

2

Ruby on Rails Tutorial

Learn Rails by Example

Michael Hartl

ii

Contents

1 From zero to deploy 1

1.1 Introduction . 4

1.1.1 Comments for various readers 5

1.1.2 “Scaling” Rails . 8

1.1.3 Conventions in this book 9

1.2 Up and running . 11

1.2.1 Development environments 12

1.2.2 Ruby, RubyGems, Rails, and Git 15

1.2.3 The first application 21

1.2.4 Bundler . 22

1.2.5 rails server . 29

1.2.6 Model-view-controller (MVC) 32

1.3 Version control with Git . 32

1.3.1 Installation and setup 34

1.3.2 Adding and committing 37

1.3.3 What good does Git do you? 38

1.3.4 GitHub . 40

1.3.5 Branch, edit, commit, merge 41

1.4 Deploying . 47

1.4.1 Heroku setup . 48

1.4.2 Heroku deployment, step one 50

1.4.3 Heroku deployment, step two 51

1.4.4 Heroku commands 51

1.5 Conclusion . 54

iii

iv CONTENTS

2 A demo app 55

2.1 Planning the application . 56

2.1.1 Modeling demo users 57

2.1.2 Modeling demo microposts 59

2.2 The Users resource . 59

2.2.1 A user tour . 62

2.2.2 MVC in action . 70

2.2.3 Weaknesses of this Users resource 76

2.3 The Microposts resource . 77

2.3.1 A micropost microtour 77

2.3.2 Putting the micro in microposts 80

2.3.3 A user has_many microposts 83

2.3.4 Inheritance hierarchies 86

2.3.5 Deploying the demo app 90

2.4 Conclusion . 90

3 Mostly static pages 93

3.1 Static pages . 99

3.1.1 Truly static pages . 99

3.1.2 Static pages with Rails 103

3.2 Our first tests . 112

3.2.1 Test-driven development 113

3.2.2 Adding a page . 119

3.3 Slightly dynamic pages . 124

3.3.1 Testing a title change 124

3.3.2 Passing title tests . 128

3.3.3 Embedded Ruby . 129

3.3.4 Eliminating duplication with layouts 132

3.4 Conclusion . 135

3.5 Exercises . 136

3.6 Advanced setup . 139

3.6.1 Eliminating bundle exec 140

3.6.2 Automated tests with Guard 142

3.6.3 Speeding up tests with Spork 146

CONTENTS v

3.6.4 Tests inside Sublime Text 151

4 Rails-flavored Ruby 153

4.1 Motivation . 153

4.2 Strings and methods . 158

4.2.1 Comments . 159

4.2.2 Strings . 160

4.2.3 Objects and message passing 163

4.2.4 Method definitions 165

4.2.5 Back to the title helper 166

4.3 Other data structures . 167

4.3.1 Arrays and ranges 167

4.3.2 Blocks . 171

4.3.3 Hashes and symbols 174

4.3.4 CSS revisited . 177

4.4 Ruby classes . 179

4.4.1 Constructors . 179

4.4.2 Class inheritance . 180

4.4.3 Modifying built-in classes 183

4.4.4 A controller class . 186

4.4.5 A user class . 187

4.5 Conclusion . 191

4.6 Exercises . 191

5 Filling in the layout 193

5.1 Adding some structure . 193

5.1.1 Site navigation . 194

5.1.2 Bootstrap and custom CSS 201

5.1.3 Partials . 212

5.2 Sass and the asset pipeline 216

5.2.1 The asset pipeline . 217

5.2.2 Syntactically awesome stylesheets 220

5.3 Layout links . 227

5.3.1 Route tests . 230

vi CONTENTS

5.3.2 Rails routes . 232

5.3.3 Named routes . 236

5.3.4 Pretty RSpec . 237

5.4 User signup: A first step . 243

5.4.1 Users controller . 243

5.4.2 Signup URI . 244

5.5 Conclusion . 247

5.6 Exercises . 249

6 Modeling users 253

6.1 User model . 254

6.1.1 Database migrations 256

6.1.2 The model file . 261

6.1.3 Creating user objects 264

6.1.4 Finding user objects 267

6.1.5 Updating user objects 269

6.2 User validations . 270

6.2.1 Initial user tests . 271

6.2.2 Validating presence 274

6.2.3 Length validation . 278

6.2.4 Format validation . 280

6.2.5 Uniqueness validation 283

6.3 Adding a secure password 291

6.3.1 An encrypted password 291

6.3.2 Password and confirmation 294

6.3.3 User authentication 298

6.3.4 User has secure password 302

6.3.5 Creating a user . 305

6.4 Conclusion . 307

6.5 Exercises . 308

7 Sign up 311

7.1 Showing users . 312

7.1.1 Debug and Rails environments 312

CONTENTS vii

7.1.2 A Users resource . 319

7.1.3 Testing the user show page (with factories) 325

7.1.4 A Gravatar image and a sidebar 330

7.2 Signup form . 336

7.2.1 Tests for user signup 340

7.2.2 Using form_for 344

7.2.3 The form HTML . 347

7.3 Signup failure . 351

7.3.1 A working form . 351

7.3.2 Signup error messages 357

