
a manual, guide, and reference

2

The Softcover Book
Frictionless selfpublishing

Michael Hartl

ii

Contents

1 Getting started 1
1.1 The Softcover typesetting system 3

1.1.1 Installing Softcover 5
1.1.2 Creating a Softcover book 9
1.1.3 HTML and the Softcover server 12
1.1.4 Building ebooks . 17
1.1.5 Cover images . 24

1.2 Publishing to the Softcover website 25
1.2.1 Publishing ebooks 25
1.2.2 One command to rule them all 26
1.2.3 Articles . 27

2 Introduction to Markdown 29
2.1 Headings . 30
2.2 Text formatting . 30

2.2.1 Blockquotes . 31
2.2.2 Source code . 32

2.3 Links and images . 32
2.3.1 PDF/PNG images . 34
2.3.2 Screenshots and other large images 36

2.4 Lists . 37
2.4.1 Numbered lists . 37
2.4.2 Unnumbered lists . 39
2.4.3 Paragraphs in lists 40

iii

iv CONTENTS

3 Softcoverflavored Markdown 43
3.1 The kramdown extensions 46

3.1.1 Tables . 47
3.1.2 Numbered footnotes 48
3.1.3 Miscellaneous features 49

3.2 Other advanced enhancements 50
3.2.1 GitHubflavored fenced code blocks 50
3.2.2 Leanpubstyle language blocks 52
3.2.3 Code inclusion . 54
3.2.4 Embedded math . 55

3.3 Embedded LATEX . 56
3.3.1 LATEX commands . 56
3.3.2 Labels and crossreferences 59
3.3.3 Tabular and tables 61
3.3.4 Figures . 64
3.3.5 Code listings . 67
3.3.6 Aside boxes . 68
3.3.7 Math and numbered equations 69
3.3.8 Colored text . 71
3.3.9 Inputting contents of other files 72

4 Customization and advanced options 75
4.1 Commandline interface . 75

4.1.1 Customizing builds 75
4.1.2 Customizing deploys 76

4.2 Commands and styles . 77
4.2.1 Custom commands 77
4.2.2 HTML style . 78
4.2.3 EPUB/MOBI style 79
4.2.4 PDF style . 80
4.2.5 Advanced figure placement 82

4.3 Foreignlanguage support . 84
4.3.1 Polyglossia and lang.yml 85
4.3.2 Terrifyingly advanced comments on Hungarian 87

CONTENTS v

4.4 Detailed refinements . 88
4.4.1 Overfull hboxes . 88
4.4.2 Problems with labels and crossreferences 89
4.4.3 EPUB validation . 90

5 Marketing and selling 93
5.1 Publishing a book . 93
5.2 Screencasts and other media 94
5.3 Book description . 95
5.4 Marketing page . 97

5.4.1 Prices . 97
5.4.2 Author information and testimonials 99
5.4.3 Frequently Asked Questions 101
5.4.4 Additional information 102

5.5 Site settings and customizations 102
5.5.1 Access options . 103
5.5.2 Custom domains . 105
5.5.3 Google Analytics . 105
5.5.4 Miscellaneous content 106

5.6 A typical launch sequence 107

6 PolyTEX tutorial 109
6.1 PolyTEX basics . 109

6.1.1 Generating a PolyTEX book 109
6.1.2 From Markdown to PolyTEX 110
6.1.3 PolyTEX vs. LATEX 110

6.2 Included commands . 111
6.2.1 Colored text . 111
6.2.2 Code inclusion . 112

vi CONTENTS

Chapter 1

Getting started
This is The Softcover Book—the manual for Softcover, a publishing platform
for technical authors. Softcover consists of two main parts: a stateoftheart
opensource ebook typesetting system (Section 1.1), and an online platform for
publishing, marketing, and selling ebooks and other digital goods (Section 1.2).
Based on the technology used to make the Ruby on Rails Tutorial book and The
Tau Manifesto, Softcover makes publishing frictionless by allowing authors to
build and deploy ebooks and other digital goods with a single command.

The Softcover production toolchain and publishing platform are especially
designed to help authors make the transition from “writing a book” to “building
a business,” using the following threestep plan:

1. Make ebooks, screencasts, etc.

2. Sell HTML and ebooks and multiple product bundles

3. Profit!!!

Of course, it’s not necessary to follow the Three Step Plan™ exactly, and Soft
cover can be used for many different purposes (Box 1.1).

Box 1.1. How to use Softcover

1

https://manual.softcover.io/book
https://github.com/softcover/softcover
https://www.softcover.io/
https://www.railstutorial.org/
https://tauday.com/tau-manifesto
https://tauday.com/tau-manifesto
http://www.youtube.com/watch?v=tO5sxLapAts

2 CHAPTER 1. GETTING STARTED

Softcover is a flexible tool, so it has many potential uses. The first use represents
Softcover’s principal design goal, but the others are valid possibilities as well:

• Make an HTML book, bundle ebooks with other digital goods, and sell
them from the Softcover.io online storefront

• Charge for all products (including the HTML book) at Softcover.io

• Produce ebooks with the Softcover typesetting system and give them away

• Produce ebooks with Softcover and sell them using the Softcover.io online
storefront

• Produce ebooks with Softcover and sell them from your own website

• Use Softcover to make ebooks out of technical documentation and host them
on an internal website

Softcover is inspired by the philosophy of full author ownership:

• Own your content: Authors retain copyright on all materials.

• Own your production toolchain: The Softcover typesetting system is
opensource, so you aren’t locked into a proprietary toolchain.

• Own your traffic: Softcover supports custom domains.

• Own your customer list: Authors get all relevant contact information
and never have to use an intermediary to communicate with their cus
tomers.

In short, Softcover is a publishing platform I would be happy to use even if I
weren’t one of the founders of the company.

https://www.softcover.io/
https://www.softcover.io/
https://www.softcover.io/

1.1. THE SOFTCOVER TYPESETTING SYSTEM 3

In the rest of this chapter, we’ll cover the steps needed to install and use
the Softcover typesetting system, which includes a commandline interface for
building and publishing ebooks. Subsequent chapters cover Markdown, the
default input format for Softcover (Chapter 2 and Chapter 3), and PolyTEX, a
more complicated but more powerful input format based on the LATEX typeset
ting language (Chapter 6).

1.1 The Softcover typesetting system
In this section, we’ll cover the basics of the Softcover opensource ebook type
setting system for technical authors. Its raison d’être is producing professional
grade multiformat ebooks from a common set of source files. In particular,
Softcover accepts input inMarkdown, a lightweight markup language, or Poly
TEX, a subset of the powerful LATEX typesetting language, and outputs ebooks
as HTML, EPUB, MOBI, and PDF. The Softcover system also comes with a
local server that automatically rebuilds a book’s HTML output when the source
files change, so that your favorite text editor and web browser combine to form
a realtime development environment for writing ebooks. Finally, authors can
use Softcover to upload ebooks and other media files to the Softcover website
with a single command (Section 1.2), thereby dramatically lowering the barrier
to publishing, updating, and selling digital information products.

Originally developed under the namePolyTEXnic1 to write theRuby on Rails
Tutorial book and The Tau Manifesto, Softcover has been rewritten and ex
panded as part of developing the Softcover publishing platform. True to its
origins, Softcover supports a wide range of features useful for writing technical
books, including mathematical typesetting (Eq. (1.1))2 and syntaxhighlighted
source code listings (Listing 1.1). It is also wellsuited to writing nontechnical
books, with support for chapters, sections, crossreferences, footnotes, lists, fig
ures, tables, etc.—the only requirement is that the author be technical. (If you

1PolyTEXnic is pronounced exactly like the English word polytechnic. The core inputtooutput conversion is
still handled by the polytexnic gem.

