms on the web; we’ll go with a distinctly minimalist approach. Users
of our toy app will have a unique integer identifier called id, a publicly
viewable name (of type string), and an email address (also a string) that
will double as a username. A summary of the data model for users appears in
Figure 2.2.

As we’ll see starting in Section 6.1.1, the label users in Figure 2.2 cor-
responds to a table in a database, and the id, name, and email attributes are
columns in that table.

2.1.2 A toy model for microposts

The core of the micropost data model is even simpler than the one for users:
a micropost has only an id and a content field for the micropost’s text (of

66 CHAPTER 2. A TOY APP

user_id integer

id

content text

integer

microposts

Figure 2.3: The data model for microposts.

type text).2 There’s an additional complication, though: we want to associate

each micropost with a particular user. We’ll accomplish this by recording the
user_id of the owner of the post. The results are shown in Figure 2.3.

We’ll see in Section 2.3.3 (and more fully in Chapter 11) how this user_id
attribute allows us to succinctly express the notion that a user potentially has
many associated microposts.

2.2 The Users resource

In this section, we’ll implement the users data model in Section 2.1.1, along
with a web interface to that model. The combination will constitute a Users re-

source, which will allow us to think of users as objects that can be created, read,
updated, and deleted through the web via the HTTP protocol. As promised in
the introduction, our Users resource will be created by a scaffold generator pro-
gram, which comes standard with each Rails project. I urge you not to look too
closely at the generated code; at this stage, it will only serve to confuse you.

Rails scaffolding is generated by passing the scaffold command to the
rails generate script. The argument of the scaffold command is the
singular version of the resource name (in this case, User), together with op-

2Because microposts are short by design, the string type is actually big enough to contain them, but using

text better expresses our intent, while also giving us greater flexibility should we ever wish to relax the length

constraint.

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

2.2. THE USERS RESOURCE 67

tional parameters for the data model’s attributes:3

$ rails generate scaffold User name:string email:string

invoke active_record

create db/migrate/20140821011110_create_users.rb

create app/models/user.rb

invoke test_unit

create test/models/user_test.rb

create test/fixtures/users.yml

invoke resource_route

route resources :users

invoke scaffold_controller

create app/controllers/users_controller.rb

invoke erb

create app/views/users

create app/views/users/index.html.erb

create app/views/users/edit.html.erb

create app/views/users/show.html.erb

create app/views/users/new.html.erb

create app/views/users/_form.html.erb

invoke test_unit

create test/controllers/users_controller_test.rb

invoke helper

create app/helpers/users_helper.rb

invoke test_unit

create test/helpers/users_helper_test.rb

invoke jbuilder

create app/views/users/index.json.jbuilder

create app/views/users/show.json.jbuilder

invoke assets

invoke coffee

create app/assets/javascripts/users.js.coffee

invoke scss

create app/assets/stylesheets/users.css.scss

invoke scss

create app/assets/stylesheets/scaffolds.css.scss

By including name:string and email:string, we have arranged for the
User model to have the form shown in Figure 2.2. (Note that there is no need
to include a parameter for id; it is created automatically by Rails for use as the
primary key in the database.)

To proceed with the toy application, we first need to migrate the database
using Rake (Box 2.1):

3The name of the scaffold follows the convention of models, which are singular, rather than resources and

controllers, which are plural. Thus, we have User instead of Users.

68 CHAPTER 2. A TOY APP

$ bundle exec rake db:migrate

== CreateUsers: migrating ==

-- create_table(:users)

-> 0.0017s

== CreateUsers: migrated (0.0018s) ===

This simply updates the database with our new users data model. (We’ll
learn more about database migrations starting in Section 6.1.1.) Note that, in
order to ensure that the command uses the version of Rake corresponding to
our Gemfile, we need to run rake using bundle exec. On many systems,
including the cloud IDE, you can omit bundle exec, but it is necessary on
some systems, so I’ll include it for completeness.