7.4 Signup success . 364

7.4.1 The finished signup form 364

7.4.2 The flash . 366

7.4.3 The first signup . 369

7.4.4 Deploying to production with SSL 371

7.5 Conclusion . 373

7.6 Exercises . 373

8 Sign in, sign out 379

8.1 Sessions and signin failure 380

8.1.1 Sessions controller 380

8.1.2 Signin tests . 385

8.1.3 Signin form . 390

8.1.4 Reviewing form submission 393

8.1.5 Rendering with a flash message 397

8.2 Signin success . 401

8.2.1 Remember me . 402

8.2.2 A working sign_in method 409

8.2.3 Current user . 412

8.2.4 Changing the layout links 417

8.2.5 Signin upon signup 421

8.2.6 Signing out . 425

8.3 Introduction to Cucumber (optional) 427

8.3.1 Installation and setup 428

viii CONTENTS

8.3.2 Features and steps 428

8.3.3 Counterpoint: RSpec custom matchers 432

8.4 Conclusion . 436

8.5 Exercises . 436

9 Updating, showing, and deleting users 439

9.1 Updating users . 439

9.1.1 Edit form . 440

9.1.2 Unsuccessful edits 448

9.1.3 Successful edits . 450

9.2 Authorization . 453

9.2.1 Requiring signed-in users 453

9.2.2 Requiring the right user 458

9.2.3 Friendly forwarding 460

9.3 Showing all users . 464

9.3.1 User index . 466

9.3.2 Sample users . 471

9.3.3 Pagination . 474

9.3.4 Partial refactoring . 483

9.4 Deleting users . 484

9.4.1 Administrative users 486

9.4.2 The destroy action 490

9.5 Conclusion . 496

9.6 Exercises . 498

10 User microposts 503

10.1 A Micropost model . 503

10.1.1 The basic model . 504

10.1.2 Accessible attributes and the first validation 506

10.1.3 User/Micropost associations 508

10.1.4 Micropost refinements 514

10.1.5 Content validations 522

10.2 Showing microposts . 524

10.2.1 Augmenting the user show page 524

CONTENTS ix

10.2.2 Sample microposts 530

10.3 Manipulating microposts . 537

10.3.1 Access control . 538

10.3.2 Creating microposts 541

10.3.3 A proto-feed . 551

10.3.4 Destroying microposts 560

10.4 Conclusion . 566

10.5 Exercises . 566

11 Following users 571

11.1 The Relationship model . 572

11.1.1 A problem with the data model (and a solution) 572

11.1.2 User/relationship associations 582

11.1.3 Validations . 586

11.1.4 Followed users . 587

11.1.5 Followers . 592

11.2 A web interface for following users 595

11.2.1 Sample following data 596

11.2.2 Stats and a follow form 597

11.2.3 Following and followers pages 607

11.2.4 A working follow button the standard way 617

11.2.5 A working follow button with Ajax 620

11.3 The status feed . 627

11.3.1 Motivation and strategy 627

11.3.2 A first feed implementation 630

11.3.3 Subselects . 634

11.3.4 The new status feed 637

11.4 Conclusion . 637

11.4.1 Extensions to the sample application 639

11.4.2 Guide to further resources 642

11.5 Exercises . 643

12 Rails 4.0 supplement 645

12.1 Upgrading from Rails 3.2 to 4.0 646

x CONTENTS

12.1.1 Rails 4.0 setup . 646

12.1.2 Getting to green . 651

12.1.3 Some specific issues 652

12.1.4 Finishing up . 657

12.1.5 Additional resources 658

12.2 Strong parameters . 658

12.3 Security updates . 661

12.3.1 Secret key . 661

12.3.2 Encrypted remember tokens 662

Foreword

My former company (CD Baby) was one of the first to loudly switch to Ruby

on Rails, and then even more loudly switch back to PHP (Google me to read

about the drama). This book by Michael Hartl came so highly recommended

that I had to try it, and the Ruby on Rails Tutorial is what I used to switch back

to Rails again.

Though I’ve worked my way through many Rails books, this is the one that

finally made me “get” it. Everything is done very much “the Rails way”—a

way that felt very unnatural to me before, but now after doing this book finally

feels natural. This is also the only Rails book that does test-driven development

the entire time, an approach highly recommended by the experts but which has

never been so clearly demonstrated before. Finally, by including Git, GitHub,

and Heroku in the demo examples, the author really gives you a feel for what

it’s like to do a real-world project. The tutorial’s code examples are not in

isolation.