2Eq. (1.1) is written in rationalized MKS units (also known as “God’s units’’), which set µ0 = ϵ0 = 1. (In
addition to being beautiful, this choice of units gives us c = 1/

√
µ0ϵ0 = 1 for free.)

http://www.merriam-webster.com/dictionary/raison%20d'etre
https://www.softcover.io/
https://www.railstutorial.org/book
https://www.railstutorial.org/book
https://tauday.com/tau-manifesto
https://www.softcover.io/
http://www.thefreedictionary.com/polytechnic
http://en.wikipedia.org/wiki/MKS_system_of_units

4 CHAPTER 1. GETTING STARTED

know how to use the Unix command line and have a favorite text editor, you
are technical enough to use Softcover.)

∇ · E = ρ

∇ · B = 0

∇× E = −Ḃ
∇× B = J+ Ė

 Maxwell’s equations (1.1)

Listing 1.1: “Maxwell’s equations of software” in Scheme.

;; Implements Lisp in Lisp.

;; Alan Kay called this feat "Maxwell's equations of software", because just as

;; Maxwell's equations contain all of electrodynamics, `eval` and `apply`

;; contain all of computing.

;; Evaluates an arbitrary Scheme S-expression.

(define (eval exp env)

(cond ((self-evaluating? exp) exp)

((variable? exp) (lookup-variable-value exp env))

((quoted? exp) (text-of-quotation exp))

((assignment? exp) (eval-assignment exp env))

((definition? exp) (eval-definition exp env))

((if? exp) (eval-if exp env))

((lambda? exp)

(make-procedure (lambda-parameters exp)

(lambda-body exp)

env))

((begin? exp)

(eval-sequence (begin-actions exp) env))

((cond? exp) (eval (cond->if exp) env))

((application? exp)

(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))

(else

(error "Unknown expression type -- EVAL" exp))))

;; Applies a Scheme procedure to arbitrary arguments.

(define (apply procedure arguments)

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))

((compound-procedure? procedure)

(eval-sequence

(procedure-body procedure)

(extend-environment

(procedure-parameters procedure)

arguments

(procedure-environment procedure))))

https://www.learnenough.com/command-line
https://www.learnenough.com/text-editor
http://www.michaelnielsen.org/ddi/lisp-as-the-maxwells-equations-of-software/
https://en.wikipedia.org/wiki/Scheme_(programming_language)

1.1. THE SOFTCOVER TYPESETTING SYSTEM 5

(else

(error

"Unknown procedure type -- APPLY" procedure))))

Naturally, The Softcover Book itself is written using Softcover. Indeed, you
can consider this manual the de facto spec for the system: essentially everything
that Softcover can do, this document does. Because the source code of The
Softcover Book is available online, you can learn how to typeset anything you
see in this manual simply by referring to the corresponding place in the source.

1.1.1 Installing Softcover
The Softcover system is opensource software, distributed as a Ruby gem under
the permissive MIT License. The softcover gem currently works with ma
cOS and Linux, and we’re looking for people to help us adapt it to other OSes.
Join the Softcover Google Group to be part of that effort.

To get started with Softcover, first install Ruby (1.9.3 or higher) and in
stall RubyGems if you don’t have them already. Once you’ve done so, getting
Softcover is usually a simple gem install:

$ gem install softcover

If you run into any permissions issues, either use sudo3 or (preferred) use rbenv
to manage your Ruby environment and gems.

There have been some reports of installation issues on macOS (Mavericks
and later), so if you run into trouble with the previous step, try this command
instead:

$ gem install softcover -- --with-cppflags=-I/usr/local/opt/openssl/include

or possibly this:
3sudo gem install <gem name>

http://en.wikipedia.org/wiki/Specification_(technical_standard)
http://github.com/softcover/softcover_book
http://github.com/softcover/softcover_book
http://opensource.org/licenses/MIT
https://groups.google.com/forum/#!forum/softcover-publishing
https://www.ruby-lang.org/en/documentation/installation/
https://www.railstutorial.org/book#sec-install_rubygems
https://www.railstutorial.org/book#sec-install_rubygems
https://github.com/rbenv/rbenv#groom-your-apps-ruby-environment-with-rbenv

6 CHAPTER 1. GETTING STARTED

% gem install softcover -- \

--with-cflags="-Wno-error=implicit-function-declaration"

or this:

% gem install softcover -- --with-cppflags=-I/usr/local/opt/openssl/include \

--with-cflags="-Wno-error=implicit-function-declaration"

This installs the softcover commandline interface (CLI) for creating new
books, building ebooks, and publishing ebooks and other digital assets to the
Softcover website. On some systems, youmay have to install extra libraries; for
example, on Ubuntu I needed to install ruby1.9.1-dev to get the nokogiri
gem to install.

To build the full set of output formats, Softcover requires some external
dependencies. The softcover command will prompt you to install each de
pendency at the appropriate time, but many users will find it more convenient
to install all the dependencies at once. To check which dependencies need to
be installed on your system, run softcover check:

$ softcover check

Checking Softcover dependencies...

Checking for LaTeX... Found

Checking for ImageMagick... Found

Checking for Node.js... Found

Checking for PhantomJS... Found

Checking for Inkscape... Found

Checking for Calibre... Found

Checking for Java... Found

Checking for EpubCheck... Found

All dependencies satisfied.

In the unlikely case that you get the result above, congratulations—you have
nothing to install. More likely, though, softcover check will indicate sev
eral missing dependencies. The output in this case includes URLs for all rele
vant software, but for convenience we also include them here:

https://www.softcover.io/

1.1. THE SOFTCOVER TYPESETTING SYSTEM 7

• LaTeX
The LATEX download is big, so start downloading it now. Also, I strongly
recommend installing a precompiled version of LATEX and not building
it from source. Make sure to use the version of LATEX appropriate for
your system from the link above; in particular, macOS users should use
the MacTeX package rather than the version installed by Homebrew. Fi
nally, several macOS users have reported having to restart their terminal
program after installing MacTEX in order to enable the LATEX command
line programs (specifically, xelatex).

• ImageMagick

• Node.js

• PhantomJS (needed only for math output in EPUB and MOBI)
Development on the PhantomJS project has been suspended but the bi
naries should still work on most systems. If you have trouble installing
PhantomJS on Linux, see this Stack Overflow thread to see if it helps.
Finally, if you don’t plan to use LATEX for mathematical typesetting in
EPUB and MOBI output, you don’t need PhantomJS at all.

• Inkscape

• Calibre with the commandline tools (builtin on Linux; on macOS, see
below)

• Java (chances are you already have this one)

• EpubCheck 4.0.1 (unzip and place in a diretory on your path, i.e.,
$HOME/bin4)

OnmacOS, the Calibre commandline tools come included with calibre, but
in order to make them available you have to put them on your PATH. Using a

4If $HOME/bin does not exist, you can create it using mkdir $HOME/bin. Then move EpubCheck there
using mv epubcheck-4.0.1 $HOME/bin. Depending on your system, you might have to add $HOME/bin to
the path by editing and sourcing .bash_profile (as shown in Listing 1.2 and Listing 1.3).

http://latex-project.org/ftp.html
https://tug.org/mactex/mactex-download.html
http://www.imagemagick.org/script/binary-releases.php
http://nodejs.org/
http://phantomjs.org/
https://stackoverflow.com/questions/73004195/phantomjs-wont-install-autoconfiguration-error/73063745
http://inkscape.org/
http://calibre-ebook.com/
http://www.java.com/en/download/help/index_installing.xml
https://github.com/IDPF/epubcheck/releases/download/v4.0.1/epubcheck-4.0.1.zip

8 CHAPTER 1. GETTING STARTED

text editor, put the contents of Listing 1.2 at the end of your .bash_profile
file, and then run the source command in Listing 1.3 to update your shell.

