

 [image: cover]

 Ruby on Rails Tutorial
Learn Web Development with Rails
Michael Hartl

Contents
	Foreword
	Acknowledgments
	About the author
	Copyright and license
	Chapter 1 From zero to deploy
		1.1 Introduction
		1.1.1 Prerequisites
	1.1.2 Conventions used in this book

	1.2 Up and running
		1.2.1 Development environment
	1.2.2 Installing Rails

	1.3 The first application
		1.3.1 Bundler
	
 1.3.2
 rails server

	1.3.3 Model-View-Controller (MVC)
	1.3.4 Hello, world!

	1.4 Version control with Git
		1.4.1 Installation and setup
	1.4.2 What good does Git do you?
	1.4.3 Bitbucket
	1.4.4 Branch, edit, commit, merge

	1.5 Deploying
		1.5.1 Heroku setup
	1.5.2 Heroku deployment, step one
	1.5.3 Heroku deployment, step two
	1.5.4 Heroku commands

	1.6 Conclusion
		1.6.1 What we learned in this chapter

	Chapter 2 A toy app
		2.1 Planning the application
		2.1.1 A toy model for users
	2.1.2 A toy model for microposts

	2.2 The Users resource
		2.2.1 A user tour
	2.2.2 MVC in action
	2.2.3 Weaknesses of this Users resource

	2.3 The Microposts resource
		2.3.1 A micropost microtour
	2.3.2 Putting the micro in microposts
	2.3.3 A user has_many microposts
	2.3.4 Inheritance hierarchies
	2.3.5 Deploying the toy app

	2.4 Conclusion
		2.4.1 What we learned in this chapter

	Chapter 3 Mostly static pages
		3.1 Sample app setup
	3.2 Static pages
		3.2.1 Generated static pages
	3.2.2 Custom static pages

	3.3 Getting started with testing
		3.3.1 Our first test
	3.3.2 Red
	3.3.3 Green
	3.3.4 Refactor

	3.4 Slightly dynamic pages
		3.4.1 Testing titles (Red)
	3.4.2 Adding page titles (Green)
	3.4.3 Layouts and embedded Ruby (Refactor)
	3.4.4 Setting the root route

	3.5 Conclusion
		3.5.1 What we learned in this chapter

	3.6 Advanced testing setup
		3.6.1 minitest reporters
	3.6.2 Automated tests with Guard

	Chapter 4 Rails-flavored Ruby
		4.1 Motivation
		4.1.1 Built-in helpers
	4.1.2 Custom helpers

	4.2 Strings and methods
		4.2.1 Comments
	4.2.2 Strings
	4.2.3 Objects and message passing
	4.2.4 Method definitions
	4.2.5 Back to the title helper

	4.3 Other data structures
		4.3.1 Arrays and ranges
	4.3.2 Blocks
	4.3.3 Hashes and symbols
	4.3.4 CSS revisited

	4.4 Ruby classes
		4.4.1 Constructors
	4.4.2 Class inheritance
	4.4.3 Modifying built-in classes
	4.4.4 A controller class
	4.4.5 A user class

	4.5 Conclusion
		4.5.1 What we learned in this chapter

	Chapter 5 Filling in the layout
		5.1 Adding some structure
		5.1.1 Site navigation
	5.1.2 Bootstrap and custom CSS
	5.1.3 Partials

	5.2 Sass and the asset pipeline
		5.2.1 The asset pipeline
	5.2.2 Syntactically awesome stylesheets

	5.3 Layout links
		5.3.1 Contact page
	5.3.2 Rails routes
	5.3.3 Using named routes
	5.3.4 Layout link tests

	5.4 User signup: A first step
		5.4.1 Users controller
	5.4.2 Signup URL

	5.5 Conclusion
		5.5.1 What we learned in this chapter

	Chapter 6 Modeling users
		6.1 User model
		6.1.1 Database migrations
	6.1.2 The model file
	6.1.3 Creating user objects
	6.1.4 Finding user objects
	6.1.5 Updating user objects

	6.2 User validations
		6.2.1 A validity test
	6.2.2 Validating presence
	6.2.3 Length validation
	6.2.4 Format validation
	6.2.5 Uniqueness validation

	6.3 Adding a secure password
		6.3.1 A hashed password
	6.3.2 User has secure password
	6.3.3 Minimum password standards
	6.3.4 Creating and authenticating a user

	6.4 Conclusion
		6.4.1 What we learned in this chapter

	Chapter 7 Sign up
		7.1 Showing users
		7.1.1 Debug and Rails environments
	7.1.2 A Users resource
	7.1.3 Debugger
	7.1.4 A Gravatar image and a sidebar

	7.2 Signup form
		7.2.1 Using form_for
	7.2.2 Signup form HTML

	7.3 Unsuccessful signups
		7.3.1 A working form
	7.3.2 Strong parameters
	7.3.3 Signup error messages
	7.3.4 A test for invalid submission

	7.4 Successful signups
		7.4.1 The finished signup form
	7.4.2 The flash
	7.4.3 The first signup
	7.4.4 A test for valid submission

	7.5 Professional-grade deployment
		7.5.1 SSL in production
	7.5.2 Production webserver
	7.5.3 Production database configuration
	7.5.4 Production deployment

	7.6 Conclusion
		7.6.1 What we learned in this chapter

	Chapter 8 Basic login
		8.1 Sessions
		8.1.1 Sessions controller
	8.1.2 Login form
	8.1.3 Finding and authenticating a user
	8.1.4 Rendering with a flash message
	8.1.5 A flash test

	8.2 Logging in
		8.2.1 The log_in method
	8.2.2 Current user
	8.2.3 Changing the layout links
	8.2.4 Testing layout changes
	8.2.5 Login upon signup

	8.3 Logging out
	8.4 Conclusion
		8.4.1 What we learned in this chapter

	Chapter 9 Advanced login
		9.1 Remember me
		9.1.1 Remember token and digest
	9.1.2 Login with remembering
	9.1.3 Forgetting users
	9.1.4 Two subtle bugs

	9.2 “Remember me” checkbox
	9.3 Remember tests
		9.3.1 Testing the “remember me” box
	9.3.2 Testing the remember branch

	9.4 Conclusion
		9.4.1 What we learned in this chapter

	Chapter 10 Updating, showing, and deleting users
		10.1 Updating users
		10.1.1 Edit form
	10.1.2 Unsuccessful edits
	10.1.3 Testing unsuccessful edits
	10.1.4 Successful edits (with TDD)

	10.2 Authorization
		10.2.1 Requiring logged-in users
	10.2.2 Requiring the right user
	10.2.3 Friendly forwarding

	10.3 Showing all users
		10.3.1 Users index
	10.3.2 Sample users
	10.3.3 Pagination
	10.3.4 Users index test
	10.3.5 Partial refactoring

	10.4 Deleting users
		10.4.1 Administrative users
	10.4.2 The destroy action
	10.4.3 User destroy tests

	10.5 Conclusion
		10.5.1 What we learned in this chapter

	Chapter 11 Account activation
		11.1 Account activations resource
		11.1.1 Account activations controller
	11.1.2 Account activation data model

	11.2 Account activation emails
		11.2.1 Mailer templates
	11.2.2 Email previews
	11.2.3 Email tests
	11.2.4 Updating the Users create action

	11.3 Activating the account
		11.3.1 Generalizing the authenticated? method
	11.3.2 Activation edit action
	11.3.3 Activation test and refactoring

	11.4 Email in production
	11.5 Conclusion
		11.5.1 What we learned in this chapter

	Chapter 12 Password reset
		12.1 Password resets resource
		12.1.1 Password resets controller
	12.1.2 New password resets
	12.1.3 Password reset create action

	12.2 Password reset emails
		12.2.1 Password reset mailer and templates
	12.2.2 Email tests

	12.3 Resetting the password
		12.3.1 Reset edit action
	12.3.2 Updating the reset
	12.3.3 Password reset test

	12.4 Email in production (take two)
	12.5 Conclusion
		12.5.1 What we learned in this chapter

	12.6 Proof of expiration comparison

	Chapter 13 User microposts
		13.1 A Micropost model
		13.1.1 The basic model
	13.1.2 Micropost validations
	13.1.3 User/Micropost associations
	13.1.4 Micropost refinements

	13.2 Showing microposts
		13.2.1 Rendering microposts
	13.2.2 Sample microposts
	13.2.3 Profile micropost tests

	13.3 Manipulating microposts
		13.3.1 Micropost access control
	13.3.2 Creating microposts
	13.3.3 A proto-feed
	13.3.4 Destroying microposts
	13.3.5 Micropost tests

	13.4 Micropost images
		13.4.1 Basic image upload
	13.4.2 Image validation
	13.4.3 Image resizing
	13.4.4 Image upload in production

	13.5 Conclusion
		13.5.1 What we learned in this chapter

	Chapter 14 Following users
		14.1 The Relationship model
		14.1.1 A problem with the data model (and a solution)
	14.1.2 User/relationship associations
	14.1.3 Relationship validations
	14.1.4 Followed users
	14.1.5 Followers

	14.2 A web interface for following users
		14.2.1 Sample following data
	14.2.2 Stats and a follow form
	14.2.3 Following and followers pages
	14.2.4 A working follow button the standard way
	14.2.5 A working follow button with Ajax
	14.2.6 Following tests

	14.3 The status feed
		14.3.1 Motivation and strategy
	14.3.2 A first feed implementation
	14.3.3 Subselects

	14.4 Conclusion
		14.4.1 Guide to further resources
	14.4.2 What we learned in this chapter

Foreword

My former company (CD Baby) was one of the first to loudly switch to Ruby on Rails, and then even more loudly switch back to PHP (Google me to read about the drama). This book by Michael Hartl came so highly recommended that I had to try it, and the Ruby on Rails Tutorial is what I used to switch back to Rails again.

Though I’ve worked my way through many Rails books, this is the one that finally made me “get” it. Everything is done very much “the Rails way”—a way that felt very unnatural to me before, but now after doing this book finally feels natural. This is also the only Rails book that does test-driven development the entire time, an approach highly recommended by the experts but which has never been so clearly demonstrated before. Finally, by including Git, GitHub, and Heroku in the demo examples, the author really gives you a feel for what it’s like to do a real-world project. The tutorial’s code examples are not in isolation.

The linear narrative is such a great format. Personally, I powered through the Rails Tutorial in three long days,1 doing all the examples and challenges at the end of each chapter. Do it from start to finish, without jumping around, and you’ll get the ultimate benefit.

Enjoy!

Derek Sivers (sivers.org)
Founder, CD Baby

Acknowledgments

The Ruby on Rails Tutorial owes a lot to my previous Rails book, RailsSpace, and hence to my coauthor Aurelius Prochazka. I’d like to thank Aure both for the work he did on that book and for his support of this one. I’d also like to thank Debra Williams Cauley, my editor on both RailsSpace and the Ruby on Rails Tutorial; as long as she keeps taking me to baseball games, I’ll keep writing books for her.

I’d like to acknowledge a long list of Rubyists who have taught and inspired me over the years: David Heinemeier Hansson, Yehuda Katz, Carl Lerche, Jeremy Kemper, Xavier Noria, Ryan Bates, Geoffrey Grosenbach, Peter Cooper, Matt Aimonetti, Mark Bates, Gregg Pollack, Wayne E. Seguin, Amy Hoy, Dave Chelimsky, Pat Maddox, Tom Preston-Werner, Chris Wanstrath, Chad Fowler, Josh Susser, Obie Fernandez, Ian McFarland, Steven Bristol, Pratik Naik, Sarah Mei, Sarah Allen, Wolfram Arnold, Alex Chaffee, Giles Bowkett, Evan Dorn, Long Nguyen, James Lindenbaum, Adam Wiggins, Tikhon Bernstam, Ron Evans, Wyatt Greene, Miles Forrest, Sandi Metz, Ryan Davis, Aaron Patterson, the good people at Pivotal Labs, the Heroku gang, the thoughtbot guys, and the GitHub crew.

I’d like to thank technical reviewer Andrew Thai for his careful reading of the manuscript and for his helpful suggestions. I’d also like to thank my cofounders at Learn Enough, Nick Merwin and Lee Donahoe, for all their help in preparing this tutorial.

Finally, many, many readers—far too many to list—have contributed a huge number of bug reports and suggestions during the writing of this book, and I gratefully acknowledge their help in making it as good as it can be.

About the author

Michael Hartl is the creator of the Ruby on Rails Tutorial, one of the leading introductions to web development, and is cofounder and principal author at LearnEnough.com. Previously, he was a physics instructor at the California Institute of Technology (Caltech), where he received a Lifetime Achievement Award for Excellence in Teaching. He is a graduate of Harvard College, has a Ph.D. in Physics from Caltech, and is an alumnus of the Y Combinator entrepreneur program.

Copyright and license

Ruby on Rails Tutorial: Learn Web Development with Rails. Copyright © 2016 by Michael Hartl. Last updated 2020/04/08 16:22:49 PT.

All source code in the Ruby on Rails Tutorial is available jointly under the MIT License and the Beerware License.

The MIT License

Copyright (c) 2016 Michael Hartl

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

THE BEERWARE LICENSE (Revision 42)

Michael Hartl wrote this code. As long as you retain this notice you can do
whatever you want with this stuff. If we meet some day, and you think this
stuff is worth it, you can buy me a beer in return.

 1. This is not typical! Getting through the entire book usually takes much longer than three days.

 Chapter 1 From zero to deploy

Welcome to Ruby on Rails Tutorial: Learn Web Development with Rails. The purpose of this book is to teach you how to develop custom web applications, and our tool of choice is the popular Ruby on Rails web framework. In addition to focusing on general principles of web development (rather than on Rails specifically), the Ruby on Rails Tutorial teaches the broader skill of technical sophistication (Box 1.1), which is a principal theme developed by the Learn Enough to Be Dangerous tutorials.1 In particular, the Learn Enough introductory sequence consists of a series of tutorials that are suitable as prerequisites to the Ruby on Rails Tutorial, starting with Learn Enough Command Line to Be Dangerous,2 which (unlike the present tutorial) is aimed at complete beginners.

Box 1.1.

Technical sophistication

The Ruby on Rails Tutorial is part of the Learn Enough to Be Dangerous family of tutorials, which develop the theme of technical sophistication: the combination of hard and soft skills that make it seem like you can magically solve any technical problem (as illustrated in “Tech Support Cheat Sheet” from xkcd). Web development, and computer programming in general, are essential components of technical sophistication, but there’s more to it than that—you also have to know how to click around menu items to learn the capabilities of a particular application, how to clarify a confusing error message by Googling it, or when to give up and just reboot the darn thing.

Because web applications have so many moving parts, they offer ample opportunities to develop your technical sophistication. In the context of Rails web development, some specific examples of technical sophistication include making sure you’re using the right Ruby gem versions, running bundle install or bundle update, and restarting the local webserver if something doesn’t work. (Don’t worry if all this sounds like gibberish; we’ll cover everything mentioned here in the course of completing this tutorial.)

As you proceed through this tutorial, in all likelihood you will occasionally be tripped up by things not immediately working as expected. Although some particularly tricky steps are explicitly highlighted in the text, it is impossible to anticipate all the things that can go wrong. I recommend you embrace these inevitable stumbling blocks as opportunities to work on improving your technical sophistication. Or, as we say in geek speak: It’s not a bug, it’s a feature!

The Ruby on Rails Tutorial is designed to give you a thorough introduction to web application development, including a basic grounding in Ruby, Rails, HTML & CSS, databases, version control, testing, and deployment—sufficient to launch you on a career as a web developer or technology entrepreneur. If you already know web development, this book will quickly teach you the essentials of the Rails framework, including MVC and REST, generators, migrations, routing, and embedded Ruby. In any case, when you finish the Ruby on Rails Tutorial you will be in a position to benefit from the many more advanced books, blogs, and screencasts that are part of the thriving programming educational ecosystem.3

The Ruby on Rails Tutorial takes an integrated approach to web development by building three example applications of increasing sophistication, starting with a minimal hello app (Section 1.3), a slightly more capable toy app (Chapter 2), and a real sample app (Chapter 3 through Chapter 14). As implied by their generic names, the applications developed in the Ruby on Rails Tutorial are not specific to any particular kind of website. The final sample application bears more than a passing resemblance to Twitter (which, coincidentally, was also originally written in Rails), but the emphasis throughout the tutorial is on general principles, so you will have a solid foundation no matter what kinds of web applications you want to build.

In this first chapter, we’ll get started with Ruby on Rails by installing all the necessary software and by setting up our development environment (Section 1.2). We’ll then create our first Rails application, called hello_app. The Rails Tutorial emphasizes good software development practices, so immediately after creating our fresh new Rails project we’ll put it under version control with Git (Section 1.4). And, believe it or not, in this chapter we’ll even put our first app on the wider web by deploying it to production (Section 1.5).

In Chapter 2, we’ll make a second project, whose purpose is to demonstrate the basic workings of a Rails application. To get up and running quickly, we’ll build this toy app (called toy_app) using scaffolding (Box 1.2) to generate code; because this code is both ugly and complex, Chapter 2 will focus on interacting with the toy app through its URIs (often called URLs)4 using a web browser.