The linear narrative is such a great format. Personally, I powered through

the Rails Tutorial in three long days, doing all the examples and challenges at

the end of each chapter. Do it from start to finish, without jumping around, and

you’ll get the ultimate benefit.

Enjoy!

Derek Sivers (sivers.org)

Founder, CD Baby

xi

http://sivers.org/
http://sivers.org/

xii CONTENTS

Acknowledgments

The Ruby on Rails Tutorial owes a lot to my previous Rails book, RailsSpace,

and hence to my coauthor Aurelius Prochazka. I’d like to thank Aure both

for the work he did on that book and for his support of this one. I’d also like

to thank Debra Williams Cauley, my editor on both RailsSpace and the Ruby

on Rails Tutorial; as long as she keeps taking me to baseball games, I’ll keep

writing books for her.

I’d like to acknowledge a long list of Rubyists who have taught and in-

spired me over the years: David Heinemeier Hansson, Yehuda Katz, Carl

Lerche, Jeremy Kemper, Xavier Noria, Ryan Bates, Geoffrey Grosenbach, Pe-

ter Cooper, Matt Aimonetti, Gregg Pollack, Wayne E. Seguin, Amy Hoy, Dave

Chelimsky, Pat Maddox, Tom Preston-Werner, Chris Wanstrath, Chad Fowler,

Josh Susser, Obie Fernandez, Ian McFarland, Steven Bristol, Pratik Naik, Sarah

Mei, Sarah Allen, Wolfram Arnold, Alex Chaffee, Giles Bowkett, Evan Dorn,

Long Nguyen, James Lindenbaum, Adam Wiggins, Tikhon Bernstam, Ron

Evans, Wyatt Greene, Miles Forrest, the good people at Pivotal Labs, the He-

roku gang, the thoughtbot guys, and the GitHub crew. Finally, many, many

readers—far too many to list—have contributed a huge number of bug reports

and suggestions during the writing of this book, and I gratefully acknowledge

their help in making it as good as it can be.

xiii

http://aure.com/

xiv CONTENTS

About the author

Michael Hartl is the author of the Ruby on Rails Tutorial, the leading introduc-

tion to web development with Ruby on Rails. His prior experience includes

writing and developing RailsSpace, an extremely obsolete Rails tutorial book,

and developing Insoshi, a once-popular and now-obsolete social networking

platform in Ruby on Rails. In 2011, Michael received a Ruby Hero Award for

his contributions to the Ruby community. He is a graduate of Harvard College,

has a Ph.D. in Physics from Caltech, and is an alumnus of the Y Combinator

entrepreneur program.

xv

http://michaelhartl.com/
http://ruby.railstutorial.org/
http://rubyonrails.org/
http://rubyheroes.com/heroes
http://college.harvard.edu/
http://resolver.caltech.edu/CaltechETD:etd-05222003-161626
http://www.caltech.edu/
http://ycombinator.com/

xvi CONTENTS

Copyright and license

Ruby on Rails Tutorial: Learn Web Development with Rails. Copyright © 2013

by Michael Hartl. All source code in the Ruby on Rails Tutorial is available

jointly under the MIT License and the Beerware License.

The MIT License

Copyright (c) 2013 Michael Hartl

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

/*

* --

* "THE BEER-WARE LICENSE" (Revision 42):

* Michael Hartl wrote this code. As long as you retain this notice you

* can do whatever you want with this stuff. If we meet some day, and you think

* this stuff is worth it, you can buy me a beer in return.

* --

*/

xvii

http://opensource.org/licenses/MIT
http://people.freebsd.org/~phk/

xviii CONTENTS

Chapter 1

From zero to deploy

Welcome to the Ruby on Rails Tutorial. The goal of this book is to be the

best answer to the question, “If I want to learn web development with Ruby on

Rails, where should I start?” By the time you finish the Ruby on Rails Tutorial,

you will have all the skills you need to develop and deploy your own custom

web applications with Rails. You will also be ready to benefit from the many

more advanced books, blogs, and screencasts that are part of the thriving Rails

educational ecosystem. Finally, since the Ruby on Rails Tutorial uses Rails 3,

the knowledge you gain here represents the state of the art in web development

(Box 1.1). (The most up-to-date version of the Ruby on Rails Tutorial can be

found on the book’s website at http://railstutorial.org/; if you are reading this

book offline, be sure to check the online version of the Rails Tutorial book at

http://railstutorial.org/book?version=3.2 for the latest updates.)

Box 1.1. Rails 3 or Rails 4?