With that, we can run the local web server in a separate tab (Figure 1.7) as
follows:4

$ rails server -b $IP -p $PORT # Use only `rails server` if running locally

Now the toy application should be available on the local server as described
in Section 1.3.2. (If you’re using the cloud IDE, be sure to open the resulting
development server in a new browser tab, not inside the IDE itself.)

Box 2.1. Rake

In the Unix tradition, the make utility has played an important role in building
executable programs from source code; many a computer hacker has committed to
muscle memory the line

$./configure && make && sudo make install

commonly used to compile code on Unix systems (including Linux and Mac
OS X).

4The rails script is designed so that you don’t need to use bundle exec.

http://en.wikipedia.org/wiki/Make_(software)

2.2. THE USERS RESOURCE 69

Rake is Ruby make, a make-like language written in Ruby. Rails uses Rake
extensively, especially for the innumerable little administrative tasks necessary
when developing database-backed web applications. The rake db:migrate

command is probably the most common, but there are many others; you can see a
list of database tasks using -T db:

$ bundle exec rake -T db

To see all the Rake tasks available, run

$ bundle exec rake -T

The list is likely to be overwhelming, but don’t worry, you don’t have to know all
(or even most) of these commands. By the end of the Rails Tutorial, you’ll know
all the most important ones.

2.2.1 A user tour

If we visit the root URL at / (read “slash”, as noted in Section 1.3.4), we get
the same default Rails page shown in Figure 1.9, but in generating the Users
resource scaffolding we have also created a large number of pages for manipu-
lating users. For example, the page for listing all users is at /users, and the page
for making a new user is at /users/new. The rest of this section is dedicated
to taking a whirlwind tour through these user pages. As we proceed, it may
help to refer to Table 2.1, which shows the correspondence between pages and
URLs.

We start with the page to show all the users in our application, called
index; as you might expect, initially there are no users at all (Figure 2.4).

To make a new user, we visit the new page, as shown in Figure 2.5. (Since
the http://0.0.0.0:3000 or cloud IDE part of the address is implicit whenever we
are developing locally, I’ll omit it from now on.) In Chapter 7, this will become
the user signup page.

http://localhost:3000/users
http://localhost:3000/users/new
http://localhost:3000/users
http://localhost:3000/users/new

70 CHAPTER 2. A TOY APP

URL Action Purpose

/users index page to list all users

/users/1 show page to show user with id 1

/users/new new page to make a new user

/users/1/edit edit page to edit user with id 1

Table 2.1: The correspondence between pages and URLs for the Users resource.

Figure 2.4: The initial index page for the Users resource (/users).

http://localhost:3000/users
http://localhost:3000/users/1
http://localhost:3000/users/new
http://localhost:3000/users/1/edit
http://localhost:3000/users

2.2. THE USERS RESOURCE 71

Figure 2.5: The new user page (/users/new).

http://localhost:3000/users/new

72 CHAPTER 2. A TOY APP

Figure 2.6: The page to show a user (/users/1).

We can create a user by entering name and email values in the text fields and
then clicking the Create User button. The result is the user show page, as seen
in Figure 2.6. (The green welcome message is accomplished using the flash,
which we’ll learn about in Section 7.4.2.) Note that the URL is /users/1; as you
might suspect, the number 1 is simply the user’s id attribute from Figure 2.2.
In Section 7.1, this page will become the user’s profile.

To change a user’s information, we visit the edit page (Figure 2.7). By
modifying the user information and clicking the Update User button, we ar-
range to change the information for the user in the toy application (Figure 2.8).
(As we’ll see in detail starting in Chapter 6, this user data is stored in a database
back-end.) We’ll add user edit/update functionality to the sample application

http://localhost:3000/users/1
http://localhost:3000/users/1
http://localhost:3000/users/1
http://localhost:3000/users/1/edit

2.2. THE USERS RESOURCE 73

Figure 2.7: The user edit page (/users/1/edit).

in Section 9.1.