The rest of the tutorial focuses on developing a single large real sample application (called sample_app), writing all the code from scratch. We’ll develop the sample app using a combination of mockups, test-driven development (TDD), and integration tests. We’ll get started in Chapter 3 by creating static pages and then add a little dynamic content. We’ll take a quick detour in Chapter 4 to learn a little about the Ruby language underlying Rails. Then, in Chapter 5 through Chapter 12, we’ll complete the foundation for the sample application by making a site layout, a user data model, and a full registration and authentication system (including account activation and password resets). Finally, in Chapter 13 and Chapter 14 we’ll add microblogging and social features to make a working example site.

Box 1.2.

Scaffolding: Quicker, easier, more seductive

From the beginning, Rails has benefited from a palpable sense of excitement, starting with the famous 15-minute weblog video by Rails creator David Heinemeier Hansson. That video and its successors are a great way to get a taste of Rails’ power, and I recommend watching them. But be warned: they accomplish their amazing fifteen-minute feat using a feature called scaffolding, which relies heavily on generated code, magically created by the Rails generate scaffold command.

When writing a Ruby on Rails tutorial, it is tempting to rely on the scaffolding approach—it’s quicker, easier, more seductive. But the complexity and sheer amount of code in the scaffolding can be utterly overwhelming to a beginning Rails developer; you may be able to use it, but you probably won’t understand it. Following the scaffolding approach risks turning you into a virtuoso script generator with little (and brittle) actual knowledge of Rails.

In the Ruby on Rails Tutorial, we’ll take the (nearly) polar opposite approach: although Chapter 2 will develop a small toy app using scaffolding, the core of the Rails Tutorial is the sample app, which we’ll start writing in Chapter 3. At each stage of developing the sample application, we will write small, bite-sized pieces of code—simple enough to understand, yet novel enough to be challenging. The cumulative effect will be a deeper, more flexible knowledge of Rails, giving you a good background for writing nearly any type of web application.

1.1 Introduction

Ruby on Rails (or just “Rails” for short) is a web development framework written in the Ruby programming language. Since its debut in 2004, Ruby on Rails has rapidly become one of the most powerful and popular tools for building dynamic web applications. Rails is used by companies as varied as Airbnb, Basecamp, Disney, GitHub, Hulu, Kickstarter, Shopify, Twitter, and the Yellow Pages. There are also many web development shops that specialize in Rails, such as ENTP, thoughtbot, Pivotal Labs, Hashrocket, and HappyFunCorp, plus innumerable independent consultants, trainers, and contractors.

What makes Rails so great? First of all, Ruby on Rails is 100% open-source, available under the generous MIT License, and as a result it also costs nothing to download or use. Rails also owes much of its success to its elegant and compact design; by exploiting the malleability of the underlying Ruby language, Rails effectively creates a domain-specific language for writing web applications. As a result, many common web programming tasks—such as generating HTML, making data models, and routing URLs—are easy with Rails, and the resulting application code is concise and readable.

Rails also adapts rapidly to new developments in web technology and framework design. For example, Rails was one of the first frameworks to fully digest and implement the REST architectural style for structuring web applications (which we’ll be learning about throughout this tutorial). And when other frameworks develop successful new techniques, Rails creator David Heinemeier Hansson and the Rails core team don’t hesitate to incorporate their ideas. Perhaps the most dramatic example is the merger of Rails and Merb, a rival Ruby web framework, so that Rails now benefits from Merb’s modular design, stable API, and improved performance.

Finally, Rails benefits from an unusually enthusiastic and supportive community. The results include thousands of open-source contributors, fun and informative conferences, a huge number of gems (self-contained solutions to specific problems such as pagination and image upload), a rich variety of informative blogs, and a cornucopia of discussion forums and IRC channels. The large number of Rails programmers also makes it easier to handle the inevitable application errors: the “Google the error message” algorithm nearly always produces a relevant blog post or discussion-forum thread.

1.1.1 Prerequisites

There are no formal prerequisites to this book, and the Ruby on Rails Tutorial contains integrated tutorials not only for Rails, but also for the underlying Ruby language, the default Rails testing framework (minitest), the Unix command line, HTML, CSS, a small amount of JavaScript, and even a little SQL. That’s a lot of material to absorb, though, and I generally recommend having some HTML and programming background before starting this tutorial. If you’re new to software development, I recommend starting with the tutorials at Learn Enough instead:

	Developer Fundamentals

	Learn Enough Command Line to Be Dangerous

	Learn Enough Text Editor to Be Dangerous

	Learn Enough Git to Be Dangerous

	Web Basics

	Learn Enough HTML to Be Dangerous

	Learn Enough CSS & Layout to Be Dangerous

	Beginning Development

	Learn Enough JavaScript to Be Dangerous

	Learn Enough Ruby to Be Dangerous

	Application Development

	The Ruby on Rails Tutorial

One common question when learning Rails is whether to learn Ruby first. The answer depends on your personal learning style and how much programming experience you already have. If you prefer to learn everything systematically from the ground up, or if you have never programmed before, then learning Ruby first might work well for you, and in this case I recommend following the full Learn Enough sequence listed above. On the other hand, many beginning Rails developers are excited about making web applications, and would rather not wait to finish a whole book on Ruby before ever writing a single web page. In this case, I recommend giving this tutorial a go and switching to the Learn Enough sequence if it proves too challenging.

At the end of this tutorial, no matter where you started, you should be ready for the many more intermediate-to-advanced Rails resources out there. Here are some I particularly recommend:

	The Learn Enough Society: Premium subscription service that includes a special enhanced version of the Ruby on Rails Tutorial book and 15+ hours of streaming screencast lessons filled with the kind of tips, tricks, and live demos that you can’t get from reading a book. Also includes text and videos for the other Learn Enough tutorials. Scholarship discounts are available.

	The Turing School of Software & Design: A full-time, 27-week training program in Denver, Colorado

	Bloc: An online bootcamp with a structured curriculum, personalized mentorship, and a focus on learning through concrete projects. Use the coupon code BLOCLOVESHARTL to get $500 off the enrollment fee.

	Launch School: A good online Rails development bootcamp (includes advanced material)

	Thinkful: An online class that pairs you with a professional engineer as you work through a project-based curriculum

	Pragmatic Studio: Online Ruby and Rails courses from Mike and Nicole Clark. Along with Programming Ruby author Dave Thomas, Mike taught the first Rails course I took, way back in 2006.

	RailsApps: A large variety of detailed topic-specific Rails projects and tutorials

	Rails Guides: Topical and up-to-date Rails references

Exercises

The Ruby on Rails Tutorial contains a large number of exercises. Solving them as you proceed through the tutorial is strongly recommended.

In order to keep the main discussion independent of the exercises, the solutions are not generally incorporated into subsequent code listings. (In the rare circumstance that an exercise solution is used subsequently, it is explicitly solved in the main text.) This means that over time your code may diverge from the code shown in the tutorial due to differences introduced in the exercises. Learning how to resolve such discrepancies is a valuable exercise in technical sophistication (Box 1.1).

To record your answers and see solutions, you can join the Learn Enough Society, a subscription service from Learn Enough to Be Dangerous that includes a special enhanced version of the Ruby on Rails Tutorial.

Many of the exercises are challenging, but we’ll start out with some easy ones just to get warmed up:

	Which website hosts the Ruby gem for Ruby on Rails? Hint: When in doubt, Google it.

	What is the current version number of Rails?

	As of this moment, how many total times has Ruby on Rails been downloaded?

1.1.2 Conventions used in this book

The conventions used in this book are mostly self-explanatory. In this section, we’ll go over some that may not be.

Many examples in this book use command-line commands. For simplicity, all command line examples use a Unix-style command line prompt (a dollar sign), as follows:

$ echo "hello, world"
hello, world

Rails comes with many commands that can be run at the command line. For example, in Section 1.3.2 we’ll run a local development webserver with the rails server command:

$ rails server

As with the command-line prompt, the Rails Tutorial uses the Unix convention for directory separators (i.e., a forward slash /). For example, the sample application production.rb configuration file appears as follows:

config/environments/production.rb

This file path should be understood as being relative to the application’s root directory, which will vary by system; on the cloud IDE (Section 1.2.1), it looks like this:

/home/ec2-user/environment/sample_app/

Thus, the full path to production.rb is

/home/ec2-user/environment/sample_app/config/environments/production.rb

I will typically omit the application path and write just config/environments/production.rb for short.

The Rails Tutorial often shows output from various programs. Because of the innumerable small differences between different computer systems, the output you see may not always agree exactly with what is shown in the text,
but this is not cause for concern. In addition, some commands may produce errors depending on your system; rather than attempt the Sisyphean task of documenting all such errors in this tutorial, I will delegate to the “Google the error message” algorithm, which among other things is good practice for real-life software development (Box 1.1). If you run into any problems while following the tutorial, I suggest consulting the resources listed in the Rails Tutorial help page.5

Because the Rails Tutorial covers testing of Rails applications, it is often helpful to know if a particular piece of code causes the test suite to fail (indicated by the color red) or pass (indicated by the color green). For convenience, code resulting in a failing test is thus indicated with red, while code resulting in a passing test is indicated with green.

Finally, for convenience the Ruby on Rails Tutorial adopts two conventions designed to make the many code samples easier to understand. First, some code listings include one or more highlighted lines, as seen below:

class User < ApplicationRecord
 validates :name, presence: true
 validates :email, presence: true
end

Such highlighted lines typically indicate the most important new code in the given sample, and often (though not always) represent the difference between the present code listing and previous listings. Second, for brevity and simplicity many of the book’s code listings include vertical dots, as follows:

class User < ApplicationRecord
 .
 .
 .
 has_secure_password
end

These dots represent omitted code and should not be copied literally.

1.2 Up and running

Even for experienced Rails developers, installing Ruby, Rails, and all the associated supporting software can be an exercise in frustration. Compounding the problem is the multiplicity of environments: different operating systems, version numbers, preferences in text editor and integrated development environment (IDE), etc. The Ruby on Rails Tutorial offers two recommended solutions to this problem. One possibility is to follow the full Learn Enough intro sequence mentioned in Section 1.1.1, which will automatically lead to a system configured for this tutorial.

The other possibility, recommended for newer users, is to sidestep such installation and configuration issues by using a cloud integrated development environment, or cloud IDE. The cloud IDE used in this tutorial runs inside an ordinary web browser, and hence works the same across different platforms, which is especially useful for operating systems (such as Windows) on which Rails development has historically been difficult. It also maintains the current state of your work, so you can take a break from the tutorial and come back to the system just as you left it.

1.2.1 Development environment

Considering various idiosyncratic customizations, there are probably as many development environments as there are Rails programmers. To avoid this complexity, the Ruby on Rails Tutorial standardizes on the excellent cloud development environment Cloud9, part of Amazon Web Services (AWS). The resulting workspace environment comes pre-configured with most of the software needed for professional-grade Rails development, including Ruby, RubyGems, Git. (Indeed, the only big piece of software we’ll install separately is Rails itself, and this is intentional (Section 1.2.2).)

Although you are welcome to develop your application locally, setting up a Rails development environment can be challenging, so I recommend the cloud IDE for most readers. For those who want to go the local route, try the steps from Learn Enough Dev Environment to Be Dangerous, and be prepared for a challenging exercise in technical sophistication (Box 1.1).

The cloud IDE includes the three essential components needed to develop web applications: a text editor, a filesystem navigator, and a command-line terminal (Figure 1.1). Among other features, the cloud IDE text editor supports the “Find in Files” global search that I consider essential to navigating any large Ruby or Rails project.6 Finally, even if you decide not to use the cloud IDE exclusively in real life (and I certainly recommend learning other tools as well), it provides an excellent introduction to the general capabilities of text editors and other development tools.

[image: images/figures/ide_anatomy_aws]
Figure 1.1: The anatomy of the cloud IDE.

Here are the steps for getting started with the cloud development environment:7

	Because Cloud9 is part of Amazon Web Services (AWS), if you already have an AWS account you can just sign in.8 To create a new Cloud9 workspace environment, go to the AWS console and type “Cloud9” in the search box.

	If you don’t already have an AWS account, you should sign up for a free account at AWS Cloud9.9 In order to prevent abuse, AWS requires a valid credit card for signup, but the workspace is 100% free (for a year as of this writing), and your card will not be charged. You might have to wait up to 24 hours for the account to be activated, but in my case it was ready in about ten minutes.

	Once you’ve successfully gotten to the Cloud9 administrative page (Figure 1.2), keep clicking on “Create environment” until you find yourself on a page that looks like Figure 1.3. Enter the information as shown there, then keep clicking the confirmation buttons until Cloud9 starts provisioning the IDE (Figure 1.4). You may run into a warning message about being a “root” user, which you can safely ignore at this early stage. (We’ll discuss the preferred but more complicated practice, called an Identity and Access Management (IAM) user, in Section 13.4.4.)

[image: images/figures/cloud9_page_aws]
Figure 1.2: The administrative page for Cloud9.

[image: images/figures/cloud9_name_environment]
Figure 1.3: Creating a new work environment at AWS Cloud9.

[image: images/figures/cloud9_ide_aws]
Figure 1.4: The default cloud IDE.

Because using two spaces for indentation is a near-universal convention in Ruby, I also recommend changing the editor to use two spaces instead of the default four. As shown in Figure 1.5, you can do this by clicking the gear icon in the upper right and then changing the “Soft Tabs” setting to 2. (Note that this takes effect immediately; you don’t need to click a “Save” button.)

[image: images/figures/cloud9_two_spaces_aws]
Figure 1.5: Setting Cloud9 to use two spaces for indentation.

Cloud IDE users will also want to take care to follow the Bitbucket (Section 1.4.3) and Heroku installation instructions (Section 1.5.1), which have changed since the time when Cloud9 was a standalone service.

Finally, advanced users who elect to follow the testing setup in Section 3.6 should also note that additional configuration may be necessary on the cloud IDE. See Section 3.6.2 for details.

1.2.2 Installing Rails

The development environment from Section 1.2.1 includes all the software we need to get started except for Rails itself. First, we’ll do a little preparation by adding configuration settings to prevent the time-consuming installation of local Ruby documentation, which needs to be done only once per system (definitely don’t worry about trying to understand this command):10

$ printf "install: --no-rdoc --no-ri\nupdate: --no-rdoc --no-ri\n" >> ~/.gemrc

To install Rails, we’ll use the gem command provided by the RubyGems package manager, which involves typing the command shown in Listing 1.1 into your command-line terminal. (If developing on your local system, this means using a regular terminal window; if using the cloud IDE, this means using the command-line area shown in Figure 1.1.)

Listing 1.1:

Installing Rails with a specific version number.

$ gem install rails -v 5.1.6

Here the -v flag ensures that the specified version of Rails gets installed, which is important for getting results consistent with this tutorial.

1.3 The first application

Following a long tradition in computer programming, our goal for the first application is to write a “hello, world” program. In particular, we will create a simple application that displays the string “hello, world!” on a web page, both on our development environment (Section 1.3.4) and on the live web (Section 1.5).

Virtually all Rails applications start the same way, by running the rails new command. This handy command creates a skeleton Rails application in a directory of your choice. To get started, users not using the Cloud9 IDE recommended in Section 1.2.1 should make a environment directory for your Rails projects if it doesn’t already exist (Listing 1.2) and then change into the directory. (Listing 1.2 uses the Unix commands cd and mkdir; see Box 1.3 if you are not already familiar with these commands.)

Listing 1.2:

Making an environment directory for Rails projects (unnecessary in the cloud).

$ cd # Change to the home directory.
$ mkdir environment # Make a environment directory.
$ cd environment/ # Change into the environment directory.

Box 1.3.

A crash course on the Unix command line

For readers coming from Windows or (to a lesser but still significant extent) macOS, the Unix command line may be unfamiliar. Luckily, if you are using the recommended cloud environment, you automatically have access to a Unix (Linux) command line running a standard shell command-line interface known as Bash.

The basic idea of the command line is simple: by issuing short commands, users can perform a large number of operations, such as creating directories (mkdir), moving and copying files (mv and cp), and navigating the filesystem by changing directories (cd). Although the command line may seem primitive to users mainly familiar with graphical user interfaces (GUIs), appearances are deceiving: the command line is one of the most powerful tools in the developer’s toolbox. Indeed, you will rarely see the desktop of an experienced developer without several open terminal windows running command-line shells.