As of this writing, both Rails 3.2 and Rails 4.0 are officially supported versions

of Rails, so the question naturally arises whether it might be better to start with

the latest version (Rails 4.0) rather than the one used in this tutorial (Rails 3.2).

The answer depends on your background, but if you have never used Rails before

I suggest using Rails 3.2. This is partially because the Rails 4.0 ecosystem is

still somewhat unstable; in addition, the differences between the two versions are

1

http://ruby.railstutorial.org/ruby-on-rails-tutorial-book
http://rubyonrails.org/
http://rubyonrails.org/
http://railstutorial.org/
http://railstutorial.org/book?version=3.2
http://railstutorial.org/book?version=3.2

2 CHAPTER 1. FROM ZERO TO DEPLOY

slight, with only the introduction of so-called “strong parameters” representing a

significant change from the perspective of an introductory tutorial.

In order to ease the transition to Rails 4.0, both this book and the Rails Tutorial

screencasts contain supplementary material on upgrading to Rails 4.0, as well an

additional discussion of strong parameters and important security updates (Chap-

ter 12). My recommendation is to learn web development first with Rails 3.2

(using the book and optionally the screencasts), and then use the supplement to

learn the small number of things needed to bring your knowledge up to date with

Rails 4.0.

On the other hand, if you already have a background in Rails and want to live

on the bleeding edge, you are welcome to use the Rails 4.0 version of the Rails

Tutorial, which uses Rails 4.0 throughout. Box 1.1 of the 4.0 version also contains

a nearly comprehensive (but still quite short) list of the differences between the

Rails 3.2 and Rails 4.0 versions of the book.

Note that the goal of this book is not merely to teach Rails, but rather to

teach web development with Rails, which means acquiring (or expanding) the

skills needed to develop software for the World Wide Web. In addition to Ruby

on Rails, this skillset includes HTML & CSS, databases, version control, test-

ing, and deployment. To accomplish this goal, the Ruby on Rails Tutorial takes

an integrated approach: you will learn Rails by example by building a substan-

tial sample application from scratch. As Derek Sivers notes in the foreword,

this book is structured as a linear narrative, designed to be read from start to

finish. If you are used to skipping around in technical books, taking this linear

approach might require some adjustment, but I suggest giving it a try. You can

think of the Ruby on Rails Tutorial as a video game where you are the main

character, and where you level up as a Rails developer in each chapter. (The

exercises are the minibosses.)

In this first chapter, we’ll get started with Ruby on Rails by installing all

the necessary software and by setting up our development environment (Sec-

tion 1.2). We’ll then create our first Rails application, called (appropriately

enough) first_app. The Rails Tutorial emphasizes good software develop-

http://railstutorial.org/screencasts
http://railstutorial.org/screencasts
http://railstutorial.org/book?version=4.0
http://railstutorial.org/book?version=4.0
http://railstutorial.org/chapters/beginning?version=4.0#sidebar-diffs
http://sivers.org
http://en.wikipedia.org/wiki/Boss_(video_gaming)#Miniboss

3

ment practices, so immediately after creating our fresh new Rails project we’ll

put it under version control with Git (Section 1.3). And, believe it or not, in

this chapter we’ll even put our first app on the wider web by deploying it to

production (Section 1.4).

In Chapter 2, we’ll make a second project, whose purpose is to demonstrate

the basic workings of a Rails application. To get up and running quickly, we’ll

build this demo app (called demo_app) using scaffolding (Box 1.2) to generate

code; since this code is both ugly and complex, Chapter 2 will focus on inter-

acting with the demo app through its URIs (sometimes called URLs)1 using a

web browser.

The rest of the tutorial focuses on developing a single large sample applica-

tion (called sample_app), writing all the code from scratch. We’ll develop the

sample app using test-driven development (TDD), getting started in Chapter 3

by creating static pages and then adding a little dynamic content. We’ll take a

quick detour in Chapter 4 to learn a little about the Ruby language underlying

Rails. Then, in Chapter 5 through Chapter 9, we’ll complete the foundation for

the sample application by making a site layout, a user data model, and a full

registration and authentication system. Finally, in Chapter 10 and Chapter 11

we’ll add microblogging and social features to make a working example site.

The final sample application will bear more than a passing resemblance to

a certain popular social microblogging site—a site which, coincidentally, was

also originally written in Rails. Though of necessity our efforts will focus on

this specific sample application, the emphasis throughout the Rails Tutorial

will be on general principles, so that you will have a solid foundation no matter

what kinds of web applications you want to build.