Listing 1.2: Putting the Calibre executables on the PATH.
~/.bash_profile

.

.

.

export CALIBRE="/Applications/calibre.app/Contents/MacOS"

export PATH="$CALIBRE:$PATH"

Listing 1.3: Sourcing the bash profile.

$ source ~/.bash_profile

To see the commands supported by softcover, run softcover help at
the command line, as shown in Listing 1.4.

Listing 1.4: Viewing available Softcover commands with softcover

help.

$ softcover help

Commands:

softcover build, build:all # Build all formats

softcover build:epub # Build EPUB

softcover build:html # Build HTML

softcover build:mobi # Build MOBI

softcover build:pdf # Build PDF

softcover build:preview # Build book preview in all formats

softcover check # Check dependencies

softcover clean # Clean unneeded files

softcover config # View local config

softcover config:add key=value # Add to your local config vars

softcover config:remove key # Remove key from local config vars

softcover deploy # Build & publish book

softcover epub:validate, epub:check # Validate EPUB with epubcheck

softcover exercises # Add exercise id elements as spans

softcover help [COMMAND] # Describe available commands...

softcover login # Log into Softcover account

softcover logout # Log out of Softcover account

softcover new <name> # Generate new document directory structure

1.1. THE SOFTCOVER TYPESETTING SYSTEM 9

softcover open # Open book on Softcover website

softcover publish # Publish your book on Softcover

softcover publish:media # Publish media

softcover server # Run local server

softcover unpublish # Remove book from Softcover

softcover version # Return the version number (-v for short)

For convenience, Softcover also installs a shorter alias, sc, so you can (for
example) get the current version number by typing any of the following:

$ softcover version

$ softcover -v

$ sc version

$ sc -v

1.1.2 Creating a Softcover book
We see from Listing 1.4 that the way to generate a new Softcover book is with
softcover new <name>.5 Let’s try it out and see what happens; the results
are shown in Listing 1.5.

Listing 1.5: Generating an example book.

$ softcover new example_book

Generating directory: example_book

Creating chapters

Creating config

Creating epub

Creating epub/OEBPS

Creating epub/OEBPS/styles

Creating html

Creating html/jquery

Creating html/jquery/1.10.2

Creating html/stylesheets

Creating images

Creating images/figures

5Because Softcover books include a several elements that are specific to each book (including a symlink for
the images directory, an internal book id, and a UUID included to fulfill a requirement of the EPUB standard),
book directories should never be copied by hand to create new books. Instead, all new books should be generated
using softcover new, and then any necessary files should be copied over individually.

https://en.wikipedia.org/wiki/Universally_unique_identifier

10 CHAPTER 1. GETTING STARTED

Creating latex_styles

Creating screencasts

Creating .softcover-deploy

Creating Book.txt

Creating chapters/a_chapter.md

Creating chapters/another_chapter.md

Creating chapters/preface.md

Creating chapters/yet_another_chapter.md

Creating config/book.yml

Creating config/marketing.yml

.

.

.

Creating latex_styles/custom.sty

Creating latex_styles/custom_pdf.sty

Creating latex_styles/framed.sty

Creating latex_styles/softcover.sty

Creating latex_styles/upquote.sty

Creating README.md

Creating screencasts/.gitkeep

Done. Please update config/book.yml

Note: If your document is more naturally thought of as a single article rather
than as a book, you should use the article format instead, as discussed in Sec
tion 1.2.3. The tutorials at Learn Enough to Be Dangerous use this format.

The default book format generated by softcover new isMarkdown—or,
rather, a superset ofMarkdown that includes extensions tomake it more suitable
for writing longer documents. As discussed in Chapter 3, this includes features
such as select kramdown extensions (numbered footnotes, tables, etc.), GitHub
style code fencing, and embedded LATEX. Authors who want more finegrained
control over their documents (or who already know LATEX) can use softcover
new -p <name> to generate a PolyTEX template instead; see Chapter 6 for
details.

We see from Listing 1.5 that softcover new generates a bunch of files,
but the heart of it is the chapters/ directory, which contains the Markdown
source for the template book:

$ cd example_book

$ ls chapters/

a_chapter.md preface.md

another_chapter.md yet_another_chapter.md

https://www.learnenough.com/
https://github.com/gettalong/kramdown

1.1. THE SOFTCOVER TYPESETTING SYSTEM 11

The names of the template form a progression (“A chapter”, “Another chapter”,
“Yet another chapter”), but their order is not set by this progression. Rather, it
is specified by their order in the file Book.txt (Listing 1.6).

Listing 1.6: The default contents of Book.txt.
cover

frontmatter:

maketitle

tableofcontents

preface.md

mainmatter:

a_chapter.md

another_chapter.md

yet_another_chapter.md

Authors are encouraged to use the template files as a model but to change their
names so that they are better tailored to each book’s content. For the purposes
of this overview, though, we’ll stick with the defaults.

Softcover books also come with a book.yml configuration file contain
ing some book metadata (Listing 1.7). The slug represents the last part the
book’s URL at Softcover.io and should rarely need editing. You should gener
ally change the title, author, subtitle (if any), and description before publishing
the book to Softcover; as an example, Listing 1.8 shows the book.yml file
for The Softcover Book. See Section 4.4 and Chapter 5 to learn how to put the
finishing touches on before publication.

Listing 1.7: The default contents of book.yml.
config/book.yml

slug: example_book

filename: example_book

title: Title of the Book

subtitle: Change me

description: Change me.

author: Author Name

copyright: 2014

uuid: 7d9d7ba9-06e1-4e95-abca-a3cb102c4561

https://en.wikipedia.org/wiki/Clean_URL#Slug

12 CHAPTER 1. GETTING STARTED

Listing 1.8: The book.yml file for the present book.

slug: softcover_book

filename: softcover_book

title: The Softcover Book

subtitle: Frictionless self-publishing

description: The manual for the Softcover typesetting and publishing system

author: Michael Hartl

copyright: 2013

uuid: b2bfdd92-e5f1-4dc6-b7ce-4999e3870a12

pdf_preview_page_range: 1..30

epub_mobi_preview_chapter_range: 0..1

1.1.3 HTML and the Softcover server
To get started writing the example book, we’ll first build an HTML version:

$ softcover build:html

The result is a separate HTML file for each chapter in the html/ directory, as
well as a frontmatter file that contains everything that at the front of the book
before the main content (such as the book title, author name, table of contents,
preface, foreword, etc.).

Let’s take a look at the HTML for the frontmatter. On most systems, this
can be accomplished by using a filesystem viewer to navigate to the html/ di
rectory and doubleclicking on frontmatter.html. On macOS, we can ac
complish the same thing at the command line using the open command, which
opens the given file using the default application for that file type (which on my
system is Chrome):

$ open html/frontmatter.html

(Linux users can get the same result using xdg-open instead.) Assuming you
customized the default book.yml in Listing 1.7, you should get a result some
thing like the one shown in Figure 1.1.

1.1. THE SOFTCOVER TYPESETTING SYSTEM 13

Figure 1.1: Viewing the HTML file for the example book frontmatter.

Although inspecting raw HTML files is sometimes useful for debugging
purposes, the best way to develop Softcover books is to use the local Softcover
server, which detects when the source files have changed and automatically
refreshes the browser.6 (If you change a config or style file and want to rebuild
the page, simply resave one of the source files to prompt the server to refresh
the browser.)

To see how this works, let’s open up a new terminal tab (Figure 1.2), navi
gate to the book directory, and fire up softcover server:7

6Take care to attach only one browser at a time; otherwise, the Softcover server won’t know which browser to
refresh.