The general subject is deep, but for the purposes of this tutorial we will need only a few of the most common Unix command-line commands, as summarized in Table 1.1. For a more thorough introduction to the Unix command line, see the first of the Learn Enough tutorials, Learn Enough Command Line to Be Dangerous.11

	Description
	Command
	Example

	list contents
	ls
	$ ls -l

	make directory
	mkdir <dirname>
	$ mkdir environment

	change directory
	cd <dirname>
	$ cd environment/

	cd one directory up
	
	$ cd ..

	cd to home directory
	
	$ cd ~ or just $ cd

	cd to path incl. home dir
	
	$ cd ~/environment/

	move file (rename)
	mv <source> <target>
	$ mv foo bar

	copy file
	cp <source> <target>
	$ cp foo bar

	remove file
	rm <file>
	$ rm foo

	remove empty directory
	rmdir <directory>
	$ rmdir environment/

	remove nonempty directory
	rm -rf <directory>
	$ rm -rf tmp/

	concatenate & display file contents
	cat <file>
	$ cat ~/.ssh/id_rsa.pub

Table 1.1: Some common Unix commands.

The next step on both local systems and the cloud IDE is to create the first application using the command in Listing 1.3. Note that Listing 1.3 explicitly includes the Rails version number as part of the command. This ensures that the same version of Rails we installed in Listing 1.1 is used to create the first application’s file structure. (If the command in Listing 1.3 returns an error like “Could not find 'railties'”, it means you don’t have the right version of Rails installed, and you should double-check that you followed the command in Listing 1.1 exactly as written.)

Listing 1.3:

Running rails new (with a specific version number).

$ cd ~/environment
$ rails _5.1.6_ new hello_app
 create
 create README.md
 create Rakefile
 create config.ru
 create .gitignore
 create Gemfile
 create app
 create app/assets/config/manifest.js
 create app/assets/javascripts/application.js
 create app/assets/javascripts/cable.js
 create app/assets/stylesheets/application.css
 create app/channels/application_cable/channel.rb
 create app/channels/application_cable/connection.rb
 create app/controllers/application_controller.rb
 .
 .
 .
 create tmp/cache/assets
 create vendor/assets/javascripts
 create vendor/assets/javascripts/.keep
 create vendor/assets/stylesheets
 create vendor/assets/stylesheets/.keep
 remove config/initializers/cors.rb
 run bundle install
Fetching gem metadata from https://rubygems.org/..........
Fetching additional metadata from https://rubygems.org/..
Resolving dependencies...
Installing rake 11.1.2
Using concurrent-ruby 1.0.2
.
.
.
Your bundle is complete!
Use `bundle show [gemname]` to see where a bundled gem is installed.
 run bundle exec spring binstub --all
* bin/rake: spring inserted
* bin/rails: spring inserted

As seen at the end of Listing 1.3, running rails new automatically runs the bundle install command after the file creation is done. We’ll discuss what this means in more detail starting in Section 1.3.1.

Notice how many files and directories the rails command creates. This standard directory and file structure (Figure 1.6) is one of the many advantages of Rails: it immediately gets you from zero to a functional (if minimal) application. Moreover, since the structure is common to all Rails apps, you can immediately get your bearings when looking at someone else’s code.

A summary of the default Rails files appears in Table 1.2. We’ll learn about most of these files and directories throughout the rest of this book. In particular, starting in Section 5.2.1 we’ll discuss the app/assets directory, part of the asset pipeline that makes it easy to organize and deploy assets such as cascading style sheets and JavaScript files.

[image: images/figures/directory_structure_rails_4th_edition]
Figure 1.6: The directory structure for a newly created Rails app.

	File/Directory
	Purpose

	app/
	Core application (app) code, including models, views, controllers, and helpers

	app/assets
	Applications assets such as cascading style sheets (CSS), JavaScript files, and images

	bin/
	Binary executable files

	config/
	Application configuration

	db/
	Database files

	doc/
	Documentation for the application

	lib/
	Library modules

	lib/assets
	Library assets such as cascading style sheets (CSS), JavaScript files, and images

	log/
	Application log files

	public/
	Data accessible to the public (e.g., via web browsers), such as error pages

	bin/rails
	A program for generating code, opening console sessions, or starting a local server

	test/
	Application tests

	tmp/
	Temporary files

	vendor/
	Third-party code such as plugins and gems

	vendor/assets
	Third-party assets such as cascading style sheets (CSS), JavaScript files, and images

	README.md
	A brief description of the application

	Rakefile
	Utility tasks available via the rake command

	Gemfile
	Gem requirements for this app

	Gemfile.lock
	A list of gems used to ensure that all copies of the app use the same gem versions

	config.ru
	A configuration file for Rack middleware

	.gitignore
	Patterns for files that should be ignored by Git

Table 1.2: A summary of the default Rails directory structure.

1.3.1 Bundler

After creating a new Rails application, the next step is to use Bundler to install and include the gems needed by the app. As noted briefly in Section 1.3, Bundler is run automatically (via bundle install) by the rails command, but in this section we’ll make some changes to the default application gems and run Bundler again. This involves opening the Gemfile with a text editor. (With the cloud IDE, this involves clicking the arrow in the file navigator to open the sample app directory and double-clicking the Gemfile icon.) Although the exact version numbers and details may differ slightly, the results should look something like Figure 1.7 and Listing 1.4. (The code in this file is Ruby, but don’t worry at this point about the syntax; Chapter 4 will cover Ruby in more depth.) If the files and directories don’t appear as shown in Figure 1.7, click on the file navigator’s gear icon and select “Refresh File Tree”. (As a general rule, you should refresh the file tree any time files or directories don’t appear as expected.)12

[image: images/figures/cloud9_gemfile_aws]
Figure 1.7: The default Gemfile open in a text editor.

Listing 1.4:

The default Gemfile in the hello_app directory.

source 'https://rubygems.org'

git_source(:github) do |repo_name|
 repo_name = "#{repo_name}/#{repo_name}" unless repo_name.include?("/")
 "https://github.com/#{repo_name}.git"
end

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'
gem 'rails', '~> 5.1.6'
Use sqlite3 as the database for Active Record
gem 'sqlite3'
Use Puma as the app server
gem 'puma', '~> 3.7'
Use SCSS for stylesheets
gem 'sass-rails', '~> 5.0'
Use Uglifier as compressor for JavaScript assets
gem 'uglifier', '>= 1.3.0'
See https://github.com/rails/execjs#readme for more supported runtimes
gem 'therubyracer', platforms: :ruby

Use CoffeeScript for .coffee assets and views
gem 'coffee-rails', '~> 4.2'
Turbolinks makes navigating your web application faster.
Read more: https://github.com/turbolinks/turbolinks
gem 'turbolinks', '~> 5'
Build JSON APIs with ease. Read more: https://github.com/rails/jbuilder
gem 'jbuilder', '~> 2.5'
Use Redis adapter to run Action Cable in production
gem 'redis', '~> 3.0'
Use ActiveModel has_secure_password
gem 'bcrypt', '~> 3.1.7'

Use Capistrano for deployment
gem 'capistrano-rails', group: :development

group :development, :test do
 # Call 'byebug' anywhere in the code to stop execution and get a debugger console
 gem 'byebug', platforms: [:mri, :mingw, :x64_mingw]
 # Adds support for Capybara system testing and selenium driver
 gem 'capybara', '~> 2.13'
 gem 'selenium-webdriver'
end

group :development do
 # Access an IRB console on exception pages or by using <%= console %>
 # anywhere in the code.
 gem 'web-console', '>= 3.3.0'
 gem 'listen', '>= 3.0.5', '< 3.2'
 # Spring speeds up development by keeping your application running
 # in the background. Read more: https://github.com/rails/spring
 gem 'spring'
 gem 'spring-watcher-listen', '~> 2.0.0'
end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem
gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

Many of these lines are commented out with the hash symbol # (Section 4.2.1); they are there to show you some commonly needed gems and to give examples of the Bundler syntax. For now, we won’t need any gems other than the defaults.

Unless you specify a version number to the gem command, Bundler will automatically install the latest requested version of the gem. This is the case, for example, in the code

gem 'sqlite3'

There are also two common ways to specify a gem version range, which allows us to exert some control over the version used by Rails. The first looks like this:

gem 'uglifier', '>= 1.3.0'

This installs the latest version of the uglifier gem (which handles file compression for the asset pipeline) as long as it’s greater than or equal to version 1.3.0—even if it’s, say, version 7.2. The second method looks like this:

gem 'coffee-rails', '~> 4.0.0'

This installs the gem coffee-rails as long as it’s version 4.0.0 or newer but not 4.1 or newer. In other words, the >= notation always installs the latest gem, whereas the ~> 4.0.0 notation will install 4.0.1 (if available) but not 4.1.0.13 Unfortunately, experience shows that even minor point releases can break the application, so for the Ruby on Rails Tutorial we’ll err on the side of caution by including exact version numbers for all gems. You are welcome to use the most up-to-date version of any gem, including using the ~> construction in the Gemfile (which I generally recommend for more advanced users), but be warned that this may cause the tutorial to act unpredictably.

Converting the Gemfile in Listing 1.4 to use exact gem versions results in the code shown in Listing 1.5. (You can determine the exact version number for each gem by running gem list <gem name> at the command line, but Listing 1.5 saves you the trouble.) Note that we’ve also taken this opportunity to arrange for the sqlite3 gem to be included only in a development or test environment (Section 7.1.1), which prevents potential conflicts with the database used by Heroku (Section 1.5). Important note: For all the Gemfiles in this book, you should use the version numbers listed at gemfiles-4th-ed.railstutorial.org instead of the ones listed below (although they should be identical if you are reading this online).

Listing 1.5:

A Gemfile with an explicit version for each Ruby gem.

source 'https://rubygems.org'

gem 'rails', '5.1.6'
gem 'puma', '3.9.1'
gem 'sass-rails', '5.0.6'
gem 'uglifier', '3.2.0'
gem 'coffee-rails', '4.2.2'
gem 'jquery-rails', '4.3.1'
gem 'turbolinks', '5.0.1'
gem 'jbuilder', '2.7.0'

group :development, :test do
 gem 'sqlite3', '1.3.13'
 gem 'byebug', '9.0.6', platform: :mri
end

group :development do
 gem 'web-console', '3.5.1'
 gem 'listen', '3.1.5'
 gem 'spring', '2.0.2'
 gem 'spring-watcher-listen', '2.0.1'
end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem
gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

Once you’ve placed the contents of Listing 1.5 into the application’s Gemfile, install the gems using bundle install:14

$ cd hello_app/
$ bundle install
Fetching source index for https://rubygems.org/
.
.
.

The bundle install command might take a few moments, but when it’s done our application will be ready to run.

By the way, when you run bundle install it’s possible that you’ll get a message saying you need to run bundle update first. In this case you should… run bundle update first. (Learning not to panic when things don’t go exactly as planned is a key part of technical sophistication, and you’ll be amazed at how often the “error” message contains the exact instructions you need to fix the problem at hand.)

1.3.2 rails server

Thanks to running rails new in Section 1.3 and bundle install in Section 1.3.1, we already have an application we can run—but how? Happily, Rails comes with a command-line program, or script, that runs a local webserver to assist us in developing our application: rails server (Listing 1.6).

Listing 1.6:

Running the Rails server.

$ cd ~/environment/hello_app/
$ rails server
=> Booting Puma
=> Rails application starting on http://localhost:3000
=> Run `rails server -h` for more startup options
=> Ctrl-C to shutdown server

If your system complains about the lack of a JavaScript runtime, visit the execjs page at GitHub for a list of possibilities. I particularly recommend installing Node.js.

I recommend running the rails server command in a second terminal tab so that you can still issue commands in the first tab, as shown in Figure 1.8 and Figure 1.9. (If you already started a server in your first tab, press Ctrl-C to shut it down.)15 On a local server, paste the URL http://localhost:3000 into the address bar of your browser; on the cloud IDE, go to Preview and click on Preview Running Application (Figure 1.10), and then open it in a full browser window or tab (Figure 1.11). In either case, the result should look something like Figure 1.12.

[image: images/figures/new_terminal_tab_aws]
Figure 1.8: Opening a new terminal tab.

[image: images/figures/rails_server_new_tab_aws]
Figure 1.9: Running the Rails server in a separate tab.

[image: images/figures/share_workspace_aws]
Figure 1.10: Sharing the local server running on the cloud workspace.

[image: images/figures/full_browser_window_aws]
Figure 1.11: Opening the running app in a full browser window or tab.

[image: images/figures/riding_rails_4th_edition_aws]
Figure 1.12: The default Rails page served by rails server.

Exercises

Solutions to exercises are available for free with any Rails Tutorial purchase. To see other people’s answers and to record your own, join the Learn Enough Society at learnenough.com/society.

	According to the default Rails page, what is the version of Ruby on your system? Confirm by running ruby -v at the command line.

	What is the version of Rails? Confirm that it matches the version installed in Listing 1.1.

1.3.3 Model-View-Controller (MVC)

Even at this early stage, it’s helpful to get a high-level overview of how Rails applications work, as illustrated in Figure 1.13. You might have noticed that the standard Rails application structure (Figure 1.6) has an application directory called app/, which includes subdirectories called models, views, and controllers (among others). This is a hint that Rails follows the model-view-controller (MVC) architectural pattern, which enforces a separation between the data in the application (such as user information) and the code used to display it, which is a common way of structuring a graphical user interface (GUI).

When interacting with a Rails application, a browser sends a request, which is received by a webserver and passed on to a Rails controller, which is in charge of what to do next. In some cases, the controller will immediately render a view, which is a template that gets converted to HTML and sent back to the browser. More commonly for dynamic sites, the controller interacts with a model, which is a Ruby object that represents an element of the site (such as a user) and is in charge of communicating with the database. After invoking the model, the controller then renders the view and returns the complete web page to the browser as HTML.

[image: mvc_schematic]
Figure 1.13: A schematic representation of the model-view-controller (MVC) architecture.

If this discussion seems a bit abstract right now, don’t worry; we’ll cover these ideas in more detail later in this book. In particular, Section 1.3.4 shows a first tentative application of MVC, while Section 2.2.2 includes a more detailed discussion of MVC in the context of the toy app. Finally, the full sample app will use all aspects of MVC: we’ll cover controllers and views starting in Section 3.2, models starting in Section 6.1, and we’ll see all three working together in Section 7.1.2.

1.3.4 Hello, world!

As a first application of the MVC framework, we’ll make a wafer-thin change to the first app by adding a controller action to render the string “hello, world!” to replace the default Rails page from Figure 1.12. (We’ll learn more about controller actions starting in Section 2.2.2.)

As implied by their name, controller actions are defined inside controllers. We’ll call our action hello and place it in the Application controller. Indeed, at this point the Application controller is the only controller we have, which you can verify by running

$ ls app/controllers/*_controller.rb

to view the current controllers. (We’ll start creating our own controllers in Chapter 2.) Listing 1.7 shows the resulting definition of hello, which uses the render function to return the HTML text “hello, world!”. (Don’t worry about the Ruby syntax right now; it will be covered in more depth in Chapter 4.)

Listing 1.7:

Adding a hello action to the Application controller. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
 protect_from_forgery with: :exception

 def hello
 render html: "hello, world!"
 end
end

Having defined an action that returns the desired string, we need to tell Rails to use that action instead of the default page in Figure 1.12. To do this, we’ll edit the Rails router, which sits in front of the controller in Figure 1.13 and determines where to send requests that come in from the browser. (I’ve omitted the router from Figure 1.13 for simplicity, but we’ll discuss it in more detail starting in Section 2.2.2.) In particular, we want to change the default page, the root route, which determines the page that is served on the root URL. Because it’s the URL for an address like http://www.example.com/ (where nothing comes after the final forward slash), the root URL is often referred to as / (“slash”) for short.

As seen in Listing 1.8, the Rails routes file (config/routes.rb) includes a comment directing us to the Rails Guide on Routing, which includes instructions on how to define the root route. The syntax looks like this:

root 'controller_name#action_name'

In the present case, the controller name is application and the action name is hello, which results in the code shown in Listing 1.9.

Listing 1.8:

The default routing file (formatted to fit). config/routes.rb

Rails.application.routes.draw do
 # For details on the DSL available within this file,
 # see http://guides.rubyonrails.org/routing.html
end

Listing 1.9:

Setting the root route. config/routes.rb

Rails.application.routes.draw do
 root 'application#hello'
end

With the code from Listing 1.7 and Listing 1.9, the root route returns “hello, world!” as required (Figure 1.14).16 Hello, world!

[image: images/figures/hello_world_hello_app]
Figure 1.14: Viewing “hello, world!” in the browser.

Exercises

Solutions to exercises are available for free with any Rails Tutorial purchase. To see other people’s answers and to record your own, join the Learn Enough Society at learnenough.com/society.

	Change the content of the hello action in Listing 1.7 to read “hola, mundo!” instead of “hello, world!”.

	Show that Rails supports non-ASCII characters by including an inverted exclamation point, as in “¡Hola, mundo!” (Figure 1.15).17 To get a ¡ character on a Mac, you can use Option-1; otherwise, you can always copy-and-paste the character into your editor.

	By following the example of the hello action in Listing 1.7, add a second action called goodbye that renders the text “goodbye, world!”. Edit the routes file from Listing 1.9 so that the root route goes to goodbye instead of to hello (Figure 1.16).

[image: images/figures/hola_mundo]
Figure 1.15: Changing the root route to return “¡Hola, mundo!”.

[image: images/figures/goodbye_world]
Figure 1.16: Changing the root route to return “goodbye, world!”.