Box 1.2. Scaffolding: Quicker, easier, more seductive

From the beginning, Rails has benefited from a palpable sense of excitement,

starting with the famous 15-minute weblog video by Rails creator David Heine-

meier Hansson. That video and its successors are a great way to get a taste of

1URI stands for Uniform Resource Identifier, while the slightly less general URL stands for Uniform Resource

Locator. In practice, the URI is usually equivalent to “the thing you see in the address bar of your browser”.

http://twitter.com/
http://www.youtube.com/watch?v=Gzj723LkRJY

4 CHAPTER 1. FROM ZERO TO DEPLOY

Rails’ power, and I recommend watching them. But be warned: they accomplish

their amazing fifteen-minute feat using a feature called scaffolding, which relies

heavily on generated code, magically created by the Rails generate command.

When writing a Ruby on Rails tutorial, it is tempting to rely on the scaffold-

ing approach—it’s quicker, easier, more seductive. But the complexity and sheer

amount of code in the scaffolding can be utterly overwhelming to a beginning Rails

developer; you may be able to use it, but you probably won’t understand it. Fol-

lowing the scaffolding approach risks turning you into a virtuoso script generator

with little (and brittle) actual knowledge of Rails.

In the Ruby on Rails Tutorial, we’ll take the (nearly) polar opposite approach:

although Chapter 2 will develop a small demo app using scaffolding, the core of

the Rails Tutorial is the sample app, which we’ll start writing in Chapter 3. At

each stage of developing the sample application, we will write small, bite-sized

pieces of code—simple enough to understand, yet novel enough to be challenging.

The cumulative effect will be a deeper, more flexible knowledge of Rails, giving

you a good background for writing nearly any type of web application.

1.1 Introduction

Since its debut in 2004, Ruby on Rails has rapidly become one of the most

powerful and popular frameworks for building dynamic web applications. Ev-

eryone from scrappy startups to huge companies have used Rails: 37signals,

GitHub, Shopify, Scribd, Twitter, LivingSocial, Groupon, Hulu, the Yellow

Pages—the list of sites using Rails goes on and on. There are also many web

development shops that specialize in Rails, such as ENTP, thoughtbot, Pivotal

Labs, and Hashrocket, plus innumerable independent consultants, trainers, and

contractors.

What makes Rails so great? First of all, Ruby on Rails is 100% open-

source, available under the permissive MIT License, and as a result it also

costs nothing to download or use. Rails also owes much of its success to its

elegant and compact design; by exploiting the malleability of the underlying

http://en.wikipedia.org/wiki/Dark_side_(Star_Wars)
http://37signals.com/
http://github.com/
http://shopify.com/
http://scribd.com/
http://twitter.com/
http://livingsocial.com/
http://groupon.com/
http://hulu.com/
http://yellowpages.com/
http://yellowpages.com/
http://rubyonrails.org/applications
http://entp.com/
http://thoughtbot.com/
http://pivotallabs.com/
http://pivotallabs.com/
http://hashrocket.com/
http://www.opensource.org/licenses/mit-license.php

1.1. INTRODUCTION 5

Ruby language, Rails effectively creates a domain-specific language for writing

web applications. As a result, many common web programming tasks—such

as generating HTML, making data models, and routing URIs—are easy with

Rails, and the resulting application code is concise and readable.

Rails also adapts rapidly to new developments in web technology and

framework design. For example, Rails was one of the first frameworks to fully

digest and implement the REST architectural style for structuring web applica-

tions (which we’ll be learning about throughout this tutorial). And when other

frameworks develop successful new techniques, Rails creator David Heine-

meier Hansson and the Rails core team don’t hesitate to incorporate their ideas.

Perhaps the most dramatic example is the merger of Rails and Merb, a rival

Ruby web framework, so that Rails now benefits from Merb’s modular design,

stable API, and improved performance.

Finally, Rails benefits from an unusually enthusiastic and diverse commu-

nity. The results include hundreds of open-source contributors, well-attended

conferences, a huge number of plugins and gems (self-contained solutions to

specific problems such as pagination and image upload), a rich variety of infor-

mative blogs, and a cornucopia of discussion forums and IRC channels. The

large number of Rails programmers also makes it easier to handle the inevitable

application errors: the “Google the error message” algorithm nearly always

produces a relevant blog post or discussion-forum thread.

1.1.1 Comments for various readers

The Rails Tutorial contains integrated tutorials not only for Rails, but also for

the underlying Ruby language, the RSpec testing framework, HTML, CSS, a

small amount of JavaScript, and even a little SQL. This means that, no matter

where you currently are in your knowledge of web development, by the time

you finish this tutorial you will be ready for more advanced Rails resources,

as well as for the more systematic treatments of the other subjects mentioned.

It also means that there’s a lot of material to cover; if you don’t already have

much experience programming computers, you might find it overwhelming.