7For brevity, you can use s in place of server, as in softcover s. Since sc is an alias for softcover, you

14 CHAPTER 1. GETTING STARTED

$ softcover server

Building...Done. (0.6s)

Running Softcover server on http://localhost:4000

== Sinatra/1.4.4 has taken the stage on 4000 for development with backup from

Thin

Thin web server (v1.6.1 codename Death Proof)

Maximum connections set to 1024

Listening on 0.0.0.0:4000, CTRL+C to stop

(You may have to install a JavaScript runtime if you don’t have one installed
already; I recommend Node.js. Also, there have been some reports of the server
hanging on macOS, which is likely due to a recent change in the way macOS
handles SSL. Reinstalling Ruby should fix the issue.) Opening a browser and
navigating to
http://localhost:4000 then gives us a view of the HTML version of the first
chapter of the book (Figure 1.3)

can even write sc s to start the local server. This is a little cryptic, so in the text I write softcover server,
but in real life I nearly always just type sc s.

https://github.com/sstephenson/execjs
http://nodejs.org/
http://localhost:4000

1.1. THE SOFTCOVER TYPESETTING SYSTEM 15

Figure 1.2: Running the Softcover server in a separate tab.

16 CHAPTER 1. GETTING STARTED

Figure 1.3: Viewing the book on http://localhost:4000.

Writing books works just fine with a text editor and browser placed side
byside (Figure 1.4), but my favorite trick is to connect an iPad to the Softcover
server’s address on the local network, effectively using the iPad as an external
monitor. Then, when I save a source file, the iPad’s browsermagically refreshes
with the updated content. This setup is especially nice for people (like me) who
often work remotely and prefer for their production setup to be fully portable.8

For now, I suggest playing around with the server a little to get the hang of
8You can find the server’s local network address by examining the results of ifconfig; in my experience the

relevant address usually begins with 192 (when on the local wireless network) or 172 (when the iPad is attached
directly to the computer), so you can probably extract the right local address using the command ifconfig |

egrep '(172|192)'. Then add a colon and the port number (4000 by default). For example, on my system the
correct address to connect the iPad to is typically 172.20.10.3:4000.

http://localhost:4000

1.1. THE SOFTCOVER TYPESETTING SYSTEM 17

it, and then move on to building the various ebook formats (Section 1.1.4).
Note: softcover server also supports PDF output. See Section 1.1.4

for details.

Figure 1.4: Writing with the editor and browser sidebyside.

1.1.4 Building ebooks

As noted in Section 1.1, the Softcover system outputs HTML, EPUB, MOBI,
and PDF. We saw in Section 1.1.3 that HTML generation comes bundled with
the softcover gem; since EPUB is basically zipped HTML, EPUB gener
ation comes for free as well. On the other hand, generating MOBI and PDF
books requires installing some external dependencies, as does generating EPUB
books if they contain mathematics. The softcover command will automat
ically prompt you to install the relevant software when the time comes; for
example, if you try to build a PDF on a system without LATEX, you’ll get this
prompt with a link to the LATEX installation page:

18 CHAPTER 1. GETTING STARTED

$ softcover build:pdf

Building PDF...

Document not built due to missing dependency

Install LaTeX (http://latex-project.org/ftp.html)

I recommend installing all the dependencies at once, as described in
Section 1.1.1.

EPUB

EPUB books are essentially HTML combined with CSS and various configu
ration files, all zipped together in one package. (The easiest way to see this is
to change an EPUB file’s extension from .epub to .zip and doubleclick it to
unzip it.) Getting all the details just right is a real pain, though, so Softcover
takes care of it for you.

There are no dependencies for building EPUB books unless the source con
tains mathematics, so if you want you can remove the math from the generated
book and build the EPUB immediately. Otherwise, you’ll need to install Phan
tomJS and Inkscape. Building the EPUB is easy once any necessary dependen
cies are installed:

$ softcover build:epub

By default, the output of build:epub is verbose, but you can pass command
line options to make it quiet (-q) or silent (-s).

The generated EPUB book is located in the ebooks directory:

$ ls ebooks/

example_book.epub

If you don’t already have an EPUB viewer installed on your computer, I suggest
AdobeDigital Editions. OnmacOS, if AdobeDigital Editions is associatedwith
.epub files, you can open the example book EPUB like this:

http://phantomjs.org/
http://phantomjs.org/
http://inkscape.org/
http://www.adobe.com/products/digital-editions.html

1.1. THE SOFTCOVER TYPESETTING SYSTEM 19

$ open ebooks/example_book.epub

The result appears in Figure 1.5. (Note: As of macOS Mavericks, you can also
use iBooks to open EPUB files.)

Figure 1.5: The example book EPUB.

MOBI

Once you’ve built an EPUB book, making a MOBI (the native format for Ama
zon.com’s Kindle) is easy. The default method is to useCalibre, an opensource
ebook manager. To get started, install Calibre and then follow the instructions
from Section 1.1.1 to enable the Calibre command line tools. Once you’ve done
that, you can build a MOBI file as follows:

http://calibre-ebook.com/

20 CHAPTER 1. GETTING STARTED

$ softcover build:mobi

As with EPUB, you can use commandline options to make the MOBI builder
quiet (-q) or silent (-s).

To view the MOBI file on your computer, I recommend installing Kindle
Reader. The result appears in Figure 1.6.

Figure 1.6: The example book MOBI.

PDF

Although the EPUB and MOBI ebooks formats are increasingly popular, my
preferred ebook format (especially for technical books) is PDF. Building PDF

http://www.amazon.com/gp/feature.html?docId=1000493771
http://www.amazon.com/gp/feature.html?docId=1000493771

1.1. THE SOFTCOVER TYPESETTING SYSTEM 21

books requires installing LaTeX (specifically, the xelatex executable, which
is a Unicodefriendly PDF builder). LATEX is a large download, but it’s easy to
install, and in fact you may already have it:

$ which xelatex

If that command returns the path to xelatex, you can skip the installation step.
In any case, building a PDF is easy once LATEX is installed:

$ softcover build:pdf

The result appears in Figure 1.7.

Figure 1.7: The example book PDF.

http://latex-project.org/ftp.html

22 CHAPTER 1. GETTING STARTED

The softcover build:pdf command dumps a lot of output to the
screen, and as with EPUB and MOBI you can use commandline options to
make the PDF builder quiet (-q) or silent (-s), but I strongly recommend using
the default verbose option unless you’re sure the file will build without error.
The issue is that xelatex will hang on LATEX syntax errors, and you need to be
able to type x to exit. (Remember this: type x to exit when the PDF builder
hangs.)

By default, the PDF builder runs twice to ensure all crossreferences are
updated, but if the crossreferences haven’t changed (or if your book doesn’t
have any) you can pass an option to make it run only once:

$ softcover build:pdf --once

This not only saves valuable time when building a longer book, but it is also
useful when you’re debugging a LATEX syntax error and you don’t want to keep
pressing x twice every time you run the command.

As noted in Section 1.1.3, the latest version of softcover server also
supports PDF output:

$ softcover server --pdf

In this case, the server will rebuild the PDF using

softcover build:pdf --once

under the hood. This is especially useful when typesetting documents (such as
mathheavy manuscripts) that include formatting not fully supported by HTML
output but work fine in PDF. In such cases, it is strongly recommended to use
a PDF viewer like Skim that can be configured to reload modified PDFs auto
matically. (To configure Skim to autoreload PDFs, go to Skim > Preferences,
click Sync, and then select “Check for file changes” and check “Reload auto
matically”. Strangely, neither Adobe Acrobat Reader nor macOS Preview can
do such autoreloading as of this writing.)

https://skim-app.sourceforge.io/

1.1. THE SOFTCOVER TYPESETTING SYSTEM 23

All formats

Once you’ve installed all the dependencies as above, you can build all formats
at once:

$ softcover build:all

On my system (an older MacBook Air), Softcover builds the template book (all
formats) in under 15 seconds:

$ time softcover build:all --silent

real 0m14.159s

user 0m12.086s

sys 0m1.185s

The behavior of softcover build:all is customizable via the
.softcover-build file. See Section 4.1.1 for details.