1.4 Version control with Git

Now that we have a working “hello, world” application, we’ll take a moment for a step that, while technically optional, would be viewed by experienced software developers as practically essential: placing our application source code under version control. Version control systems allow us to track changes to our project’s code, collaborate more easily, and roll back any inadvertent errors (such as accidentally deleting files). Knowing how to use a version control system is a required skill for every professional-grade software developer.

There are many options for version control, but the Rails community has largely standardized on Git, a distributed version control system originally developed by Linus Torvalds to host the Linux kernel. Git is a large subject, and we’ll only be scratching the surface in this book; for a more thorough introduction, see Learn Enough Git to Be Dangerous.18

Putting your source code under version control with Git is strongly recommended, not only because it’s nearly a universal practice in the Rails world, but also because it will allow you to back up and share your code more easily (Section 1.4.3) and deploy your application right here in the first chapter (Section 1.5).

1.4.1 Installation and setup

The cloud IDE recommended in Section 1.2.1 includes Git by default, so no installation is necessary in this case. Otherwise, Learn Enough Git to Be Dangerous includes instructions for installing Git on your system.

First-time system setup

Before using Git, you should perform a couple of one-time setup steps. These are system setups, meaning you only have to do them once per computer:

$ git config --global user.name "Your Name"
$ git config --global user.email your.email@example.com

Note that the name and email address you use in your Git configuration will be available in any repositories you make public.

First-time repository setup

Now we come to some steps that are necessary each time you create a new repository (sometimes called a repo for short). The first step is to navigate to the root directory of the first app and initialize a new repository:

$ git init
Initialized empty Git repository in
/home/ec2-user/environment/environment/hello_app/.git/

The next step is to add all the project files to the repository using git add -A:

$ git add -A

This command adds all the files in the current directory apart from those that match the patterns in a special file called .gitignore. The rails new command automatically generates a .gitignore file appropriate to a Rails project, but you can add additional patterns as well.19

The added files are initially placed in a staging area, which contains pending changes to our project. We can see which files are in the staging area using the status command:

$ git status
On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: .gitignore
 new file: Gemfile
 new file: Gemfile.lock
 new file: README.md
 new file: Rakefile
 .
 .
 .

To tell Git we want to keep the changes, we use the commit command:

$ git commit -m "Initialize repository"
[master (root-commit) df0a62f] Initialize repository
.
.
.

The -m flag lets us add a message for the commit; if we omit -m, Git will open the system’s default editor and have us enter the message there. (All the examples in this book will use the -m flag.)

It is important to note that Git commits are local, recorded only on the machine on which the commits occur. We’ll see how to push the changes up to a remote repository (using git push) in Section 1.4.4.

By the way, we can see a list of the commit messages using the log command:

$ git log
commit af72946fbebc15903b2770f92fae9081243dd1a1
Author: Michael Hartl <michael@michaelhartl.com>
Date: Thu May 12 19:25:07 2016 +0000

 Initialize repository

Depending on the length of the repository’s log history, you may have to type q to quit. (As explained in Learn Enough Git to Be Dangerous, git log uses the less interface covered in Learn Enough Command Line to Be Dangerous.)

1.4.2 What good does Git do you?

If you’ve never used version control before, it may not be entirely clear at this point what good it does you, so let me give just one example. Suppose you’ve made some accidental changes, such as (D’oh!) deleting the critical app/controllers/ directory.

$ ls app/controllers/
application_controller.rb concerns/
$ rm -rf app/controllers/
$ ls app/controllers/
ls: app/controllers/: No such file or directory

Here we’re using the Unix ls command to list the contents of the app/controllers/ directory and the rm command to remove it (Table 1.1). As noted in Learn Enough Command Line to Be Dangerous, the -rf flag means “recursive force”, which recursively removes all files, directories, subdirectories, and so on, without asking for explicit confirmation of each deletion.

Let’s check the status to see what changed:

$ git status
On branch master
Changed but not updated:
 (use "git add/rm <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 deleted: app/controllers/application_controller.rb

no changes added to commit (use "git add" and/or "git commit -a")

We see here that a file has been deleted, but the changes are only on the “working tree”; they haven’t been committed yet. This means we can still undo the changes using the checkout command with the -f flag to force overwriting the current changes:

$ git checkout -f
$ git status
On branch master
nothing to commit (working directory clean)
$ ls app/controllers/
application_controller.rb concerns/

The missing files and directories are back. That’s a relief!

1.4.3 Bitbucket

Now that we’ve put our project under version control with Git, it’s time to push our code up to Bitbucket, a site optimized for hosting and sharing Git repositories. (Learn Enough Git to Be Dangerous uses GitHub, but see Box 1.4 to learn the reasons why this tutorial uses Bitbucket instead.) Putting a copy of your Git repository at Bitbucket serves two purposes: it’s a full backup of your code (including the full history of commits), and it makes any future collaboration much easier.

Box 1.4.

GitHub and Bitbucket

By far the two most popular sites for hosting Git repositories are GitHub and Bitbucket. The two services share many similarities: both sites allow for Git repository hosting and collaboration, as well as offering convenient ways to browse and search repositories. The important differences (from the perspective of this tutorial) are that GitHub offers unlimited free repositories (with collaboration) for open-source repositories while charging for private repos, whereas Bitbucket allows unlimited free private repos while charging for more than a certain number of collaborators. Which service you use for a particular repo thus depends on your specific needs.

Learn Enough Git to Be Dangerous (and some previous editions of this tutorial) use GitHub because of its emphasis on supporting open-source code, but growing concerns about security have led me to recommend that all web application repositories be private by default. The issue is that such repositories might contain potentially sensitive information such as cryptographic keys or passwords, which could be used to compromise the security of a site running the code. It is possible, of course, to arrange for this information to be handled securely (by having Git ignore it, for example), but this is error-prone and requires significant expertise.

As it happens, the sample application created in this tutorial is safe for exposure on the web, but it is dangerous to rely on this fact in general. Thus, to be as secure as possible, we will err on the side of caution and use private repositories by default. Since GitHub charges for private repositories while Bitbucket offers an unlimited number for free, for our present purposes Bitbucket is a better fit than GitHub.

(By the way, recently a third major Git hosting company has emerged, called GitLab. Originally designed principally as an open-source Git tool you hosted yourself, GitLab now offers a hosted version as well, and in fact allows for unlimited public and private repositories. This makes GitLab an excellent alternative to GitHub or Bitbucket for future projects.)

UPDATE: GitHub announced in early 2019 that it will be offering unlimited free private repositories (with a limit only on the number of collaborators). Future editions of this tutorial may switch back to GitHub as a result.

Getting started with Bitbucket is straightforward, though it may take a little technical sophistication (Box 1.1) to get everything to work just right:

	Sign up for a Bitbucket account if you don’t already have one.

	Copy your public key to your clipboard. As indicated in Listing 1.10, users of the cloud IDE might be able to view their public key using the cat command, which can then be selected and copied. If you see no output or get an error on this step, follow the instructions on how to install a public key on your Bitbucket account, and then re-run the command in Listing 1.10.

	Add your public key to Bitbucket by clicking on the avatar image in the upper right and selecting “Bitbucket settings” and then “SSH keys” (Figure 1.17).

Listing 1.10:

Printing the public key using cat.

$ cat ~/.ssh/id_rsa.pub

[image: images/figures/add_public_key]
Figure 1.17: Adding the SSH public key.

Once you’ve added your public key, click on “Create” to create a new repository, as shown in Figure 1.18. When filling in the information for the project, take care to leave the box next to “This is a private repository.” checked. (If there’s an option to create a README file, select “No”.) After clicking “Create repository”, follow the instructions for connecting your existing repository to Bitbucket (Figure 1.19), which has code like that shown in Listing 1.11. (If it doesn’t look like Listing 1.11, it might be because the public key didn’t get added correctly, in which case I suggest trying that step again.) When pushing up the repository, answer yes if you see the question “Are you sure you want to continue connecting (yes/no)?”

[image: images/figures/create_first_repository_bitbucket_4th_ed]
Figure 1.18: Creating the first app repository at Bitbucket.

[image: images/figures/add_repository]
Figure 1.19: Code for adding an existing repository.

Listing 1.11:

Adding Bitbucket and pushing up the repository.

$ git remote add origin git@bitbucket.org:<username>/hello_app.git
$ git push -u origin master

The commands in Listing 1.11 first tell Git that you want to add Bitbucket as the origin for your repository, and then push your repository up to the remote origin. (Don’t worry about what the -u flag does; if you’re curious, do a web search for “git set upstream”.) Of course, you should replace <username> with your actual username. For example, the command I ran was

$ git remote add origin git@bitbucket.org:railstutorial/hello_app.git

The result is a page at Bitbucket for the hello_app repository, with file browsing, full commit history, and lots of other goodies (Figure 1.20).20

[image: images/figures/bitbucket_repository_page_4th_ed]
Figure 1.20: A Bitbucket repository page.

1.4.4 Branch, edit, commit, merge

If you’ve followed the steps in Section 1.4.3, you might notice that Bitbucket automatically rendered the repository’s README file, as shown in Figure 1.20. This file, called README.md, was generated automatically by the command in Listing 1.3. As indicated by the filename extension .md, it is written in Markdown,21 a human-readable markup language designed to be easy to convert to HTML—which is exactly what Bitbucket has done.

This automatic rendering of the README is convenient, but of course it would be better if we tailored the contents of the file to the project at hand. In this section, we’ll customize the README by adding some Rails Tutorial–specific content. In the process, we’ll see a first example of the branch, edit, commit, merge workflow that I recommend using with Git.22

[image: images/figures/bitbucket_default_readme]
Figure 1.21: Bitbucket’s rendering of the default Rails README.

Branch

Git is incredibly good at making branches, which are effectively copies of a repository where we can make (possibly experimental) changes without modifying the parent files. In most cases, the parent repository is the master branch, and we can create a new topic branch by using checkout with the -b flag:

$ git checkout -b modify-README
Switched to a new branch 'modify-README'
$ git branch
 master
* modify-README

Here the second command, git branch, just lists all the local branches, and the asterisk * identifies which branch we’re currently on. Note that git checkout -b modify-README both creates a new branch and switches to it, as indicated by the asterisk in front of the modify-README branch.

The full value of branching only becomes clear when working on a project with multiple developers,23 but branches are helpful even for a single-developer tutorial such as this one. In particular, because the master branch is insulated from any changes we make to the topic branch, even if we really mess things up we can always abandon the changes by checking out the master branch and deleting the topic branch. We’ll see how to do this at the end of the section.

By the way, for a change as small as this one I wouldn’t normally bother with a new branch (opting instead to work directly on the master branch), but in the present context it’s a prime opportunity to start practicing good habits.

Edit

After creating the topic branch, we’ll edit the README to add custom content, as shown in Listing 1.12.

Listing 1.12:

The new README file. README.md

Ruby on Rails Tutorial

"hello, world!"

This is the first application for the
[*Ruby on Rails Tutorial*](https://www.railstutorial.org/)
by [Michael Hartl](https://www.michaelhartl.com/). Hello, world!

Commit

With the changes made, we can take a look at the status of our branch:

$ git status
On branch modify-README
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

At this point, we could use git add -A as in Section 1.4.1.2, but git commit provides the -a flag as a shortcut for the (very common) case of committing all modifications to existing files:

$ git commit -a -m "Improve the README file"
[modify-README 9dc4f64] Improve the README file
 1 file changed, 5 insertions(+), 22 deletions(-)

Be careful about using the -a flag improperly; if you have added any new files to the project since the last commit, you still have to tell Git about them using git add -A first.

Note that we write the commit message in the present tense (and, technically speaking, the imperative mood). Git models commits as a series of patches, and in this context it makes sense to describe what each commit does, rather than what it did. Moreover, this usage matches up with the commit messages generated by Git commands themselves. See Committing to Git from Learn Enough Git to Be Dangerous for more information.

Merge

Now that we’ve finished making our changes, we’re ready to merge the results back into our master branch:

$ git checkout master
Switched to branch 'master'
$ git merge modify-README
Updating af72946..9dc4f64
Fast-forward
 README.md | 27 +++++----------------------
 1 file changed, 5 insertions(+), 22 deletions(-)

Note that the Git output frequently includes things like 34f06b7, which are related to Git’s internal representation of repositories. Your exact results will differ in these details, but otherwise should essentially match the output shown above.

After you’ve merged in the changes, you can tidy up your branches by deleting the topic branch using git branch -d if you’re done with it:

$ git branch -d modify-README
Deleted branch modify-README (was 9dc4f64).

This step is optional, and in fact it’s quite common to leave the topic branch intact. This way you can switch back and forth between the topic and master branches, merging in changes every time you reach a natural stopping point.

As mentioned above, it’s also possible to abandon your topic branch changes, in this case with git branch -D:

For illustration only; don't do this unless you mess up a branch
$ git checkout -b topic-branch
$ <really mess up the branch>
$ git add -A
$ git commit -a -m "Make major mistake"
$ git checkout master
$ git branch -D topic-branch

Unlike the -d flag, the -D flag will delete the branch even though we haven’t merged in the changes.

Push

Now that we’ve updated the README, we can push the changes up to Bitbucket to see the result. Since we have already done one push (Section 1.4.3), on most systems we can omit origin master, and simply run git push:

$ git push

As with the default README, Bitbucket nicely converts the Markdown in our updated README to HTML (Figure 1.22).

[image: images/figures/new_readme_bitbucket_4th_ed]
Figure 1.22: The improved README file at Bitbucket.

1.5 Deploying

Even though this is only the first chapter, we’re already going to deploy our (nearly empty) Rails application to production. This step is optional, but deploying early and often allows us to catch any deployment problems early in our development cycle. The alternative—deploying only after laborious effort sealed away in a development environment—often leads to terrible integration headaches when launch time comes.24

Deploying Rails applications used to be a pain, but the Rails deployment ecosystem has matured rapidly in the past few years, and now there are several great options. These include shared hosts or virtual private servers running Phusion Passenger (a module for the Apache and Nginx25 webservers), full-service deployment companies such as Engine Yard and Rails Machine, and cloud deployment services such as Engine Yard Cloud and Heroku.

My favorite Rails deployment option is Heroku, which is a hosted platform built specifically for deploying Rails and other web applications. Heroku makes deploying Rails applications ridiculously easy—as long as your source code is under version control with Git. (This is yet another reason to follow the Git setup steps in Section 1.4 if you haven’t already.) In addition, for many purposes, including for this tutorial, Heroku’s free tier is more than sufficient.

The rest of this section is dedicated to deploying our first application to Heroku. Some of the ideas are fairly advanced, so don’t worry about understanding all the details; what’s important is that by the end of the process we’ll have deployed our application to the live web.

1.5.1 Heroku setup

Heroku uses the PostgreSQL database (pronounced “post-gres-cue-ell”, and often called “Postgres” for short), which means that we need to add the pg gem in the production environment to allow Rails to talk to Postgres:

group :production do
 gem 'pg', '0.20.0'
end

Also be sure to incorporate the changes made in Listing 1.5 preventing the sqlite3 gem from being included in a production environment, since the SQLite database isn’t supported at Heroku:26

group :development, :test do
 gem 'sqlite3', '1.3.13'
 gem 'byebug', '9.0.6', platform: :mri
end

The resulting Gemfile appears as in Listing 1.13.

Listing 1.13:

A Gemfile with added and rearranged gems.

source 'https://rubygems.org'

gem 'rails', '5.1.6'
gem 'puma', '3.9.1'
gem 'sass-rails', '5.0.6'
gem 'uglifier', '3.2.0'
gem 'coffee-rails', '4.2.2'
gem 'jquery-rails', '4.3.1'
gem 'turbolinks', '5.0.1'
gem 'jbuilder', '2.7.0'

group :development, :test do
 gem 'sqlite3', '1.3.13'
 gem 'byebug', '9.0.6', platform: :mri
end

group :development do
 gem 'web-console', '3.5.1'
 gem 'listen', '3.1.5'
 gem 'spring', '2.0.2'
 gem 'spring-watcher-listen', '2.0.1'
end

group :production do
 gem 'pg', '0.20.0'
end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem
gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

To prepare the system for deployment to production, we run bundle install with a special flag to prevent the local installation of any production gems (which in this case consists of the pg gem), as shown in Listing 1.14.

Listing 1.14:

Bundling without production gems.

$ bundle install --without production

Because the only gem added in Listing 1.13 is restricted to a production environment, right now the command in Listing 1.14 doesn’t actually install any additional local gems, but it’s needed to update Gemfile.lock with the pg gem. We can commit the resulting change as follows:

$ git commit -a -m "Update Gemfile for Heroku"

Next we have to create and configure a new Heroku account. The first step is to sign up for Heroku. Then check to see if your system already has the Heroku command-line client installed:

$ heroku --version

This will display the current version number if the heroku command-line interface (CLI) is available, but on most systems it will be necessary to install the Heroku CLI by hand.27 In particular, if you’re working on the cloud IDE, you can install Heroku using the command shown in Listing 1.15. (This command is rather advanced, so don’t worry about the details.)