Now we’ll create a second user by revisiting the new page and submitting
a second set of user information; the resulting user index is shown in Fig-
ure 2.9. Section 7.1 will develop the user index into a more polished page for
showing all users.

Having shown how to create, show, and edit users, we come finally to de-
stroying them (Figure 2.10). You should verify that clicking on the link in
Figure 2.10 destroys the second user, yielding an index page with only one
user. (If it doesn’t work, be sure that JavaScript is enabled in your browser;
Rails uses JavaScript to issue the request needed to destroy a user.) Section 9.4
adds user deletion to the sample app, taking care to restrict its use to a special

http://localhost:3000/users/1/edit
http://localhost:3000/users/new
http://localhost:3000/users

74 CHAPTER 2. A TOY APP

Figure 2.8: A user with updated information.

2.2. THE USERS RESOURCE 75

Figure 2.9: The user index page (/users) with a second user.

http://localhost:3000/users

76 CHAPTER 2. A TOY APP

Figure 2.10: Destroying a user.

class of administrative users.

2.2.2 MVC in action

Now that we’ve completed a quick overview of the Users resource, let’s exam-
ine one particular part of it in the context of the Model-View-Controller (MVC)
pattern introduced in Section 1.3.3. Our strategy will be to describe the results
of a typical browser hit—a visit to the user index page at /users—in terms of
MVC (Figure 2.11).

Here is a summary of the steps shown in Figure 2.11:

1. The browser issues a request for the /users URL.

http://localhost:3000/users

2.2. THE USERS RESOURCE 77

Controller

(users_controller.rb)

Rails

router

Model

(user.rb)

View

(index.html.erb)

index

@users HTML

HTML

User.all

/users1

2

7

4

3

6

5

Database8

Figure 2.11: A detailed diagram of MVC in Rails.

78 CHAPTER 2. A TOY APP

2. Rails routes /users to the index action in the Users controller.

3. The index action asks the User model to retrieve all users (User.all).

4. The User model pulls all the users from the database.

5. The User model returns the list of users to the controller.

6. The controller captures the users in the @users variable, which is passed
to the index view.

7. The view uses embedded Ruby to render the page as HTML.

8. The controller passes the HTML back to the browser.5

Now let’s take a look at the above steps in more detail. We start with a
request issued from the browser—i.e., the result of typing a URL in the address
bar or clicking on a link (Step 1 in Figure 2.11). This request hits the Rails

router (Step 2), which dispatches to the proper controller action based on the
URL (and, as we’ll see in Box 3.2, the type of request). The code to create the
mapping of user URLs to controller actions for the Users resource appears in
Listing 2.2; this code effectively sets up the table of URL/action pairs seen in
Table 2.1. (The strange notation :users is a symbol, which we’ll learn about
in Section 4.3.3.)

Listing 2.2: The Rails routes, with a rule for the Users resource.
config/routes.rb

Rails.application.routes.draw do

resources :users

.

.

.

end

5Some references indicate that the view returns the HTML directly to the browser (via a web server such as

Apache or Nginx). Regardless of the implementation details, I prefer to think of the controller as a central hub

through which all the application’s information flows.

	From zero to deploy
	Introduction
	Prerequisites
	Conventions in this book

	Up and running
	Development environment
	Installing Rails

	The first application
	Bundler
	rails server
	Model-View-Controller (MVC)
	Hello, world!

	Version control with Git
	Installation and setup
	What good does Git do you?
	Bitbucket
	Branch, edit, commit, merge

	Deploying
	Heroku setup
	Heroku deployment, step one
	Heroku deployment, step two
	Heroku commands

	Conclusion
	What we learned in this chapter

	Exercises

	A toy app
	Planning the application
	A toy model for users
	A toy model for microposts

	The Users resource
	A user tour
	MVC in action