Previews

Finally, Softcover can optionally build a preview of your book in each output
format, which is a particularly useful feature when selling your ebook (either on
your own website or at Softcover). Because of the different ways the PDF and
EPUB/MOBI formats work, there are two separate ways to specify the preview
range. (You have to keep them roughly in sync by hand, but it’s rarely important
for the preview ranges to be exact, so this isn’t a big problem in practice.) The
configuration for PDF is a page range, while for EPUB/MOBI it’s a chapter
range (with “Chapter 0” being frontmatter like the table of contents, preface,
etc.). Both ranges are specified in book.yml (Listing 1.9).

Listing 1.9: Specifying the preview ranges in book.yml.
config/book.yml

https://www.softcover.io

24 CHAPTER 1. GETTING STARTED

.

.

.

pdf_preview_page_range: 1..30

epub_mobi_preview_chapter_range: 0..1

The previews themselves are built as follows:

$ softcover build:preview

The full Softcover publishing platform automatically uploads all the ebook
files, including the preview for each format, and makes it simple to distribute
them to your readers. We’ll learn how to do this in the next section (Section 1.2).

Debugging tip

Building ebooks generates many temp and auxiliary files that can sometimes
get corrupted and ruin the build, so Softcover provides a utility to clean up the
working directory by removing such files:

$ softcover clean

If your ebook build build hangs when you think it should be working, try run
ning softcover clean to see if that helps.

1.1.5 Cover images
Softcover comes with default cover images, which you should change before
distributing any of the formats or deploying the the Softcover website (Chap
ter 5). The files appear as follows:

$ ls images/cover*

images/cover-web.png images/cover.jpg images/cover.pdf images/cover.png

1.2. PUBLISHING TO THE SOFTCOVER WEBSITE 25

If present, the file cover.jpg is used for EPUB and MOBI output; otherwise,
cover.png is used. Meanwhile, cover.pdf is used for the PDF. (Eventually
we plan to automatically generate a smaller cover image for display on the web,
but for now you need to make a separate image called cover-web.png as
well.)

1.2 Publishing to the Softcover website
The softcover commandline client includes commands for interacting with
the Softcover.io website, making it easy to publish the book (in all its formats)
to the live web. In this section, we’ll discuss the steps needed to see a book
inprogress during the writing process; Chapter 5 discusses the details needed
when preparing to make your book publicly available.

1.2.1 Publishing ebooks
To get started with Softcover.io, first create an account. Once you have an
account, log in using the CLI as follows:

$ softcover login

At this point, you’re ready to publish to the live site:

$ softcover build:all

$ softcover build:preview

$ softcover publish

You can now navigate to your book using your web browser, and in macOS
and Linux you can open the book at the command line as well:

$ softcover open

https://www.softcover.io
https://www.softcover.io
https://www.softcover.io

26 CHAPTER 1. GETTING STARTED

The result appears in Figure 1.8.

Figure 1.8: The HTML book on the live website.

1.2.2 One command to rule them all

For convenience, Softcover comeswith a deploy command to build everything
and publish the result:

$ softcover deploy

By default, this is equivalent to the following three steps:

1.2. PUBLISHING TO THE SOFTCOVER WEBSITE 27

$ softcover build:all

$ softcover build:preview

$ softcover publish

The behavior of softcover deploy is customizable via the
.softcover-deploy file in the book’s root directory. See Section 4.1.2 for
details.

Using softcover deploymakes publishing to the Softcoverwebsite com
pletely frictionless: make a change, type softcover deploy, and your book
(in all output formats) is updated automatically.

1.2.3 Articles
Softcover also supports the LaTeX article format, which produces an ebook
that is effectively a single chapter. As mentioned above, the tutorials at Learn
Enoughrobot armies to Be Dangerous use this format.

You can generate an article using the -a option to softcover new:

$ softcover new -a example_article

The discussion above regarding HTML, the Softcover server, ebook formats,
etc., applies to articles as well.

https://www.learnenough.com/
https://www.learnenough.com/

28 CHAPTER 1. GETTING STARTED

Chapter 2

Introduction to Markdown

As noted in Chapter 1, the default input format for Softcover is Markdown, a
lightweight markup language designed to be humanfriendly and easily con
vertible to HTML.1 Unfortunately, by itself Markdown is a little too light
weight, and the original “vanilla” Markdown is generally inadequate for pro
ducing professionally typeset documents. (For example, vanilla Markdown is
unable to produce numbered footnotes.2) Softcover therefore supports a super
set of vanilla Markdown, including select kramdown extensions, GitHubstyle
fenced code blocks, and embedded LATEX. The Softcover dialect of Markdown
is, to our knowledge, the most powerful one available, with support for figures,
tables, code listings, and mathematical equations (all with numbered, linked
crossreferences).

The rest of this chapter includes a quick tutorial on vanilla Markdown.
Readers who already know vanilla Markdown can skip to Chapter 3 for cover
age of the custom Softcover extensions.

Being productive in Markdown requires only a subset of the full language,
and the following material is an opinionated survet of Mardown’s most useful
features. For a comprehensive treatment of Markdown syntax, see the syntax
page by John Gruber (Markdown’s principal creator).

1http://daringfireball.net/2004/03/dive_into_markdown
2Like this.

29

http://kramdown.gettalong.org/
https://help.github.com/articles/github-flavored-markdown#fenced-code-blocks
http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/2004/03/dive_into_markdown

30 CHAPTER 2. INTRODUCTION TO MARKDOWN

2.1 Headings
At the highest level, Markdown documents are structured like HTML, with a
convenient syntax for defining the equivalent of HTML headings (h1, h2, etc.).
There are actually several equivalent syntaxes, but my favorite is simply to use
the pound character #:

Top-level heading (h1)

Lorem ipsum

Second-level heading (h2)

Dolor sit amet

Third level (h3)

Consectetur

Fourth (h4)

dipisicing elit

Softcover currently supports headings down to #### (h4, corresponding to a
“subsubsection” in LATEX).

It is important to note that each Softcover chapter file corresponds to exactly
one chapter. This means that you can only include one toplevel # heading in
any given file.

2.2 Text formatting
Markdown supports italicized text using two different formats (asterisks or un
derscores):

Markdown supports *italicized* text using _two_ different formats

It also supports boldface via double asterisks:

2.2. TEXT FORMATTING 31

It also supports **boldface** via double asterisks

The two formats can be nested using a combination of asterisks and underscores,
yielding boldface italic:

yielding _**boldface italic**_

2.2.1 Blockquotes
Blockquotes are supported using right angle brackets, which is inspired by the
format of quoted replies in plaintext email clients:

Il semble que la perfection soit atteinte non quand il n’y a plus
rien à ajouter, mais quand il n’y a plus rien à retrancher.

—Antoine de SaintExupéry, Terre des hommes

This quote3 is produced by the code in Listing 2.1.

Listing 2.1: Typesetting a blockquote. Compare with Listing 3.1.

> Il semble que la perfection soit atteinte non

> quand il n'y a plus rien à ajouter,

> mais quand il n'y a plus rien à retrancher.