Listing 1.15:

The command to install Heroku on the cloud IDE.

$ source <(curl -sL https://cdn.learnenough.com/heroku_install)

After running the command in Listing 1.15, you should now be able to verify the installation by displaying the current version number (details may vary):

$ heroku --version
heroku-cli/6.15.5 (linux-x64) node-v9.2.1

Once you’ve verified that the Heroku command-line interface is installed, use the heroku command to log in and add your SSH key:

$ heroku login
$ heroku keys:add

Finally, use the heroku create command to create a place on the Heroku servers for the sample app to live (Listing 1.16).

Listing 1.16:

Creating a new application at Heroku.

$ heroku create
Creating app... done, fathomless-beyond-39164
https://damp-fortress-5769.herokuapp.com/ |
https://git.heroku.com/damp-fortress-5769.git

The heroku command creates a new subdomain just for our application, available for immediate viewing. There’s nothing there yet, though, so let’s get busy deploying.

1.5.2 Heroku deployment, step one

To deploy the application, the first step is to use Git to push the master branch up to Heroku:

$ git push -u heroku master

(You may see some warning messages, which you should ignore for now. We’ll discuss them further in Section 7.5.)

Note: There have been reports of issues with Bundler version 2.0.1, so if you run into problems with deployment you might try this:

$ gem install bundler -v 2.0.2

Then install and redeploy:

$ bundle install
$ git commit -am "Update Bundler"
$ git push -u heroku master

1.5.3 Heroku deployment, step two

There is no step two! We’re already done. To see your newly deployed application, visit the address that you saw when you ran heroku create (i.e., Listing 1.16). (If you’re working on your local machine instead of the cloud IDE, you can also use heroku open.) The result appears in Figure 1.23. The page is identical to Figure 1.14, but now it’s running in a production environment on the live web.

[image: images/figures/heroku_app_hello_world]
Figure 1.23: The first Rails Tutorial application running on Heroku.

Exercises

Solutions to exercises are available for free with any Rails Tutorial purchase. To see other people’s answers and to record your own, join the Learn Enough Society at learnenough.com/society.

	By making the same change as in Section 1.3.4.1, arrange for your production app to display “hola, mundo!”.

	As in Section 1.3.4.1, arrange for the root route to display the result of the goodbye action. When deploying, confirm that you can omit master in the Git push, as in git push heroku.

1.5.4 Heroku commands

There are many Heroku commands, and we’ll barely scratch the surface in this book. Let’s take a minute to show just one of them by renaming the application as follows:

$ heroku rename rails-tutorial-hello

Don’t use this name yourself; it’s already taken by me! In fact, you probably shouldn’t bother with this step right now; using the default address supplied by Heroku is fine. But if you do want to rename your application, you can arrange for it to be reasonably secure by using a random or obscure subdomain, such as the following:

hwpcbmze.herokuapp.com
seyjhflo.herokuapp.com
jhyicevg.herokuapp.com

With a random subdomain like this, someone could visit your site only if you gave them the address.28 (By the way, as a preview of Ruby’s compact awesomeness, here’s the code I used to generate the random subdomains:

('a'..'z').to_a.shuffle[0..7].join

Pretty sweet.)29

In addition to supporting subdomains, Heroku also supports custom domains. (In fact, the Ruby on Rails Tutorial site lives at Heroku; if you’re reading this book online, you’re looking at a Heroku-hosted site right now!) See the Heroku documentation for more information about custom domains and other Heroku topics.

Exercises

Solutions to exercises are available for free with any Rails Tutorial purchase. To see other people’s answers and to record your own, join the Learn Enough Society at learnenough.com/society.

	Run heroku help to see a list of Heroku commands. What is the command to display logs for an app?

	Use the command identified in the previous exercise to inspect the activity on your application. What was the most recent event? (This command is often useful when debugging production apps.)

1.6 Conclusion

We’ve come a long way in this chapter: installation, development environment setup, version control, and deployment. In the next chapter, we’ll build on the foundation from Chapter 1 to make a database-backed toy app, which will give us our first real taste of what Rails can do.

If you’d like to share your progress at this point, feel free to send a tweet or Facebook status update with something like this:

I’m learning Ruby on Rails with the @railstutorial! https://www.railstutorial.org/

I also recommend signing up for the Rails Tutorial email list30, which will ensure that you receive priority updates (and exclusive coupon codes) regarding the Ruby on Rails Tutorial.

1.6.1 What we learned in this chapter

	Ruby on Rails is a web development framework written in the Ruby programming language.

	Installing Rails, generating an application, and editing the resulting files is easy using a pre-configured cloud environment.

	Rails comes with a command-line command called rails that can generate new applications (rails new) and run local servers (rails server).

	We added a controller action and modified the root route to create a “hello, world” application.

	We protected against data loss while enabling collaboration by placing our application source code under version control with Git and pushing the resulting code to a private repository at Bitbucket.

	We deployed our application to a production environment using Heroku.

 1. learnenough.com/story

 2. learnenough.com/command-line

 3. The most up-to-date version of the Ruby on Rails Tutorial can be found on the book’s website at https://www.railstutorial.org/. If you are reading this book offline, be sure to check the online version of the Rails Tutorial book at https://www.railstutorial.org/book for the latest updates.

 4. URI stands for Uniform Resource Identifier, while the slightly less general URL stands for Uniform Resource Locator. In practice, the URL is usually equivalent to “the thing you see in the address bar of your browser”.

 5. railstutorial.org/help

 6. For example, to find the definition of a function called foo, you can do a global search for “def foo”.

 7. Due to the constantly evolving nature of sites like AWS, details may vary; use your technical sophistication (Box 1.1) to resolve any discrepancies.

 8. https://aws.amazon.com/

 9. https://www.railstutorial.org/cloud9-signup

 10. If you’re curious, you can learn about more printf using man printf, as described in Learn Enough Command Line to Be Dangerous.

 11. learnenough.com/command-line

 12. This is a typical example of technical sophistication (Box 1.1).

 13. Similarly, ~> 4.0 would install version 4.9 of a gem but not 5.0. This is especially useful if the project in question uses semantic versioning (also called “semver”), which is a convention for numbering releases designed to minimize the chances of breaking software dependencies.

 14. As noted in Table 3.1, you can even leave off install, as the bundle command by itself is an alias for bundle install.

 15. Here “C” refers to the character on the keyboard, not the capital letter, so there’s no need to hold down the Shift key to get a capital “C”.

 16. The base URL for the Rails Tutorial Cloud9 shared URLs has changed from rails-tutorial-c9-mhartl.c9.io to one on Amazon Web Services, but in many cases the screenshots are identical, so the browser address bar will show old-style URLs in some figures (such as Figure 1.14). This is the sort of minor discrepancy you can resolve using your technical sophistication (Box 1.1).

 17. Your editor may display a message like “invalid multibyte character”, but this is not a cause for concern. You can Google the error message if you want to learn how to make it go away.

 18. learnenough.com/git

 19. Although we’ll never need to edit it in the main tutorial, an example of adding a rule to the .gitignore file appears in Section 3.6.2, which is part of the optional advanced testing setup in Section 3.6.

 20. Because of how my public keys are set up on Cloud9, I created the repository as railstutorial and then added my main account, mhartl, as a collaborator. As a result, I can make commits under either account name.

 21. See Learn Enough Text Editor to Be Dangerous and Learn Enough Git to Be Dangerous for more information about Markdown.

 22. For a convenient way to visualize Git repositories, take a look at Atlassian’s SourceTree app.

 23. See, for example, the section on Collaborating in Learn Enough Git to Be Dangerous.

 24. Though it shouldn’t matter for the example applications in the Rails Tutorial, if you’re worried about accidentally making your app public too soon there are several options; see Section 1.5.4 for one.

 25. Pronounced “Engine X”.

 26. SQLite is widely used as an embedded database—for instance, it’s ubiquitous in mobile phones—and Rails uses it locally by default because it’s so easy to set up, but it’s not designed for database-backed web applications, so we’ll be using PostgreSQL in production instead. See Section 3.1 for more information.

 27. toolbelt.heroku.com

 28. This solution, known as “security through obscurity”, is fine for hobby projects, but for sites that require greater initial security I recommend using Rails HTTP basic authentication. This is a much more advanced technique, though, and requires significantly more technical sophistication (Box 1.1) to implement. (Thanks to Alfie Pates for raising this issue.)

 29. As is often the case, this code can be made even more compact using a built-in part of Ruby, in this case something called sample: ('a'..'z').to_a.sample(8).join. Thanks to alert reader Stefan Pochmann for pointing this out—I didn’t even know about sample until he told me!

 30. railstutorial.org/email

 Chapter 2 A toy app

In this chapter, we’ll develop a toy demo application to show off some of the power of Rails. The purpose is to get a high-level overview of Ruby on Rails programming (and web development in general) by rapidly generating an application using scaffold generators, which create a large amount of functionality automatically. As discussed in Box 1.2, the rest of the book will take the opposite approach, developing a full sample application incrementally and explaining each new concept as it arises, but for a quick overview (and some instant gratification) there is no substitute for scaffolding. The resulting toy app will allow us to interact with it through its URLs, giving us insight into the structure of a Rails application, including a first example of the REST architecture favored by Rails.

As with the forthcoming sample application, the toy app will consist of users and their associated microposts (thus constituting a minimalist Twitter-style app). The functionality will be utterly under-developed, and many of the steps will seem like magic, but worry not: the full sample app will develop a similar application from the ground up starting in Chapter 3, and I will provide plentiful forward-references to later material. In the meantime, have patience and a little faith—the whole point of this tutorial is to take you beyond this superficial, scaffold-driven approach to achieve a deeper understanding of Rails.

2.1 Planning the application

In this section, we’ll outline our plans for the toy application. As in Section 1.3, we’ll start by generating the application skeleton using the rails new command with a specific Rails version number:

$ cd ~/environment
$ rails _5.1.6_ new toy_app
$ cd toy_app/

If you’re using the cloud IDE as recommended in Section 1.2.1, note that this second app can be created in the same workspace as the first. It is not necessary to create a new workspace. In order to get the files to appear, you may need to click the gear icon in the file navigator area and select “Refresh File Tree”.

Next, we’ll use a text editor to update the Gemfile needed by Bundler with the contents of Listing 2.1. Important note: For all the Gemfiles in this book, you should use the version numbers listed at gemfiles-4th-ed.railstutorial.org instead of the ones listed below (although they should be identical if you are reading this online).

Listing 2.1:

A Gemfile for the toy app.

source 'https://rubygems.org'

gem 'rails', '5.1.6'
gem 'puma', '3.9.1'
gem 'sass-rails', '5.0.6'
gem 'uglifier', '3.2.0'
gem 'coffee-rails', '4.2.2'
gem 'jquery-rails', '4.3.1'
gem 'turbolinks', '5.0.1'
gem 'jbuilder', '2.7.0'

group :development, :test do
 gem 'sqlite3', '1.3.13'
 gem 'byebug', '9.0.6', platform: :mri
end

group :development do
 gem 'web-console', '3.5.1'
 gem 'listen', '3.1.5'
 gem 'spring', '2.0.2'
 gem 'spring-watcher-listen', '2.0.1'
end

group :production do
 gem 'pg', '0.20.0'
end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem
gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

Note that Listing 2.1 is identical to Listing 1.13.

As in Section 1.5.1, we’ll install the local gems while suppressing the installation of production gems using the --without production option:

$ bundle install --without production

As noted in Section 1.3.1, you may need to run bundle update as well (Box 1.1).

Finally, we’ll put the toy app under version control with Git:

$ git init
$ git add -A
$ git commit -m "Initialize repository"

You should also create a new repository by clicking on the “Create” button at Bitbucket (Figure 2.1), and then push up to the remote repository:

$ git remote add origin git@bitbucket.org:<username>/toy_app.git
$ git push -u origin --all

[image: images/figures/create_demo_repo_bitbucket]
Figure 2.1: Creating the toy app repository at Bitbucket.

Finally, it’s never too early to deploy, which I suggest doing by following the same “hello, world!” steps from Section 1.3.4, as shown in Listing 2.2 and Listing 2.3.

Listing 2.2:

Adding a hello action to the Application controller. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
 protect_from_forgery with: :exception

 def hello
 render html: "hello, world!"
 end
end

Listing 2.3:

Setting the root route. config/routes.rb

Rails.application.routes.draw do
 root 'application#hello'
end

Then commit the changes and push up to Heroku:

$ git commit -am "Add hello"
$ heroku create
$ git push heroku master

(As in Section 1.5, you may see some warning messages, which you should ignore for now. We’ll deal with them in Section 7.5.) Apart from the URL of the Heroku app, the result should be the same as in Figure 1.23.

Now we’re ready to start making the app itself. The typical first step when making a web application is to create a data model, which is a representation of the structures needed by our application. In our case, the toy app will be a Twitter-style microblog, with only users and short (micro)posts. Thus, we’ll begin with a model for users of the app (Section 2.1.1), and then we’ll add a model for microposts (Section 2.1.2).

2.1.1 A toy model for users

There are as many choices for a user data model as there are different registration forms on the web; for simplicity, we’ll go with a distinctly minimalist approach. Users of our toy app will have a unique identifier called id (of type integer), a publicly viewable name (of type string), and an email address (also of type string) that will double as a unique username. A summary of the data model for users appears in Figure 2.2.

[image: demo_user_model]
Figure 2.2: The data model for users.

As we’ll see starting in Section 6.1.1, the label users in Figure 2.2 corresponds to a table in a database, and the id, name, and email attributes are columns in that table.

2.1.2 A toy model for microposts

The core of the micropost data model is even simpler than the one for users: a micropost has only an id and a content field for the micropost’s text (of type text).1 There’s an additional complication, though: we want to associate each micropost with a particular user. We’ll accomplish this by recording the user_id of the owner of the post. The results are shown in Figure 2.3.

[image: demo_micropost_model]
Figure 2.3: The data model for microposts.

We’ll see in Section 2.3.3 (and more fully in Chapter 13) how this user_id attribute allows us to succinctly express the notion that a user potentially has many associated microposts.

2.2 The Users resource

In this section, we’ll implement the users data model in Section 2.1.1, along with a web interface to that model. The combination will constitute a Users resource, which will allow us to think of users as objects that can be created, read, updated, and deleted through the web via the HTTP protocol. As promised in the introduction, our Users resource will be created by a scaffold generator program, which comes standard with each Rails project. I urge you not to look too closely at the generated code; at this stage, it will only serve to confuse you.

Rails scaffolding is generated by passing the scaffold command to the rails generate script. The argument of the scaffold command is the singular version of the resource name (in this case, User), together with optional parameters for the data model’s attributes:2

$ rails generate scaffold User name:string email:string
 invoke active_record
 create db/migrate/20160515001017_create_users.rb
 create app/models/user.rb
 invoke test_unit
 create test/models/user_test.rb
 create test/fixtures/users.yml
 invoke resource_route
 route resources :users
 invoke scaffold_controller
 create app/controllers/users_controller.rb
 invoke erb
 create app/views/users
 create app/views/users/index.html.erb
 create app/views/users/edit.html.erb
 create app/views/users/show.html.erb
 create app/views/users/new.html.erb
 create app/views/users/_form.html.erb
 invoke test_unit
 create test/controllers/users_controller_test.rb
 invoke helper
 create app/helpers/users_helper.rb
 invoke test_unit
 invoke jbuilder
 create app/views/users/index.json.jbuilder
 create app/views/users/show.json.jbuilder
 invoke assets
 invoke coffee
 create app/assets/javascripts/users.coffee
 invoke scss
 create app/assets/stylesheets/users.scss
 invoke scss
 create app/assets/stylesheets/scaffolds.scss

By including name:string and email:string, we have arranged for the User model to have the form shown in Figure 2.2. (Note that there is no need to include a parameter for id; it is created automatically by Rails for use as the primary key in the database.)

To proceed with the toy application, we first need to migrate the database using rails db:migrate, as shown in Listing 2.4.

Listing 2.4:

Migrating the database.

$ rails db:migrate
== CreateUsers: migrating ==
-- create_table(:users)
 -> 0.0017s
== CreateUsers: migrated (0.0018s) ===

The effect of Listing 2.4 is to update the database with our new users data model. (We’ll learn more about database migrations starting in Section 6.1.1.)

By the way, it is important to note that in every version of Rails before Rails 5, the db:migrate command used rake in place of rails, so for the sake of legacy applications it’s important to know how to use Rake (Box 2.1)

Box 2.1.

Rake

In the Unix tradition, the Make utility has played an important role in building executable programs from source code. Rake is Ruby make, a Make-like language written in Ruby.