The comments below contain some suggestions for approaching the Rails Tu-

torial depending on your background.

http://ruby-lang.org/
http://en.wikipedia.org/wiki/Domain_Specific_Language
http://loudthinking.com/
http://loudthinking.com/
http://rubyonrails.org/core
http://en.wikipedia.org/wiki/Application_programming_interface
http://contributors.rubyonrails.org/
http://railsconf.com/
http://agilewebdevelopment.com/plugins
https://rubygems.org/
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/CSS
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/SQL

6 CHAPTER 1. FROM ZERO TO DEPLOY

All readers: One common question when learning Rails is whether to learn

Ruby first. The answer depends on your personal learning style and how much

programming experience you already have. If you prefer to learn everything

systematically from the ground up, or if you have never programmed before,

then learning Ruby first might work well for you, and in this case I recommend

Beginning Ruby by Peter Cooper. On the other hand, many beginning Rails

developers are excited about making web applications, and would rather not

slog through a 500-page book on pure Ruby before ever writing a single web

page. In this case, I recommend following the short interactive tutorial at Try

Ruby,2 and then optionally do the free tutorial at Rails for Zombies3 to get a

taste of what Rails can do.

Another common question is whether to use tests from the start. As noted

in the introduction, the Rails Tutorial uses test-driven development (also called

test-first development), which in my view is the best way to develop Rails appli-

cations, but it does introduce a substantial amount of overhead and complexity.

If you find yourself getting bogged down by the tests, I suggest either skip-

ping them on a first reading or (even better) using them as a tool to verify your

code’s correctness without worrying about how they work. This latter strategy

involves creating the necessary test files (called specs) and filling them with

the test code exactly as it appears in the book. You can then run the test suite

(as described in Chapter 5) to watch it fail, then write the application code as

described in the tutorial, and finally re-run the test suite to watch it pass.

Inexperienced programmers: The Rails Tutorial is not aimed principally at

beginning programmers, and web applications, even relatively simple ones, are

by their nature fairly complex. If you are completely new to web program-

ming and find the Rails Tutorial too difficult, I suggest learning the basics of

HTML and CSS and then giving the Rails Tutorial another go. (Unfortunately,

I don’t have a personal recommendation here, but Head First HTML looks

promising, and one reader recommends CSS: The Missing Manual by David

Sawyer McFarland.) You might also consider reading the first few chapters of

2http://tryruby.org/
3http://railsforzombies.org/

http://www.amazon.com/gp/product/1430223634
http://tryruby.org/
http://tryruby.org/
http://railsforzombies.org/
http://headfirstlabs.com/books/hfhtml/
http://www.amazon.com/gp/product/0596526873

1.1. INTRODUCTION 7

Beginning Ruby by Peter Cooper, which starts with sample applications much

smaller than a full-blown web app. That said, a surprising number of beginners

have used this tutorial to learn web development, so I suggest giving it a try,

and I especially recommend the Rails Tutorial screencast series4 to give you an

“over-the-shoulder” look at Rails software development.

Experienced programmers new to web development: Your previous experi-

ence means you probably already understand ideas like classes, methods, data

structures, etc., which is a big advantage. Be warned that if your background

is in C/C++ or Java, you may find Ruby a bit of an odd duck, and it might take

time to get used to it; just stick with it and eventually you’ll be fine. (Ruby

even lets you put semicolons at the ends of lines if you miss them too much.)

The Rails Tutorial covers all the web-specific ideas you’ll need, so don’t worry

if you don’t currently know a PUT from a POST.

Experienced web developers new to Rails: You have a great head start, es-

pecially if you have used a dynamic language such as PHP or (even better)

Python. The basics of what we cover will likely be familiar, but test-driven

development may be new to you, as may be the structured REST style favored

by Rails. Ruby has its own idiosyncrasies, so those will likely be new, too.

Experienced Ruby programmers: The set of Ruby programmers who don’t

know Rails is a small one nowadays, but if you are a member of this elite group

you can fly through this book and then move on to The Rails 3 Way by Obie

Fernandez.

Inexperienced Rails programmers: You’ve perhaps read some other tutori-

als and made a few small Rails apps yourself. Based on reader feedback, I’m

confident that you can still get a lot out of this book. Among other things, the

techniques here may be more up-to-date than the ones you picked up when you

originally learned Rails.

4http://railstutorial.org/screencasts

http://www.amazon.com/gp/product/1430223634
http://railstutorial.org/screencasts
http://www.amazon.com/gp/product/0321601661

8 CHAPTER 1. FROM ZERO TO DEPLOY

Experienced Rails programmers: This book is unnecessary for you, but

many experienced Rails developers have expressed surprise at how much they

learned from this book, and you might enjoy seeing Rails from a different per-

spective.