> —Antoine de Saint-Exupéry, *Terre des hommes*

Note the use of theUnicode emdash ‘—’; Softcover (but not vanillaMarkdown)
also supports LATEXstyle triple dashes, with --- being set as ‘—’ (Section 3.3).

I generally find Markdown’s style of blockquote syntax fine when an email
program automatically puts in the > brackets, but it’s cumbersome to put them
in by hand. Good text editors can make constructing blockquotes easier, but it
still involves more friction than I’d like. I think LATEX’s syntax is nicer (Sec
tion 3.3.1), especially since it can more easily be produced by a texteditor
macro or tab trigger, but the default syntax may be more familiar.

3Usually translated as “Perfection is achieved, not when there is nothing more to add, but when there is nothing
left to take away.”

http://en.wikipedia.org/wiki/Dash#Em_dash

32 CHAPTER 2. INTRODUCTION TO MARKDOWN

2.2.2 Source code
Markdown can also format source code and other verbatim text. Backticks
indicate inline code, as in the def keyword:

as in the `def` keyword

Code blocks can be set using four spaces of indentation, with

def hello

puts "hello, world!"

end

being produced by

def hello

puts "hello, world!"

end

Note that this is not my preferred method for including source code, and I
strongly encourage using GitHubstyle code fencing (Section 3.2.1) instead.

2.3 Links and images
Markdown supports hypertext links through a convenient format inspired by
common usage in email, where you might write something like this as:

Check out the Ruby on Rails Tutorial (https://www.railstutorial.org/)

Markdown adds one piece of syntax to resolve the ambiguity of exactly which
text corresponds to the link, thus letting you check out the Ruby on Rails Tuto
rial as follows:

https://www.railstutorial.org/
https://www.railstutorial.org/

2.3. LINKS AND IMAGES 33

check out the [Ruby on Rails Tutorial](https://www.railstutorial.org/)

Images follow a similar syntax, with the text being preceded by an excla
mation point. This allows you to embed images like so:

This allows you to embed images like so:

![Michael Hartl](images/figures/01_michael_hartl_headshot.jpg)

Due to the details of how Softcover processes Markdown, unfortunately the
bracketed text does not get used as the image alt text; instead, the filename
(minus extension) gets used:4

![Michael Hartl](images/figures/01_michael_hartl_headshot.jpg)

<img alt="01_michael_hartl_headshot"

src="images/figures/01_michael_hartl_headshot.jpg" />

As a result, it’s a good idea to use meaningful filenames for images for the sake
of those using screen readers or other nonstandard browsers.

Images in vanilla Markdown are limited to embedding as above, but Soft
cover extends Markdown to provide a wide variety of other behavior, including
captioned images, numbered figures, and numbered figures with captions (Sec
tion 3.3.4).

4The issue is that LATEX images have no notion of “alt text”, so that information is lost in translation. (This is
a slight disadvantage of converting Markdown to LATEX before converting to HTML, though the advantages more
than compensate for it.)

34 CHAPTER 2. INTRODUCTION TO MARKDOWN

2.3.1 PDF/PNG images

Because PDF and HTML treat images differently, sometimes it’s useful to be
able to include PDF images in PDF documents and PNG images in HTML/
EPUB/MOBI. Softcover supports this automatically via a simple convention:
if you include an image with a .pdf extension, the corresponding .png file
will be used in the HTML version. For example, this ModelViewController
image from the Ruby on Rails Tutorial:

2.3. LINKS AND IMAGES 35

Controller Model

View

Database

is produced with the code

![Model View Controller](images/figures/mvc_schematic.pdf)

which uses mvc_schematic.pdf in the PDF and mvc_schematic.png in

36 CHAPTER 2. INTRODUCTION TO MARKDOWN

the HTML output. The only requirement is that both files exist in the correct
location.

2.3.2 Screenshots and other large images
Screenshots are one of the most common types of images to include in a tech
nical book, as seen here:

Softcover comes with a script to make including them easier (macOS only):

1. Use ShiftCommand4 to take a screenshot.

2. Run rename_screenshot <name> to rename the screenshot and place
it in a standard location in your document folder (images/figures).

2.4. LISTS 37

Step 2 does two things: it first finds the most recently modified PNG file on
the desktop, and then moves it (while renaming it) to the images/figures/
directory.

Note that <name> should omit the file type, as PNG is assumed. For exam
ple, when we run

$ rename_screenshot foo_bar

the most recent screenshot is renamed to the file images/figures/foo_-
bar.png. Also, rename_screenshot assumes you are versioning your project
with Git; if you aren’t, see Learn Enoughrobot armies Git to Be Dangerous to
learn how.

2.4 Lists
Markdown supports both numbered and unnumbered lists, corresponding to
HTML ol and ul environments, respectively.

2.4.1 Numbered lists
Numbered lists are simple:

1. Foo

2. Baz

3. Quux

Numbered lists are simple:

1. Foo

2. Baz

3. Quux

https://www.learnenough.com/git-tutorial

38 CHAPTER 2. INTRODUCTION TO MARKDOWN

One counterintuitive aspect of numbered lists is that the numbering need not
be sequential; instead, the numbering is handled automatically by the HTML
 tag. This means that the following list is effectively the same as the one
above:

1. Foo

2. Baz

3. Quux

This means that the following list is effectively the same as the one above:

3. Foo

1. Bar

2. Quux

Though potentially confusing, this behavior is nice when you need to insert
an element into the list but you don’t want to have to renumber all the other
elements by hand:

1. Foo

2. Bar

3. Baz

4. Quux

you don't want to have to renumber all the other elements by hand:

1. Foo

2. Bar

2. Baz

3. Quux

2.4. LISTS 39

2.4.2 Unnumbered lists
Unnumbered lists are even easier than numbered lists:

• Foo

• Bar

• Baz

Unnumbered lists are even easier than numbered lists:

* Foo

* Bar

* Baz

You can alternately uses minuses (or even pluses) instead of asterisks:

• One fish

• Two fish

• Red fish

• Blue fish

You can alternately uses minuses (or even pluses) instead of asterisks:

- One fish

- Two fish

- Red fish

- Blue fish

Mixing different bulletpoint styles is particularly nice when making nested
lists:

• Foo

– Bar

40 CHAPTER 2. INTRODUCTION TO MARKDOWN

– Baz

• Quux

nice when making nested lists:

* Foo

- Bar

- Baz

* Quux

2.4.3 Paragraphs in lists
In the case of both numbered and unnumbered lists, you can put a paragraph in
a list element by indenting the desired paragraphs four spaces, like so:

1. Foo
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat.

2. Baz

3. Bar
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id est laborum.

you can put a paragraph in a list element by indenting the desired paragraphs

four spaces, like so:

1. Foo

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,

2.4. LISTS 41

quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo

consequat.

1. Baz

1. Bar

Duis aute irure dolor in reprehenderit in voluptate velit esse

cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non

proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

42 CHAPTER 2. INTRODUCTION TO MARKDOWN

Chapter 3

Softcoverflavored
Markdown
As noted in Chapter 2, the classic implementation of Markdown is beautifully
simple but is not adequate for serious typesetting. Softcover therefore sup
ports a superset of vanilla Markdown called Softcoveredflavored Markdown
(SFM), which includes select kramdown extensions (Section 3.1), advanced en
hancements such as GitHubstyle fenced code blocks (Section 3.2), and super
advanced additions via embedded LATEX (Section 3.3). As noted in Chapter 2,
the Softcover dialect of Markdown is, to our knowledge, the most powerful one
available.

Softcoverflavored Markdown derives much of its power by converting
Markdown first to PolyTEX, a strict subset of the LATEX typesetting language
(Section 1.1), and then from PolyTEX to HTML, EPUB, MOBI, and PDF. The
result is an abstraction layer over the underlying LATEX;1 by allowing embedded
LATEX as well, Softcover lets users pierce this abstraction layer to typeset things
impossible for vanilla Markdown—for example, “typewriter text is dif‐
ferent from code”. (See Section 3.3 to learn how to typeset this.)