Before Rails 5, Ruby on Rails used Rake extensively, so for the sake of legacy Rails applications it’s important to know how to use it. Probably the two most common Rake commands in a Rails context are rake db:migrate (to update the database with a data model) and rake test (to run the automated test suite). In these and other uses of rake, it’s important to ensure that the command uses the version of Rake corresponding to the Rails application’s Gemfile, which is accomplished using the Bundler command bundle exec. Thus, the migration command

 $ rake db:migrate

would be written as

 $ bundle exec rake db:migrate

Having run the migration in Listing 2.4, we can run the local webserver in a separate tab (Figure 1.9) as follows:

$ rails server

Now the toy application should be available on the local server as described in Section 1.3.2. (If you’re using the cloud IDE, be sure to open the resulting development server in a new browser tab, not inside the IDE itself.)

2.2.1 A user tour

If we visit the root URL at / (read “slash”, as noted in Section 1.3.4), we get the same “hello, world!” page shown in Figure 1.14, but in generating the Users resource scaffolding we have also created a large number of pages for manipulating users. For example, the page for listing all users is at /users, and the
page for making a new user is at /users/new. The rest of this section is dedicated to taking a whirlwind tour through these user pages. As we proceed, it may help to refer to Table 2.1, which shows the correspondence between pages and URLs.

	URL
	Action
	Purpose

	/users
	index
	page to list all users

	/users/1
	show
	page to show user with id 1

	/users/new
	new
	page to make a new user

	/users/1/edit
	edit
	page to edit user with id 1

Table 2.1: The correspondence between pages and URLs for the Users resource.

We start with the page to show all the users in our application, called index and located at /users. As you might expect, initially there are no users at all (Figure 2.4).

[image: images/figures/demo_blank_user_index_3rd_edition]
Figure 2.4: The initial index page for the Users resource (/users).

To make a new user, we visit the new page at /users/new, as shown in Figure 2.5. In Chapter 7, this will become the user signup page.

[image: images/figures/demo_new_user_3rd_edition]
Figure 2.5: The new user page (/users/new).

We can create a user by entering name and email values in the text fields and then clicking the Create User button. The result is the user show page at /users/1, as seen in Figure 2.6. (The green welcome message is accomplished using the flash, which we’ll learn about in Section 7.4.2.) Note that the URL is /users/1; as you might suspect, the number 1 is simply the user’s id attribute from Figure 2.2. In Section 7.1, this page will become the user’s profile page.

[image: images/figures/demo_show_user_3rd_edition]
Figure 2.6: The page to show a user (/users/1).

To change a user’s information, we visit the edit page at /users/1/edit (Figure 2.7). By modifying the user information and clicking the Update User button, we arrange to change the information for the user in the toy application (Figure 2.8). (As we’ll see in detail starting in Chapter 6, this user data is stored in a database back-end.) We’ll add user edit/update functionality to the sample application in Section 10.1.

[image: images/figures/demo_edit_user_3rd_edition]
Figure 2.7: The user edit page (/users/1/edit).

[image: images/figures/demo_update_user_3rd_edition]
Figure 2.8: A user with updated information.

Now we’ll create a second user by revisiting the new page at /users/new and submitting a second set of user information. The resulting user index is shown in Figure 2.9. Section 7.1 will develop the user index into a more polished page for showing all users.

[image: images/figures/demo_user_index_two_3rd_edition]
Figure 2.9: The user index page (/users) with a second user.

Having shown how to create, show, and edit users, we come finally to destroying them (Figure 2.10). You should verify that clicking on the link in Figure 2.10 destroys the second user, yielding an index page with only one user. (If it doesn’t work, be sure that JavaScript is enabled in your browser; Rails uses JavaScript to issue the request needed to destroy a user.) Section 10.4 adds user deletion to the sample app, taking care to restrict its use to a special class of administrative users.

[image: images/figures/demo_destroy_user_3rd_edition]
Figure 2.10: Destroying a user.

Exercises

Solutions to exercises are available for free with any Rails Tutorial purchase. To see other people’s answers and to record your own, join the Learn Enough Society at learnenough.com/society.

	(For readers who know CSS) Create a new user, then use your browser’s HTML inspector to determine the CSS id for the text “User was successfully created.” What happens when you refresh your browser?

	What happens if you try to create a user with a name but no email address?

	What happens if you try create a user with an invalid email address, like “@example.com”?

	Destroy each of the users created in the previous exercises. Does Rails display a message by default when a user is destroyed?

2.2.2 MVC in action

Now that we’ve completed a quick overview of the Users resource, let’s examine one particular part of it in the context of the Model-View-Controller (MVC) pattern introduced in Section 1.3.3. Our strategy will be to describe the results of a typical browser hit—a visit to the user index page at /users—in terms of MVC (Figure 2.11).

[image: images/figures/mvc_detailed]
Figure 2.11: A detailed diagram of MVC in Rails.

Here is a summary of the steps shown in Figure 2.11:

	The browser issues a request for the /users URL.

	Rails routes /users to the index action in the Users controller.

	The index action asks the User model to retrieve all users (User.all).

	The User model pulls all the users from the database.

	The User model returns the list of users to the controller.

	The controller captures the users in the @users variable, which is passed to the index view.

	The view uses embedded Ruby to render the page as HTML.

	The controller passes the HTML back to the browser.3

Now let’s take a look at the above steps in more detail. We start with a request issued from the browser—i.e., the result of typing a URL in the address bar or clicking on a link (Step 1 in Figure 2.11). This request hits the Rails router (Step 2), which dispatches the request to the proper controller action based on the URL (and, as we’ll see in Box 3.2, the type of request). The code to create the mapping of user URLs to controller actions for the Users resource appears in Listing 2.5. This code effectively sets up the table of URL/action pairs seen in Table 2.1. (The strange notation :users is a symbol, which we’ll learn about in Section 4.3.3.)

Listing 2.5:

The Rails routes, with a rule for the Users resource. config/routes.rb

Rails.application.routes.draw do
 resources :users
 root 'application#hello'
end

While we’re looking at the routes file, let’s take a moment to associate the root route with the users index, so that “slash” goes to /users. Recall from Listing 2.3 that we added the root route

root 'application#hello'

so that the root route went to the hello action in the Application controller. In the present case, we want to use the index action in the Users controller, which we can arrange using the code shown in Listing 2.6.

Listing 2.6:

Adding a root route for users. config/routes.rb

Rails.application.routes.draw do
 resources :users
 root 'users#index'
end

A controller contains a collection of related actions, and the pages from the tour in Section 2.2.1 correspond to actions in the Users controller. The controller generated by the scaffolding is shown schematically in Listing 2.7. Note the code class UsersController < ApplicationController, which is an example of a Ruby class with inheritance. (We’ll discuss inheritance briefly in Section 2.3.4 and cover both subjects in more detail in Section 4.4.)

Listing 2.7:

The Users controller in schematic form. app/controllers/users_controller.rb

class UsersController < ApplicationController
 .
 .
 .
 def index
 .
 .
 .
 end

 def show
 .
 .
 .
 end

 def new
 .
 .
 .
 end

 def edit
 .
 .
 .
 end

 def create
 .
 .
 .
 end

 def update
 .
 .
 .
 end

 def destroy
 .
 .
 .
 end
end

You may notice that there are more actions than there are pages; the index, show, new, and edit actions all correspond to pages from Section 2.2.1, but there are additional create, update, and destroy actions as well. These actions don’t typically render pages (although they can); instead, their main purpose is to modify information about users in the database. This full suite of controller actions, summarized in Table 2.2, represents the implementation of the REST architecture in Rails (Box 2.2), which is based on the ideas of representational state transfer identified and named by computer scientist Roy Fielding.4 Note from Table 2.2 that there is some overlap in the URLs; for example, both the user show action and the update action correspond to the URL /users/1. The difference between them is the HTTP request method they respond to. We’ll learn more about HTTP request methods starting in Section 3.3.

	HTTP request
	URL
	Action
	Purpose

	GET
	/users
	index
	page to list all users

	GET
	/users/1
	show
	page to show user with id 1

	GET
	/users/new
	new
	page to make a new user

	POST
	/users
	create
	create a new user

	GET
	/users/1/edit
	edit
	page to edit user with id 1

	PATCH
	/users/1
	update
	update user with id 1

	DELETE
	/users/1
	destroy
	delete user with id 1

Table 2.2: RESTful routes provided by the Users resource in Listing 2.5.

Box 2.2.

REpresentational State Transfer (REST)

If you read much about Ruby on Rails web development, you’ll see a lot of references to “REST”, which is an acronym for REpresentational State Transfer. REST is an architectural style for developing distributed, networked systems and software applications such as the World Wide Web and web applications. Although REST theory is rather abstract, in the context of Rails applications REST means that most application components (such as users and microposts) are modeled as resources that can be created, read, updated, and deleted—operations that correspond both to the CRUD operations of relational databases and to the four fundamental HTTP request methods: POST, GET, PATCH, and DELETE. (We’ll learn more about HTTP requests in Section 3.3 and especially Box 3.2.)

As a Rails application developer, the RESTful style of development helps you make choices about which controllers and actions to write: you simply structure the application using resources that get created, read, updated, and deleted. In the case of users and microposts, this process is straightforward, since they are naturally resources in their own right. In Chapter 14, we’ll see an example where REST principles allow us to model a subtler problem, “following users”, in a natural and convenient way.

To examine the relationship between the Users controller and the User model, let’s focus on a simplified version of the index action, shown in Listing 2.8. (Learning how to read code even when you don’t fully understand it is an important aspect of technical sophistication (Box 1.1).)

Listing 2.8:

The simplified user index action for the toy application. app/controllers/users_controller.rb

class UsersController < ApplicationController
 .
 .
 .
 def index
 @users = User.all
 end
 .
 .
 .
end

This index action has the line @users = User.all (Step 3 in Figure 2.11), which asks the User model to retrieve a list of all the users from the database (Step 4), and then places them in the variable @users (pronounced “at-users”) (Step 5). The User model itself appears in Listing 2.9; although it is rather plain, it comes equipped with a large amount of functionality because of inheritance (Section 2.3.4 and Section 4.4). In particular, by using the Rails library called Active Record, the code in Listing 2.9 arranges for User.all to return all the users in the database.

Listing 2.9:

The User model for the toy application. app/models/user.rb

class User < ApplicationRecord
end

Once the @users variable is defined, the controller calls the view (Step 6), shown in Listing 2.10. Variables that start with the @ sign, called instance variables, are automatically available in the views; in this case, the index.html.erb view in Listing 2.10 iterates through the @users list and outputs a line of HTML for each one. (Remember, you aren’t supposed to understand this code right now. It is shown only for purposes of illustration.)

Listing 2.10:

The view for the user index. app/views/users/index.html.erb

<h1>Listing users</h1>

<table>
 <thead>
 <tr>
 <th>Name</th>
 <th>Email</th>
 <th colspan="3"></th>
 </tr>
 </thead>

<% @users.each do |user| %>
 <tr>
 <td><%= user.name %></td>
 <td><%= user.email %></td>
 <td><%= link_to 'Show', user %></td>
 <td><%= link_to 'Edit', edit_user_path(user) %></td>
 <td><%= link_to 'Destroy', user, method: :delete,
 data: { confirm: 'Are you sure?' } %></td>
 </tr>
<% end %>
</table>

<%= link_to 'New User', new_user_path %>

The view converts its contents to HTML (Step 7), which is then returned by the controller to the browser for display (Step 8).

Exercises

Solutions to exercises are available for free with any Rails Tutorial purchase. To see other people’s answers and to record your own, join the Learn Enough Society at learnenough.com/society.

	By referring to Figure 2.11, write out the analogous steps for visiting the URL /users/1/edit.

	Find the line in the scaffolding code that retrieves the user from the database in the previous exercise. Hint: It’s in a special location called set_user.

	What is the name of the view file for the user edit page?

2.2.3 Weaknesses of this Users resource

Though good for getting a general overview of Rails, the scaffold Users resource suffers from a number of severe weaknesses.

	No data validations. Our User model accepts data such as blank names and invalid email addresses without complaint.

	No authentication. We have no notion of logging in or out, and no way to prevent any user from performing any operation.

	No tests. This isn’t technically true—the scaffolding includes rudimentary tests—but the generated tests don’t test for data validation, authentication, or any other custom requirements.

	No style or layout. There is no consistent site styling or navigation.

	No real understanding. If you understand the scaffold code, you probably shouldn’t be reading this book.

2.3 The Microposts resource

Having generated and explored the Users resource, we turn now to the associated Microposts resource. Throughout this section, I recommend comparing the elements of the Microposts resource with the analogous user elements from Section 2.2; you should see that the two resources parallel each other in many ways. The RESTful structure of Rails applications is best absorbed by this sort of repetition of form—indeed, seeing the parallel structure of Users and Microposts even at this early stage is one of the prime motivations for this chapter.

2.3.1 A micropost microtour

As with the Users resource, we’ll generate scaffold code for the Microposts resource using rails generate scaffold, in this case implementing the data model from Figure 2.3:5

$ rails generate scaffold Micropost content:text user_id:integer
 invoke active_record
 create db/migrate/20160515211229_create_microposts.rb
 create app/models/micropost.rb
 invoke test_unit
 create test/models/micropost_test.rb
 create test/fixtures/microposts.yml
 invoke resource_route
 route resources :microposts
 invoke scaffold_controller
 create app/controllers/microposts_controller.rb
 invoke erb
 create app/views/microposts
 create app/views/microposts/index.html.erb
 create app/views/microposts/edit.html.erb
 create app/views/microposts/show.html.erb
 create app/views/microposts/new.html.erb
 create app/views/microposts/_form.html.erb
 invoke test_unit
 create test/controllers/microposts_controller_test.rb
 invoke helper
 create app/helpers/microposts_helper.rb
 invoke test_unit
 invoke jbuilder
 create app/views/microposts/index.json.jbuilder
 create app/views/microposts/show.json.jbuilder
 invoke assets
 invoke coffee
 create app/assets/javascripts/microposts.coffee
 invoke scss
 create app/assets/stylesheets/microposts.scss
 invoke scss
 identical app/assets/stylesheets/scaffolds.scss

(If you get an error related to Spring, just run the command again.) To update our database with the new data model, we need to run a migration as in Section 2.2:

$ rails db:migrate
== CreateMicroposts: migrating ===
-- create_table(:microposts)
 -> 0.0023s
== CreateMicroposts: migrated (0.0026s) ======================================

Now we are in a position to create microposts in the same way we created users in Section 2.2.1. As you might guess, the scaffold generator has updated the Rails routes file with a rule for Microposts resource, as seen in Listing 2.11.6 As with users, the resources :microposts routing rule maps micropost URLs to actions in the Microposts controller, as seen in Table 2.3.

Listing 2.11:

The Rails routes, with a new rule for Microposts resources. config/routes.rb

Rails.application.routes.draw do
 resources :microposts
 resources :users
 root 'users#index'
end

	HTTP request
	URL
	Action
	Purpose

	GET
	/microposts
	index
	page to list all microposts

	GET
	/microposts/1
	show
	page to show micropost with id 1

	GET
	/microposts/new
	new
	page to make a new micropost

	POST
	/microposts
	create
	create a new micropost

	GET
	/microposts/1/edit
	edit
	page to edit micropost with id 1

	PATCH
	/microposts/1
	update
	update micropost with id 1

	DELETE
	/microposts/1
	destroy
	delete micropost with id 1

Table 2.3: RESTful routes provided by the Microposts resource in Listing 2.11.

The Microposts controller itself appears in schematic form in Listing 2.12. Note that, apart from having MicropostsController in place of UsersController, Listing 2.12 is identical to the code in Listing 2.7. This is a reflection of the REST architecture common to both resources.

Listing 2.12:

The Microposts controller in schematic form. app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController
 .
 .
 .
 def index
 .
 .
 .
 end

 def show
 .
 .
 .
 end

 def new
 .
 .
 .
 end

 def edit
 .
 .
 .
 end

 def create
 .
 .
 .
 end

 def update
 .
 .
 .
 end

 def destroy
 .
 .
 .
 end
end

To make some actual microposts, we enter information at the new microposts page, /microposts/new, as seen in Figure 2.12.

[image: images/figures/demo_new_micropost_3rd_edition]
Figure 2.12: The new micropost page (/microposts/new).

At this point, go ahead and create a micropost or two, taking care to make sure that at least one has a user_id of 1 to match the id of the first user created in Section 2.2.1. The result should look something like Figure 2.13.

[image: images/figures/demo_micropost_index_3rd_edition]
Figure 2.13: The micropost index page (/microposts).

Exercises

Solutions to exercises are available for free with any Rails Tutorial purchase. To see other people’s answers and to record your own, join the Learn Enough Society at learnenough.com/society.

	(For readers who know CSS) Create a new micropost, then use your browser’s HTML inspector to determine the CSS id for the text “Micropost was successfully created.” What happens when you refresh your browser?

	Try to create a micropost with empty content and no user id.

	Try to create a micropost with over 140 characters of content (say, the first paragraph from the Wikipedia article on Ruby).

	Destroy the microposts from the previous exercises.

2.3.2 Putting the micro in microposts

Any micropost worthy of the name should have some means of enforcing the length of the post. Implementing this constraint in Rails is easy with validations; to accept microposts with at most 140 characters (à la Twitter), we use a length validation. At this point, you should open the file app/models/micropost.rb in your text editor or IDE and fill it with the contents of Listing 2.13.