After finishing the Ruby on Rails Tutorial, I recommend that experienced

programmers read The Well-Grounded Rubyist by David A. Black, which is an

excellent in-depth discussion of Ruby from the ground up, or The Ruby Way

by Hal Fulton, which is also fairly advanced but takes a more topical approach.

Then move on to The Rails 3 Way to deepen your Rails expertise.

At the end of this process, no matter where you started, you should be

ready for the many more intermediate-to-advanced Rails resources out there.

Here are some I particularly recommend:

• RailsCasts by Ryan Bates: Excellent (mostly) free Rails screencasts

• PeepCode: Excellent commercial screencasts

• Code School: Interactive programming courses

• Rails Guides: Good topical and up-to-date Rails references

• RailsCasts by Ryan Bates: Did I already mention RailsCasts? Seriously:

RailsCasts.

1.1.2 “Scaling” Rails

Before moving on with the rest of the introduction, I’d like to take a moment

to address the one issue that dogged the Rails framework the most in its early

days: the supposed inability of Rails to “scale”—i.e., to handle large amounts

of traffic. Part of this issue relied on a misconception; you scale a site, not a

framework, and Rails, as awesome as it is, is only a framework. So the real

question should have been, “Can a site built with Rails scale?” In any case,

the question has now been definitively answered in the affirmative: some of the

http://www.amazon.com/gp/product/1933988657
http://www.amazon.com/gp/product/0672328844
http://www.amazon.com/gp/product/0321601661
http://railscasts.com/
http://peepcode.com/
http://www.codeschool.com/
http://guides.rubyonrails.org/
http://railscasts.com/
http://railscasts.com/
http://railscasts.com/
http://idleprocess.wordpress.com/2009/11/24/presentation-summary-high-performance-at-massive-scale-lessons-learned-at-facebook/
http://idleprocess.wordpress.com/2009/11/24/presentation-summary-high-performance-at-massive-scale-lessons-learned-at-facebook/

1.1. INTRODUCTION 9

most heavily trafficked sites in the world use Rails. Actually doing the scaling

is beyond the scope of just Rails, but rest assured that if your application ever

needs to handle the load of Hulu or the Yellow Pages, Rails won’t stop you

from taking over the world.

1.1.3 Conventions in this book

The conventions in this book are mostly self-explanatory. In this section, I’ll

mention some that may not be.

Both the HTML and PDF editions of this book are full of links, both to

internal sections (such as Section 1.2) and to external sites (such as the main

Ruby on Rails download page).5

Many examples in this book use command-line commands. For simplicity,

all command line examples use a Unix-style command line prompt (a dollar

sign), as follows:

$ echo "hello, world"

hello, world

Windows users should understand that their systems will use the analogous

angle prompt >:

C:\Sites> echo "hello, world"

hello, world

On Unix systems, some commands should be executed with sudo, which

stands for “substitute user do”.6 By default, a command executed with sudo

5When reading the Rails Tutorial, you may find it convenient to follow an internal section link to look at the

reference and then immediately go back to where you were before. This is easy when reading the book as a web

page, since you can just use the Back button of your browser, but both Adobe Reader and OS X’s Preview allow

you to do this with the PDF as well. In Reader, you can right-click on the document and select “Previous View”

to go back. In Preview, use the Go menu: Go > Back.
6Many people erroneously believe that sudo stands for “superuser do” because it runs commands as the

superuser (root) by default. In fact, sudo is a concatenation of the su command and the English word “do”, and

su stands for “substitute user”, as you can verify by typing man su in your shell.

http://railstutorial.org/book
http://railstutorial.org/
http://rubyonrails.org/download

10 CHAPTER 1. FROM ZERO TO DEPLOY

is run as an administrative user, which has access to files and directories that

normal users can’t touch, such as in this example from Section 1.2.2:

$ sudo ruby setup.rb

Most Unix/Linux/OS X systems require sudo by default, unless you are using

Ruby Version Manager as suggested in Section 1.2.2; in this case, you would

type this instead:

$ ruby setup.rb

Rails comes with lots of commands that can be run at the command line.

For example, in Section 1.2.5 we’ll run a local development web server as

follows:

$ rails server

As with the command-line prompt, the Rails Tutorial uses the Unix conven-

tion for directory separators (i.e., a forward slash /). My Rails Tutorial sample

application, for instance, lives in

/Users/mhartl/rails_projects/sample_app

On Windows, the analogous directory would be

C:\Sites\sample_app

The root directory for any given app is known as the Rails root, but this

terminology is confusing and many people mistakenly believe that the “Rails

root” is the root directory for Rails itself. For clarity, the Rails Tutorial will

refer to the Rails root as the application root, and henceforth all directories

will be relative to this directory. For example, the config directory of my

sample application is

	From zero to deploy
	Introduction
	Comments for various readers
	``Scaling'' Rails
	Conventions in this book