The resulting hybrid input language, though powerful, can get a bit messy,
and adding features toMarkdown as described above is a prime example of how
weak systems tend to evolve toward strong ones in an ad hoc way (Box 3.1).

1This manual uses “PolyTEX” when the distinction with LATEX is important and “LATEX” otherwise.

43

http://kramdown.gettalong.org/
https://en.wikipedia.org/wiki/Abstraction_layer
http://en.wikipedia.org/wiki/Ad_hoc

44 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

Users who want a consistent input syntax with maximum control can dispense
with the abstraction layer and write in raw PolyTEX instead (Chapter 6). In
deed, because the Markdown conversion runs through the PolyTEX pipeline,
it’s possible to start with Markdown and change over to PolyTEX at any time
(Section 6.1.2).

Box 3.1. Markdown, PolyTEX, and Hartl’s Tenth Rule of Typesetting

I’ve been a fan of Markdown since it first appeared in 2004. Markdown is my first
choice for things like README files and short news announcements, and in my
view Markdown deserves the enormous popularity it has achieved. Indeed, in a
sense it has succeeded a little too well, to the point where people use it even when
it may not be the best tool for the job. In particular, because it is essentially a thin
layer on top of HTML, the original “vanilla” Markdown is illsuited to producing
longer or more structured documents. As a result, virtually every system using
“Markdown” for ebook publishing in reality uses some augmented version of the
original markup language—an implicit acknowledgment that vanilla Markdown is
insufficient for industrialstrength typesetting.

On the other end of the spectrum from Markdown is LATEX, an industrial
strength typesetting system if ever there was one. LATEX, like the Lisp program
ming language in its domain, can essentially “do anything”; thus, in the spirit of
Greenspun’s Tenth Rule of Programming on Lisp, I hereby offer the following
maxim on LATEX:

Hartl’s Tenth Rule of Typesetting
Any sufficiently complicated typesetting system contains an ad hoc,
informally specified, bugridden, slow implementation of half of LATEX.

Looking at the everexpanding definition of “Markdown”—from GitHubflavored
Markdown to kramdown to Softcoverflavored Markdown itself—we see the pat
tern of Hartl’s Tenth Rule emerge. (As with Greenspun’s Tenth Rule of Program
ming, there are no rules 1–9 preceding Hartl’s Tenth Rule of Typesetting; calling
it the “tenth rule” is part of the joke.)

https://github.com/softcover/softcover/blob/master/README.md
http://news.railstutorial.org/
https://en.wikipedia.org/wiki/Greenspun's_tenth_rule
http://github.github.com/github-flavored-markdown/
http://github.github.com/github-flavored-markdown/
http://kramdown.gettalong.org/

45

Of course, there’s no law saying that we have to use Markdown, augmented
or otherwise, and Hartl’s Tenth Rule suggests a second possibility: actually us
ing LATEX. Since LATEX is designed to make printquality formats like PostScript
and PDF, we do have to make some concessions when outputting multiformat
ebooks, mainly because the popular EPUB andMOBI formats ultimately are based
on HTML, and there’s simply no general mapping from LATEX to HTML. But what
we can do is support a subset of LATEX that maps nicely to HTML (and thence to
EPUB and MOBI). The result is a version of LATEX that supports polymorphic out
put—i.e., PolyTEX. (Unfortunately, even PolyTEX can’t fully escape Hartl’s Tenth
Rule, since producing HTML output from LATEX requires writing just such an im
plementation of half of LATEX. But by using PolyTEX we at least avoid creating an
ad hoc, informally specified syntax as well.)

PolyTEX, at the cost of some complexity, gives authors considerably more
power, flexibility, and extensibility than any variant of Markdown, Softcover
flavoredMarkdown included. If you already know HTML orMarkdown, PolyTEX
is not hard to learn, with the only really scary syntax being for math input—but if
you want to typeset mathematics, you need to learn LATEX anyway:(

− h̄2

2m
∇2 + V

)
ψ = Eψ

(
p

q

)(
q

p

)
= (−1)[(p−1)/2][(q−1)/2] (p, q distinct odd primes)

(These are the timeindependent Schrödinger equation and the law of quadratic
reciprocity, respectively.) As a bonus, the resulting .tex files have the highest
level of trustworthiness of any file extension (Figure 3.1).

Despite my fondness for Markdown, PolyTEX’s superior power makes it my
preferred Softcover input format. If your curiosity about PolyTEX has been piqued,
Chapter 6 will help get you started.

https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation#Time-independent_equation
https://en.wikipedia.org/wiki/Quadratic_reciprocity
https://en.wikipedia.org/wiki/Quadratic_reciprocity

46 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

Figure 3.1: XKCD 1301.

3.1 The kramdown extensions
The kramdown [sic] project is a pureRuby library that supports a superset of
Markdown inspired by Maruku and PHP Markdown Extra. From the perspec
tive of the Softcover platform, the most important additions are support for
simple embedded tables and numbered footnotes.

The Softcover system piggybacks on kramdown’s internals, which include
a MarkdowntoLATEX converter to support PDF output. As a result, Softcover
doesn’t support kramdown syntax (such as embedded div tags) that can’t be
converted naturally to LATEX. This means that Softcover is intentionally less
flexible in this regard in order to avoid the supporting HTML output that doesn’t
also work in PDFs.

http://www.xkcd.com/1301/
http://kramdown.gettalong.org/
https://en.wikipedia.org/wiki/Sic
http://maruku.rubyforge.org/
http://michelf.ca/projects/php-markdown/extra/

3.1. THE KRAMDOWN EXTENSIONS 47

3.1.1 Tables
The kramdown converter includes a lightweight syntax for making tables using
pipes (|), dashes (-), and equals signs (=). Pipes define cells as follows:

A simple table
with multiple lines

This is produced by the following code:

| A simple | table |

| with multiple | lines|

Slightly more complicated tables can be defined using dashes to define a
header and equals signs to define a footer:

Header1 Header2 Header3
cell1 cell2 cell3
cell4 cell5 cell6
cell1 cell2 cell3
cell4 cell5 cell6
Foot1 Foot2 Foot3

This is produced by the following code

| Header1 | Header2 | Header3 |

|---------|---------|---------|

| cell1 | cell2 | cell3 |

| cell4 | cell5 | cell6 |

| cell1 | cell2 | cell3 |

| cell4 | cell5 | cell6 |

|=======

| Foot1 | Foot2 | Foot3

One important caveat is that dashes can’t be used to define horizontal rules,
so

48 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

| Header1 | Header2 | Header3 |

|---------|---------|---------|

| cell1 | cell2 | cell3 |

|---------|---------|---------|

| cell4 | cell5 | cell6 |

produces

Header1 Header2 Header3
cell1 cell2 cell3
cell4 cell5 cell6

instead of the expected

Header1 Header2 Header3
cell1 cell2 cell3
cell4 cell5 cell6

Authors who want to produce tables with horizontal rules (or other more com
plicated effects) should use embedded LATEX (Section 3.3) or PolyTEX (Chap
ter 6).

3.1.2 Numbered footnotes
Vanilla Markdown doesn’t support numbered footnotes, so kramdown adds
them using the following syntax:2

kramdown adds them using the following syntax:[^example_footnote]

.

.

.

[^example_footnote]: This is an example footnote.

The vertical ellipsis indicates that intervening text has been omitted, and the
code

2This is an example footnote.