Listing 2.13:

Constraining microposts to be at most 140 characters. app/models/micropost.rb

class Micropost < ApplicationRecord
 validates :content, length: { maximum: 140 }
end

The code in Listing 2.13 may look rather mysterious—we’ll cover validations more thoroughly starting in Section 6.2—but its effects are readily apparent if we go to the new micropost page and enter more than 140 characters for the content of the post. As seen in Figure 2.14, Rails renders error messages indicating that the micropost’s content is too long. (We’ll learn more about error messages in Section 7.3.3.)

[image: images/figures/micropost_length_error_3rd_edition]
Figure 2.14: Error messages for a failed micropost creation.

Exercises

Solutions to exercises are available for free with any Rails Tutorial purchase. To see other people’s answers and to record your own, join the Learn Enough Society at learnenough.com/society.

	Try to create a micropost with the same long content used in a previous exercise (Section 2.3.1.1). How has the behavior changed?

	(For readers who know CSS) Use your browser’s HTML inspector to determine the CSS id of the error message produced by the previous exercise.

2.3.3 A user has_many microposts

One of the most powerful features of Rails is the ability to form associations between different data models. In the case of our User model, each user potentially has many microposts. We can express this in code by updating the User and Micropost models as in Listing 2.14 and Listing 2.15.

Listing 2.14:

A user has many microposts. app/models/user.rb

class User < ApplicationRecord
 has_many :microposts
end

Listing 2.15:

A micropost belongs to a user. app/models/micropost.rb

class Micropost < ApplicationRecord
 belongs_to :user
 validates :content, length: { maximum: 140 }
end

We can visualize the result of this association in Figure 2.15. Because of the user_id column in the microposts table, Rails (using Active Record) can infer the microposts associated with each user.

[image: images/figures/micropost_user_association]
Figure 2.15: The association between microposts and users.

In Chapter 13 and Chapter 14, we will use the association of users and microposts both to display all of a user’s microposts and to construct a Twitter-like micropost feed. For now, we can examine the implications of the user-micropost association by using the console, which is a useful tool for interacting with Rails applications. We first invoke the console with rails console at the command line, and then retrieve the first user from the database using User.first (putting the results in the variable first_user):7

$ rails console
>> first_user = User.first
=> #<User id: 1, name: "Michael Hartl", email: "michael@example.org",
created_at: "2016-05-15 02:01:31", updated_at: "2016-05-15 02:01:31">
>> first_user.microposts
=> [#<Micropost id: 1, content: "First micropost!", user_id: 1, created_at:
"2016-05-15 02:37:37", updated_at: "2016-05-15 02:37:37">, #<Micropost id: 2,
content: "Second micropost", user_id: 1, created_at: "2016-05-15 02:38:54",
updated_at: "2016-05-15 02:38:54">]
>> micropost = first_user.microposts.first # Micropost.first would also work.
=> #<Micropost id: 1, content: "First micropost!", user_id: 1, created_at:
"2016-05-15 02:37:37", updated_at: "2016-05-15 02:37:37">
>> micropost.user
=> #<User id: 1, name: "Michael Hartl", email: "michael@example.org",
created_at: "2016-05-15 02:01:31", updated_at: "2016-05-15 02:01:31">
>> exit

(I include exit in the last line just to demonstrate how to exit the console. On most systems, you can also use Ctrl-D for the same purpose.)8 Here we have accessed the user’s microposts using the code first_user.microposts. With this code, Active Record automatically returns all the microposts with user_id equal to the id of first_user (in this case, 1). We’ll learn much more about the association facilities in Active Record in Chapter 13 and Chapter 14.

Exercises

Solutions to exercises are available for free with any Rails Tutorial purchase. To see other people’s answers and to record your own, join the Learn Enough Society at learnenough.com/society.

	Edit the user show page to display the content of the user’s first micropost. (Use your technical sophistication (Box 1.1) to guess the syntax based on the other content in the file.) Confirm by visiting /users/1 that it worked.

	The code in Listing 2.16 shows how to add a validation for the presence of micropost content in order to ensure that microposts can’t be blank. Verify that you get the behavior shown in Figure 2.16.

	Update Listing 2.17 by replacing FILL_IN with the appropriate code to validate the presence of name and email attributes in the User model (Figure 2.17).

Listing 2.16:

Code to validate the presence of micropost content. app/models/micropost.rb

class Micropost < ApplicationRecord
 belongs_to :user
 validates :content, length: { maximum: 140 },
 presence: true
end

[image: images/figures/micropost_content_cant_be_blank]
Figure 2.16: The effect of a micropost presence validation.

Listing 2.17:

Adding presence validations to the User model. app/models/user.rb

class User < ApplicationRecord
 has_many :microposts
 validates FILL_IN, presence: true # Replace FILL_IN with the right code.
 validates FILL_IN, presence: true # Replace FILL_IN with the right code.
end

[image: images/figures/user_presence_validations]
Figure 2.17: The effect of presence validations on the User model.

2.3.4 Inheritance hierarchies

We end our discussion of the toy application with a brief description of the controller and model class hierarchies in Rails. This discussion will only make much sense if you have some experience with object-oriented programming (OOP), particularly classes. Don’t worry if it’s confusing for now; we’ll discuss these ideas more thoroughly in Section 4.4.

We start with the inheritance structure for models. Comparing Listing 2.18 and Listing 2.19, we see that both the User model and the Micropost model inherit (via the left angle bracket <) from ApplicationRecord, which in turn inherits from ActiveRecord::Base, which is the base class for models provided by Active Record; a diagram summarizing this relationship appears in Figure 2.18. It is by inheriting from ActiveRecord::Base that our model objects gain the ability to communicate with the database, treat the database columns as Ruby attributes, and so on.

Listing 2.18:

The User class, highlighting inheritance. app/models/user.rb

class User < ApplicationRecord
 .
 .
 .
end

Listing 2.19:

The Micropost class, highlighting inheritance. app/models/micropost.rb

class Micropost < ApplicationRecord
 .
 .
 .
end

[image: images/figures/demo_model_inheritance_4th_ed]
Figure 2.18: The inheritance hierarchy for the User and Micropost models.

The inheritance structure for controllers is essentially the same as that for models. Comparing Listing 2.20 and Listing 2.21, we see that both the Users controller and the Microposts controller inherit from the Application controller. Examining Listing 2.22, we see that ApplicationController itself inherits from ActionController::Base, which is the base class for controllers provided by the Rails library Action Pack. The relationships between these classes is illustrated in Figure 2.19.

Listing 2.20:

The UsersController class, highlighting inheritance. app/controllers/users_controller.rb

class UsersController < ApplicationController
 .
 .
 .
end

Listing 2.21:

The MicropostsController class, highlighting inheritance. app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController
 .
 .
 .
end

Listing 2.22:

The ApplicationController class, highlighting inheritance. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
 .
 .
 .
end

[image: images/figures/demo_controller_inheritance]
Figure 2.19: The inheritance hierarchy for the Users and Microposts controllers.

As with model inheritance, both the Users and Microposts controllers gain a large amount of functionality by inheriting from a base class (in this case, ActionController::Base), including the ability to manipulate model objects, filter inbound HTTP requests, and render views as HTML. Since all Rails controllers inherit from ApplicationController, rules defined in the Application controller automatically apply to every action in the application. For example, in Section 9.1 we’ll see how to include helpers for logging in and logging out of all of the sample application’s controllers.

Exercises

Solutions to exercises are available for free with any Rails Tutorial purchase. To see other people’s answers and to record your own, join the Learn Enough Society at learnenough.com/society.

	By examining the contents of the Application controller file, find the line that causes ApplicationController to inherit from ActionController::Base.

	Is there an analogous file containing a line where ApplicationRecord inherits from ActiveRecord::Base? Hint: It would probably be a file called something like application_record.rb in the app/models directory.

2.3.5 Deploying the toy app

With the completion of the Microposts resource, now is a good time to push the repository up to Bitbucket:

$ git status
$ git add -A
$ git commit -m "Finish toy app"
$ git push

Ordinarily, you should make smaller, more frequent commits, but for the purposes of this chapter a single big commit at the end is fine.

At this point, you can also deploy the toy app to Heroku as in Section 1.5:

$ git push heroku

(This assumes you created the Heroku app in Section 2.1. Otherwise, you should run heroku create and then git push heroku master.)

To get the application’s database to work, you’ll also have to migrate the production database, which involves running the migration command from Listing 2.4 prefixed with heroku run:

$ heroku run rails db:migrate

This updates the database at Heroku with the necessary user and micropost data models. After running the migration, you should be able to use the toy app in production, with a real PostgreSQL database back-end (Figure 2.20).9

Finally, if you completed the exercises in Section 2.3.3.1, you will have to remove the code to display the first user’s micropost in order to get the app to load properly. In this case, simply delete the offending code, make another commit, and push again to Heroku.

[image: images/figures/toy_app_production]
Figure 2.20: Running the toy app in production.

Exercises

Solutions to exercises are available for free with any Rails Tutorial purchase. To see other people’s answers and to record your own, join the Learn Enough Society at learnenough.com/society.

	Create a few users on the production app.

	Create a few production microposts for the first user.

	By trying to create a micropost with content over 140 characters, confirm that the validation from Listing 2.13 works on the production app.

2.4 Conclusion

We’ve come now to the end of the high-level overview of a Rails application. The toy app developed in this chapter has several strengths and a host of weaknesses.

Strengths

	High-level overview of Rails

	Introduction to MVC

	First taste of the REST architecture

	Beginning data modeling

	A live, database-backed web application in production

Weaknesses

	No custom layout or styling

	No static pages (such as “Home” or “About”)

	No user passwords

	No user images

	No logging in

	No security

	No automatic user/micropost association

	No notion of “following” or “followed”

	No micropost feed

	No meaningful tests

	No real understanding

The rest of this tutorial is dedicated to building on the strengths and eliminating the weaknesses.

2.4.1 What we learned in this chapter

	Scaffolding automatically creates code to model data and interact with it through the web.

	Scaffolding is good for getting started quickly but is bad for understanding.

	Rails uses the Model-View-Controller (MVC) pattern for structuring web applications.

	As interpreted by Rails, the REST architecture includes a standard set of URLs and controller actions for interacting with data models.

	Rails supports data validations to place constraints on the values of data model attributes.

	Rails comes with built-in functions for defining associations between different data models.

	We can interact with Rails applications at the command line using the Rails console.

 1. Because microposts are short by design, the string type is actually big enough to contain them, but using text better expresses our intent, while also giving us greater flexibility should we ever wish to relax the length constraint.

 2. The name of the scaffold follows the convention of models, which are singular, rather than resources and controllers, which are plural. Thus, we have User instead of Users.

 3. Some references indicate that the view returns the HTML directly to the browser (via a webserver such as Apache or Nginx). Regardless of the implementation details, I find it helpful to think of the controller as a central hub through which all the application’s information flows.

 4. Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral dissertation, University of California, Irvine, 2000.

 5. As with the User scaffold, the scaffold generator for microposts follows the singular convention of Rails models; thus, we have generate Micropost.

 6. The scaffold code may have extra blank lines compared to Listing 2.11. This is not a cause for concern, as Ruby ignores such extra space.

 7. Your console prompt might be something like 2.1.1 :001 >, but the examples use >> since Ruby versions will vary.

 8. As with “Ctrl-C”, the capital “D” refers to the key on the keyboard, not the capital letter, so you don’t have to hold down the Shift key along with the Ctrl key.

 9. The production database should work without any additional configuration, but in fact some configuration is recommended by the official Heroku documentation. We’ll take care of this detail in Section 7.5.3.

 OEBPS/Images/image00159.jpeg
€ 5 C A hupsjrals-tutoral-cO-mhancdfomicroposts

5% 499=

Listing microposts

Content User
st miropost 3

-

OEBPS/Images/image00158.jpeg
€ C A B s a-twtora-cO-mhar .o micropsts G0 A0 =
New micropost

OEBPS/Images/image00157.jpeg

OEBPS/Images/image00156.jpeg
800 Groun/snren -t < <

€ > C [Assian, i [U5] o iuckes orgaccounser v sh-bers 4 0 E

Add SSH key

[

Aready have a key?
Copyyour oyt yourcpboard wh: sepy < /.

Probiems ding s key?
Read out ks bos o coman s,

Asarey | Cancel

OEBPS/Images/image00155.jpeg
€0 C A B s s ora-o-mhani o0 T pA0 =

oo, workd!

OEBPS/Images/image00154.jpeg
€5 C 6 s s orcS-mhant 9 s

Listing users

Name mai
Michael Har michsei@exampl.org She i asiroy
Foosar foogbercom Shom s B

e user

OEBPS/Images/image00153.jpeg
®©® g createarepository —Bitbuck: X+

&€ > C ¥ @ Atlassian, Inc. [US] | https://bitbucket.org/repojcreate.

Create a new repository Import repository

Repository name” ‘ hello_app

Access level @ This is a private repository

Include a README? No

Version control @ Git
SYStem) Mercurial

Advanced settings

OEBPS/Images/image00152.jpeg
€9 C A B b rals-toria-<S-mharl 9o micropsts new T % 90 =

New micropost

OEBPS/Images/image00151.jpeg
ActionController::Base

ApplicationController

UsersController MicropostsController

OEBPS/Images/image00150.jpeg
€0 C B s ttori-co-mhant<9 o sers

T pA0 =

ser was succosstly cresed.
Name: cnaet vt

Emai: mcnseigexampi.com
.

OEBPS/Images/image00149.jpeg
P vomE

¥

»

® /g.
€ > C f @ hupsybitbucket.org/railstutorial/hello_app

tutorial / hello-app — © % |

bucket ms - Projects

Rails Tutorial / hello_app

Overview

Last updated 2 minutes ago
Language —
Access level Admin (revoke)

README

Repositories ~ Snippets

L2

1

Branch

Forks

SSH~ gitebitbucket.org: railstutorial/hell

0

Tags

Watcher

Edit README

‘This README would normally document whatever steps are necessary to get the

application up and running.
‘Things you may want to cover:
+ Ruby version
+ System dependencies
+ Configuration
+ Database creation
+ Database initialization

« How to run the test suite

[2 Share.

Invite users to this repo

Send invitation

Recent activity

© 1 commit
Pushed to railstutorial/hello_app
2772046 Initialize repository

Ralls Tutorial - 2 minutes ago

© railstutoria/hello_app
Repository created
Ralls Ttorial - 2 minutes ago

o~

OEBPS/Images/image00148.jpeg
€5 C B g - ttor-cO-mhant 9 o mccposs 8 4909 =

New micropost

OEBPS/Images/image00147.jpeg
® 0 ® /g rils-tutorial - AWS Cloud® X /' [Ruby on Rails x \ Michael

C {1 | @ Secure | https:/179b57a0a6e14{dc9518d5C060b{3256.1fs.clouds.us-east-2.amazonaws.com a] @ o v

mILS

Yay! You’re on Rails!

Rails version: 5.1.2

Ruby version: 2.4.1 (x86_64-linux)

OEBPS/Images/image00146.jpeg
©® 0 ® /g rils-tutorial - AWS Cloud® X ||\ Michael

C {1 | @ Secure | https://us-east-2.console.aws.amazon.com/cloud9/ide/179b57a0a6e14{dc9518d5c060013256 Ql @6 v H

~+ AWSClouds File Edt Find View Golo Run Tools Window Support Preview () Fun share L

v (9 s tutorial 8
v 9 first app g
&

> B0 app
> bn
> 09 confi.
rEe
>
» 1oy
> 3 public
> 00 st
> 3 mp
> 3 vendor
) configru
) Gemie
Gemlelodk
Raketie
README ma
README ma

Environment
sunno

Navigate

Commands
S$80IN0SaH SMY

JeB6ngeq

bash - "ip-172-31% puma-tip-13% () [B] https/A79b5 X ()
ec2-user:~/environnent/first_app § Il ol s

OEBPS/Images/image00145.jpeg
microposts

id integer
content |text
user_id

integer

OEBPS/Images/image00144.jpeg
© 0 ® /B cicunorretosro—c x \ @ [enaet|
& - C #i |8 htps://bitbucket.org/railstutorial/hello_app o % =

0 1
‘ Forks Watcher

Recent activity

© 1 commit
EdtREADME Pushed to railstutorialiello_app

Ruby on Rails Tutorial 444737 Update Gemfile for Heroku
Ralls Ttorial -2 minutes ago

© 1 commit

Pushed to railstutorialihello_app

"hello, world
This is the first application for the Ruby on Rails Tutorial by Michael Hartl. Hello, world!