	Up and running
	Development environments
	Ruby, RubyGems, Rails, and Git
	The first application
	Bundler
	rails server
	Model-view-controller (MVC)

	Version control with Git
	Installation and setup
	Adding and committing
	What good does Git do you?
	GitHub
	Branch, edit, commit, merge

	Deploying
	Heroku setup
	Heroku deployment, step one
	Heroku deployment, step two
	Heroku commands

	Conclusion

	A demo app
	Planning the application
	Modeling demo users
	Modeling demo microposts

	The Users resource
	A user tour
	MVC in action
	Weaknesses of this Users resource

	The Microposts resource
	A micropost microtour
	Putting the micro in microposts
	A user has_many microposts
	Inheritance hierarchies
	Deploying the demo app

	Conclusion

	Mostly static pages
	Static pages
	Truly static pages
	Static pages with Rails

	Our first tests
	Test-driven development
	Adding a page

	Slightly dynamic pages
	Testing a title change
	Passing title tests
	Embedded Ruby
	Eliminating duplication with layouts

	Conclusion
	Exercises
	Advanced setup
	Eliminating bundle exec
	Automated tests with Guard
	Speeding up tests with Spork
	Tests inside Sublime Text

	Rails-flavored Ruby
	Motivation
	Strings and methods
	Comments
	Strings
	Objects and message passing
	Method definitions
	Back to the title helper

	Other data structures
	Arrays and ranges
	Blocks
	Hashes and symbols
	CSS revisited

	Ruby classes
	Constructors
	Class inheritance
	Modifying built-in classes
	A controller class
	A user class

	Conclusion
	Exercises

	Filling in the layout
	Adding some structure
	Site navigation
	Bootstrap and custom CSS
	Partials

	Sass and the asset pipeline
	The asset pipeline
	Syntactically awesome stylesheets

	Layout links
	Route tests
	Rails routes
	Named routes
	Pretty RSpec

	User signup: A first step
	Users controller
	Signup URI

	Conclusion
	Exercises

	Modeling users
	User model
	Database migrations
	The model file
	Creating user objects
	Finding user objects
	Updating user objects

	User validations
	Initial user tests
	Validating presence
	Length validation
	Format validation
	Uniqueness validation

	Adding a secure password
	An encrypted password
	Password and confirmation
	User authentication
	User has secure password
	Creating a user

	Conclusion
	Exercises

	Sign up
	Showing users
	Debug and Rails environments
	A Users resource
	Testing the user show page (with factories)
	A Gravatar image and a sidebar

	Signup form
	Tests for user signup
	Using form_for
	The form HTML

	Signup failure
	A working form
	Signup error messages

	Signup success
	The finished signup form
	The flash
	The first signup
	Deploying to production with SSL

	Conclusion
	Exercises

	Sign in, sign out
	Sessions and signin failure
	Sessions controller
	Signin tests
	Signin form
	Reviewing form submission
	Rendering with a flash message

	Signin success
	Remember me
	A working sign_in method
	Current user
	Changing the layout links
	Signin upon signup
	Signing out

	Introduction to Cucumber (optional)
	Installation and setup
	Features and steps
	Counterpoint: RSpec custom matchers

	Conclusion
	Exercises

	Updating, showing, and deleting users
	Updating users
	Edit form
	Unsuccessful edits
	Successful edits

	Authorization
	Requiring signed-in users
	Requiring the right user
	Friendly forwarding

	Showing all users
	User index
	Sample users
	Pagination
	Partial refactoring

	Deleting users
	Administrative users
	The destroy action

	Conclusion
	Exercises

	User microposts
	A Micropost model
	The basic model
	Accessible attributes and the first validation
	User/Micropost associations
	Micropost refinements
	Content validations

	Showing microposts
	Augmenting the user show page
	Sample microposts

	Manipulating microposts
	Access control
	Creating microposts
	A proto-feed
	Destroying microposts

	Conclusion
	Exercises

	Following users
	The Relationship model
	A problem with the data model (and a solution)
	User/relationship associations
	Validations
	Followed users
	Followers

	A web interface for following users
	Sample following data
	Stats and a follow form
	Following and followers pages
	A working follow button the standard way
	A working follow button with Ajax

	The status feed
	Motivation and strategy
	A first feed implementation
	Subselects
	The new status feed

	Conclusion
	Extensions to the sample application
	Guide to further resources

	Exercises

	Rails 4.0 supplement
	Upgrading from Rails 3.2 to 4.0
	Rails 4.0 setup
	Getting to green
	Some specific issues
	Finishing up
	Additional resources

	Strong parameters
	Security updates
	Secret key
	Encrypted remember tokens