9dcafes Improve the README file
Ralls Tutorial - 3 hours ago

© 1 commit

Pushed to railstutorialihello_app

fFTomE

af72946 Initialize repository

¥

Ralls Tutorial - 3 hours ago
@ railstutoria/hello_app

Repository created
Ralls Tutorial - 3 hours ago

Blog - Support - Plans&pricing - Documentation - APl - Sitestaus - Versioninfo - Temmsof service - Privacy policy

JRA - Confuence - Bamboo - SourceTree - HipChat

N “Yhtlassian

OEBPS/Images/image00143.jpeg
® 9 ® g sitbucket x 4+

€ > C (Y @& Atlassian, Inc. [US] | https://bitbucket.org/mharti/hello_app/src t @ 6 v ¥
p 4
< source
e Let's put some bits in your bucket
ommits
5 Branches SSH v gitclone git@bitbucket.org:mhartijhello_app.gi I[]

T4 Pullrequests

@ Pipelines Get started quickly

Creating a README or a..g
repository.

& Deployments ignore is a quick and easy way to get something into your

B Downloads Create aREADME Create a gitignore

Get your local Git repository on Bitbucket

Step 1: Switch to your repository’s directory

@ Boards
Q

Settings

1 cd /path/to/your/repo
Step 2: Connect your existing repository to Bitbucket

1 git remote add origin git@bitbucket.org:mhartl/hello_app.git

2 git push -u origin master

Need more information? Learn how to set up your repository

OEBPS/Images/image00142.jpeg
©® 0 ® /g rils-tutorial - AWS Cloud® X ||\ Michael

C {1 | @ Secure | https://us-east-2.console.aws.amazon.com/cloud9/ide/179b57a0a6e14{dc9518d5c060013256 *|@ 6 v

. AWSClouds File Edt Find View Goto Run Tools Window Support Preview () Fun Share o
T v reistuorial B |8 O 8
L) g
H > 83 o &
= » (3 bin
g > (3 config 2
g r@ma 3
: mw
>
P » (3 0g New File. AN H
P o H
E > 60 test New Run Configuration g
8 > @8 tmp pen Preferences * H
» @8 vendor w Immediate Window e
S Gemfle &
Gentielock]

[B] hitps:/1179057a0a6e141dc959d5C080013256.v1s.clouds us-east-2.amazonaws com!

=l Raketle sessions_controlierrd
FEATE users_controllerb
README.md

bash - ip-172:31-12-198"

Using actionvadi 5.1.2
ec2-user:~/environnent/first_app § Il

OEBPS/Images/image00141.jpeg
©® 0 ® /g rils-tutorial - AWS Cloud® X ||\

<« e [i Secure | https://us-east-2.console.aws.amazon.com/cloud9/ide/179b57a0a6e14fdc959d5c060bf3256 a‘ @6 v

4 AWSClouds File Edt Find View Goto Run Tools Window Support Proview () Fun

v (3 ralstutorial
=) README.md

Environment

o

3
o}
=
&
=
S

a
@

erosect ‘These settings are specific to this project. They are saved at: <project>.cO/project.seftings. o
S EC2 Instance Hint: Add the .c9 folder to your repository to share these settings with your collaborators. 5
3 Code Editor (Ace) &
Find in Files z
@ Stop my environment: After 30 minutes, H
] Hints & Warnings <
£ JavaSoript Support 2 g
3 Buid 2 sonTabe: BEENE
Run & Debug
Run Configurations Autodetect Tab Size on Load: B
Code Formatters o
PHP Support New File Line Endings: - 8
Eython Supott On Save, Strip Whitespace:
Go Support
Fieeh RS Ignore these fles: “~backup-*
corevisions
» AWS SETTINGS &
gt
» KeveinoINGS e
DS_Store
» THEmES e
Maximum number of files to search (in 1000 S0 |+
Warning Level: Info B

Mark Missing Optional Semicolons:

«©
«©

Mark Undeclared Variables:
bash - 'ip-172-31 % Immediate x @ g x

ec2-user:~/environment []

OEBPS/Images/image00140.jpeg
«— User.all —|

® @

@

OEBPS/Images/cover00136.jpeg
[NGIE

RUBY ON RAILS
TUTORIAL

LEARN WEB DEVELOPMENT WITH RAILS

MICHAEL HARTL

SSSSSSSSSSSS

OEBPS/Images/image00139.jpeg
users

id Jinteger
name _|string
email [sring

OEBPS/Images/image00138.jpeg
€0 C B s ttor-co-mhant<9 o sers

T pA0 =

ser was sucesstly update.
Name: cnaet vt

Emai merseigexampie.ors
™

OEBPS/Images/image00135.jpeg
G0 A0 =

OEBPS/Images/image00134.jpeg
©® 0 ® /g rils-tutorial - AWS Cloud® X ||\ Michael

c O [i Secure | https://us-east-2.console.aws.amazon.com/cloud9/ide/179b57a0a6e14fdc95/9d5c060bf3256 a] @ e v

+ AWSClouds File Edt Find View Goo Run Tools Window Support Preview () Fur share L

®

v (9 s tutorial u B
v (2 frst_app

> 03 o

» (3 bin

» (23 config

rEB

(3=

» 1oy

> 3 public

> 00 test

> 3 mp

» (73 vendor
configru
Genfie
Gemfilelock

aiei0qelon

Environment

aupno

Navigate

Commands
S20IN053H SMY

JeB6ngeq

Rakefile
=) READMEmd
=) READMEmd

bash - "ip-172-31% ruby -"ip17231% &

/environment $ cd first_app
/environnent/first_app § rails server

= Booting Puna

Rails 5.1.2 application starting in developnent on http://localhost:8080
Run “rails server -h' for more startup options

Puna starting in single mode.
* Version 3.9.1 (ruby 2.4.1-pl11), codename: Private Caller
* Min threads: 5, max threads: 5

* Environment: development

 Listening on tcp://localhost:8080

Use CtriC to stop

OEBPS/Images/image00133.jpeg
€0 C A D damporves-5769heroksappcom

e, work:

OEBPS/Images/image00132.jpeg
©® 0 ® /g rils-tutorial - AWS Cloud® X ||\

Michael

C {1 | @ Secure | https://us-east-2.console.aws.amazon.com/cloud9/ide/179b57a0a6e14{dc9518d5c060013256 *|@ 6 v

+ AWSClouds File Edt Find View Goo Run Tools Window Support Preview () Fun share L

v [0 raits-tutorial
~ 3 frst app
> B0 app
» (3 bin
» (23 config
rEw
> @
> g
> 3 public
> 00 test
> 3 mp
» (23 vendor
| conigru
Genfie
Gemfilelock
Rakefle
README md
README md

Navigate ~ Environment

Commands

bash-"ip-17231% puma - "ip-172:3 %
ec2-user:~/environnent/first_app $ [|

Proview Running Application

Configure Preview URL...
‘Show Active Servers...

®

aupno

S$80IN0SaH SMY

JeB6ngeq

OEBPS/Images/image00131.jpeg
©® 0 ® /g rails-tutorial - AWS Cloudd X Michael

Lo C {Y | @& Secure | https://us-east-2.console.aws.amazon.com/cloud9/ide/179b57a0a6e14fdc9519d5c060bf3256 | @ v
. AWSClouds File Edt Find View Goto Run Tools Window Support Preview () Share Q
H rails-tutorial i weicome D g
g H
£ README ma g
2 Developer Tools &)
2 2
: AWS Cloud9
5 >
g Welcome to your development environment 3
g z
8 AWS Cloud9 allows you to write, run, and debug your code with just a browser. You é
@n , write code for 5 1
with others in eal time, and much more. >
g
Getting started g

Create File
AWS Cloud9 for AWS Lambda
Open File..
AWS Lambda is a compute service that lets you run code without Upload Files.
provisioning or managing servers. AWS Lambda executes your code
only when needed and scales automatically, from a few requests per Clone Git Repository
day to thousands per second.
Create Lambda Function.
Configure AWS Cloud9

Import Lambda Function...
Main Theme: AWS Clouds Flat Light Theme | +

Editor Theme: Cloudd Day v

Support

Keyboard Mode: Default 5

If you have any questions or experience issues, refer to our

bash-"ip-17281% Immediate x
ec2-user:~/environnent § []

OEBPS/Images/image00130.jpeg
5% 499=

€5 C 6 s s orcS-mhant 9 s

Listing users
Name Emat

o

OEBPS/Images/image00129.jpeg
[hello_app.

‘L‘Q‘E:Em (=]} | ER Q Search |
Name Date Modified Sze Kind
v [app Today, 10:22 AM Folder
v [assets Today, 10:21 AM Folder
» [config Today, 10:21 AM Folder
» [images Today, 10:21 AM Folder
» [javascripts. Today, 10:21 AM Folder
> [stylesheets ‘Today, 10:21 AM Folder
» [channels Today, 10:21 AM Folder
v [controllers Today, 10:21 AM Folder
application_controller.b Today, 1021 AM Ruby Source
» [concerns Today, 10:21 AM Folder
» [helpers Today, 10:21 AM Folder
> [jobs ‘Today, 10:21 AM Folder
» [mailers Today, 10:21 AM Folder
» [models Today, 10:21 AM Folder
> B views Today, 10:21 AM Folder
» [bin Today, 10:21 AM Folder
» B9 config Today, 10:21 AM -- Folder
config.ru Today, 1021 AM 130bytes Document
> Bdo ‘Today, 10:21 AM - Folder
| Gemfile Today, 1021 AM 2KB TextEd..ument
(-1 Today, 10:21 AM - Folder
» [log Today, 10:21 AM -~ Folder

& Macintosh HD > [Users > @ mhartl > [workspace > [hello_app

OEBPS/Images/image00169.jpeg
€0 C A B s ora-o-mhani o0 T pA0 =

iHo, mundot

OEBPS/Images/image00168.jpeg
=

Navigate ~ Environment

Commands

© 0 ® /g rais-tutorial - AWS Clouds

3

Michasl

C () | @ Secure | https://us-east-2.console.aws.amazon.com/cloud9/ide/179b57a0a6e14fdcO5/0d5c060b13256 r | @ & v

AWSCloudd File Edit Find View Goto Run Tools Window Support Preview (3 Run
v(0 misttorsl %%+ B users controller;x sessions_control X (2
v [sample_app 1 [klass UsersController < ApplicationController
v 00 ap 2 before_action :logged_in_user, only: [:index, :edit, :update, :destroy,
o 3 ollowing, :followers]
4 before_action :correct_user, only: [:edit, :update]
> @ chamels S before_action :admin_user, only: :destroy
v [controllers 5
7 def index
> B8 concerns 8 Eusers = User.where(activated: true).paginate(page: parans(:pagel)
acont activatio 9 end =
10
e) text editor
micoposts_contn 12 6user = User. find(parans[:id])
password_resets. | 13 redirect_to root_url and return unless @user.activated?
1 emicroposts = Guser.microposts. paginate(page: params :page])
relatonships. con
15 end
sessions_controle 16
sttic pages cont 17 def new
5 18 euser = User.new
users contolerd 19 ng
20
21 def create
22 @user = User.new(user_params) 1:1 Ruby Spaces:2 &

» [public
> 0 test
> [0 tmp

ruby - "ip-172:31. %

66/60: e e —_ 1 90% Time: 00:00:01, ETA:
66/62: —— 1 93% Time: 00:00:01, ETA:
. 66/63: T ——— = 1 95% Time: 00:00:01, ETA:
66/65:] 98% Time: 00:00:02, ETA:
. 66/6¢ — -1 100 Tine: 00:00:02, Tine: 00:00:0

2

S nn A gg_nlmgnd line terminal

66 tests, 372 assertions, 0 failures, 0 errors, 0 skips

Finished in 2.059603s, 32.0450 runs/s, 180.6173 assertions/s.
66 runs, 372 assertions, 0 failures, 0 errors, 0 skips
ec2-user:~/environnent/sanple_app (naster) $ Il

share L

aiei0qelon

aupno

S$80IN0SaH SMY

JeB6ngeq

OEBPS/Images/image00167.jpeg
€ 5 C 1 immense-forress- 8606 erokuappcom microposts T pA0 =

Micropost was sccesstuly crated.
Contant: st microposts

sers 1

P

OEBPS/Images/image00166.jpeg
€ 5 C B s ttori-co-mhant<9 o sers e T pA0 =

New user

=T —

OEBPS/Images/image00165.jpeg
0 C B s ttora-co-mhanico o

helo, world!

OEBPS/Images/image00164.jpeg
ActiveRecord::Base

ApplicationRecord

OEBPS/Images/image00163.jpeg
€ C B o i s et 8 4909 =

Editing user

=T —

OEBPS/Images/image00162.jpeg
[microposts)

T

‘Another post

id content name email

1 First post! Michael Harll | mharll@example.com
2 Second post Foo Bar foo@bar.com

3

OEBPS/Images/image00161.jpeg
> C A [Atasan nc 5] i tbucetorg e s

@Bitbucket Desboord - Teams - Roposlodes = | Creste

Create a new repository

N’ toy 30

Descroton. | Atoydemo app forte Ry on Rt Tutoral

T s prvate rpostony
Now oy prate forks
oo

© Morcurar

Proect () lesua vackng
mansgement () wag

Language | Selec angusge.

o

B f00 =

You canaiso st epostery

New o Bitbucket?

Loar e pass of usng
Gaand Morcrity

porng ha Btuciat
o

Working i a team?

st s oam acount o
consolaate your epos and
rganzeyour toam work

OEBPS/Images/image00160.jpeg
® 0 ® /g rils-tutorial - AWS Cloud® X\ Michael

C) | & Secure | https://us-east-2.console.aws.amazon.com/cloud9/ide/179b57a0a6e14{dc9518d5c0600(3256 *|@ 6 v

. AWSClouds File Edt Find View Goto Run Tools Window Support Preview () Run Share o
T v reistutoral i+ B Gemiile 2NE) g
£ g
£ D 1 source "https://rubygens.org’ B
H [©) ReAoMEmd 2 g
& 3 git_sourceC:github) do Irepo_namel

4 repo_name - "#{repo_name}/#{repo_nane}" unless repo_name.include?("/") S
2 5 "https://github.com/#{repo_name}.git" g
S 6 end =
3 7

2 >
. 9 # Bundle edge Rails instead: gem ‘'rails’, github: 'rails/rails’ H
b4 10 gem 'rails’, '~> 5.1.2" Z
g 11 # Use sqlite3 as the database for Active Record 2
E 12 gen 'sqlite3’ o
S 13 # Use Puma as the app server g

14 gem ‘puma’, '~> 3.7" e

15 # Use SCSS for stylesheets

16 gem 'sass-rails’, '~> 5.0' g

17 # Use Uglifier as compressor for JavaScript assets e

18 gem ‘uglifier’, '>= 1.3.0' g

19 # See https://github.con/rails/execjs#readne for more supported runtimes
20 # gem *therubyracer', platforms: :ruby

22 # Use CoffeeScript for .coffee assets and views
23 gem ‘coffee-rails', '~> 4. 1
24 # Turbolinks makes naviaatina vour web application faster. Read more: htt..

puma -tip-172:8% @

/environment s cd first_app/
/environment/first_app (naster) s []

OEBPS/Images/image00127.jpeg
README

This README would normally document whatever steps are necessary to get the
‘application up and running.

Things you may want to cover:
« Ruby version
« System dependencies
« Configuration
- Database creation
« Database initialization
« How to run the test suite
- Services (job queues, cache servers, search engines, etc.)

+ Deployment instructions

OEBPS/Images/image00126.jpeg
©® 0 ® /g vour environments x \ Michael

<« C {) & Secure | https://us-east-2.console.aws.amazon.com/cloud9/home?region=us-east-2# Y| @ &
aws Services Resource Groups v % \ raistutorial-aws v Ohio v Support v
AWS Clouds x o
AWS root account login detected X
‘We do not recommend using your AWS root account to create or work with
Pout siiroamients environments. Use an IAM user instead. This is an AWS security best practice. For

more information, see Setting Up to Use AWS Cloud9 (2.
Shared with you

Accountenronments AWS Cloud9 > Your environments

How-to guide 4
2 Your environments (1)

‘ Open IDE (2 H View details H Edit H Delete ‘

—————p TN

rails-tutorial

Permissions
Owner

Type
EC2

Description
A cloud IDE for the Ruby on Rails Tutorial

Amazon Web Ser

@ Feedback Q@ English (US)

rights reserved. Privacy Pollcy Terms of Use

OEBPS/Images/image00128.jpeg
€5 C 6 s s orcS-mhant 9 s

5% 499=

Listing users

Name mai
Michael Har michsei@exampl.org She i Dasiroy
Foosar foogbercom ShowEdDesoy

e user

OEBPS/Images/image00125.jpeg
©® 0 ® /g createanewenvionment x Michael

Lo C {) & Secure | https://us-east-2.console.aws.amazon.com/cloud9/home/create o Y| @ &
aws Services Resource Groups v % rallstutorial-aws v Ohlo v Support v
step1 6]
Name environment
step2
step3

Name environment

Environment name and description

Name
The name needs to /e per user. You can update it at any time in your environment settings.

ratzunorsl_<E———ai|S-tUtoFrial

Limit: 60 characters

Description
“This will appear on your environments card in your dashboard. You can update it at any time in your environment settings.

A cloud IDE for the Ruby on Rails Tutorial

@ Feedback Q@ English (US) Inc. or

Privacy Pollcy Terms of Use