3.1. THE KRAMDOWN EXTENSIONS 49

[^example_footnote]: This is an example footnote.

conventionally appears at the bottom of the file. Note that the order of the
footnotes is determined by the order of their appearance in the main text; the
order at the bottom of the file is irrelevant.

3.1.3 Miscellaneous features
In addition to tables and footnotes, kramdown includes other miscellaneous
features, including a verbatim override to prevent Markdown processing. This
means, for example, that you can typeset a literal example of Markdown’s
doubleasterisk boldface syntax **like this**:

you can demonstrate Markdown's double-asterisk boldface syntax

{::nomarkdown}**like this**{:/}

(I personally find this syntax ugly and hard to remember, and prefer to type
set inline verbatim text using LATEX’s \verb syntax; see Section 3.3.1 for de
tails.)

If you just want to escape individual characters, such as *, you can do so
with a backslash:

such as *, you can do so with a backslash

Here are some other common characters you might want to escape:

* asterisk

` back tick

<< left guillemet

>> right guillemet

{} braces

| Unix pipe

50 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

Note that some of LATEX’s special characters, such as $, are automatically es
caped when using Markdown input.

Finally, in kramdown snake_case_words appear with underscores (a feature
it shares with GitHubflavored Markdown). This is convenient because vanilla
Markdown would interpret the underscores as emphasis, yielding “snakecase
words”, which probably isn’t what you intended.

3.2 Other advanced enhancements
Softcoverflavored Markdown includes several additional advanced enhance
ments over vanillaMarkdown and kramdown. Principal among these are fenced
code blocks (Section 3.2.1), which are the preferred way to include code blocks
in the Softcover system, and code inclusion (Section 3.2.3), which allows you
to include code snippets from the local filesystem into the current document.

3.2.1 GitHubflavored fenced code blocks
Softcover borrows one key feature from Githubflavored Markdown, namely,
fenced code blocks, or “code fencing” for short. This syntax involves placing
code samples inside “fences” composed of three backticks (```):

"Hello, world!" in Ruby

def hello

puts "hello, world!"

end

In Markdown, this is produced by the following code:

```

# "Hello, world!" in Ruby

def hello

puts "hello, world!"

end

```

https://help.github.com/articles/github-flavored-markdown
https://help.github.com/articles/github-flavored-markdown#fenced-code-blocks

3.2. OTHER ADVANCED ENHANCEMENTS 51

FollowingGitHub’s example, Softcover supports an optional string after the
opening of the fence indicating the language of the sample, yielding language
specific syntax highlighting:

Prints a greeting.

def hello

puts "hello, world!"

end

This is produced by the following Markdown:

```ruby

# Prints a greeting.

def hello

puts "hello, world!"

end

```

The language designation (e.g., ruby) can be any language supported by the
available Pygments lexers which is most of them, including Ruby and LATEX
(though not, annoyingly, Markdown). For example, here is the highlighting for
a combination of HTML and PHP:

Name: <input type="text" name="name" value="<?php echo $name;?>">

This is produced by the code

```html+php

Name: <input type="text" name="name" value="<?php echo $name;?>">

```

As a final enhancement, Softcover adds a hook directly into the Pygments
formatter options via an options hash. This allows, for example, turning on line
numbering and highlighting specific lines:

http://pygments.org/docs/lexers/
http://pygments.org/docs/formatters/
http://pygments.org/docs/formatters/

52 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

1 # Prints a greeting.

2 def hello

3 puts "hello, world!"

4 end

This is produced by the following Markdown:

```ruby, options: "linenos": true, "hl_lines": [1, 3]

# Prints a greeting.

def hello

puts "hello, world!"

end

```

Here the hash

options: "linenos": true, "hl_lines": [1, 3]

gets passed directly to Pygments, so any option listed on the Pygments formatter
options page is automatically supported by Softcover.

Because of how Softcover processes code blocks, any text immediately af
ter code will be treated as a new paragraph. This isn’t a problem in HTML
output, but in the ebook formats (EPUB, MOBI, and PDF) new paragraphs are
indented by default. If this isn’t what you want—i.e., if the code block should
be considered part of the middle of a paragraph—it is necessary to prepend the
LATEX command \noindent before the first line after the block, as follows:

```ruby

# Prints a greeting.

def hello

puts "hello, world!"

end

```

\noindent This is produced by the following Markdown

See Section 3.3.1 for more details.

http://pygments.org/docs/formatters/
http://pygments.org/docs/formatters/

3.2. OTHER ADVANCED ENHANCEMENTS 53

3.2.2 Leanpubstyle language blocks
SFMsupports indented code blockswith an explicit language designation, which
is based on Leanpub’s proprietary Markdown variant. This is mainly useful
when using SFM to talk about SFM. In particular, plain code fences can’t talk
about themselves, because there’s no way for the parser to know if the first in
ner ``` is the end of a fenced block or the beginning of example code. Thus,
a code block like

```

# "Hello, world!" in Ruby

def hello

puts "hello, world!"

end

```

can’t be set by nesting one fenced block inside another. Instead, we use

{lang="text"}

```

# "Hello, world!" in Ruby

def hello

puts "hello, world!"

end

```

where the line

{lang="text"}

specifies the language explicitly (in this case, text, because, as noted in Sec
tion 3.2.1, Pygments lacks a Markdown lexer).

Although this syntax can be used to typeset highlighted code like

Prints a greeting.

def hello

puts "hello, world!"

end

http://leanpub.com/

54 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

using

{lang="ruby"}

Prints a greeting.

def hello

puts "hello, world!"

end

I virtually always prefer to use code fencing instead, i.e.,

```ruby

# Prints a greeting.

def hello

puts "hello, world!"

end

````

3.2.3 Code inclusion
Softcover supports code inclusion directly from local files, such as this program
to wish “goodnight” to the Moon:

Prints a lunar valediction.

def goodnight

puts "Goodnight, Moon!"

end

The corresponding file is in source/goodnight.rb, so the markup

<<(source/goodnight.rb)

includes the source of the file into the current document. Because Softcover
automatically associates the .rb filename extension with the code block, syn
tax highlighting comes for free via Pygments. For extensions that Pygments
doesn’t understand, you can add additional information as in Section 3.2.1. For
example, this is the book.yml file for a newly generated example book (last
seen in Listing 1.7):

3.2. OTHER ADVANCED ENHANCEMENTS 55

slug: example_book

filename: example_book

title: Title of the Book

subtitle: Change me

description: Change me.

author: Author Name

copyright: 2014

uuid: 7d9d7ba9-06e1-4e95-abca-a3cb102c4561

Because Pygments (for some odd reason) doesn’t understand .yml but does
understand .yaml, we can arrange for the proper highlighting by passing the
lang: yaml option, which tells Pygments to highlight the code as YAML:

<<(example_book/config/book.yml, lang: yaml)

3.2.4 Embedded math
Softcover supports embedded math via the terrible syntax {$$}...{/$$}, as
in ϕ2 − ϕ− 1 = 0, and centered math, as in

ϕ =
1 +

√
5

2
.

This works for both inline and centered math, with the only difference being
the absence or presence of newlines:

Softcover supports embedded math via the terrible syntax `{\$\$\}...\{/\$\$\}`,

as in {$$}\phi^2 - \phi - 1 = 0{/$$}, and centered math, as in

{$$}

\phi = \frac{1+\sqrt{5}}{2}.

{/$$}

This syntax is included only for compatibility with other systems (particularly
Leanpub Markdown); Softcover also supports the proper LATEX syntax (Sec
tion 3.3.7), which is strongly preferred.

https://en.wikipedia.org/wiki/YAML

56 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

3.3 Embedded LATEX
Short of using raw PolyTEX (Chapter 6), the most advanced typesetting options
supported by Softcover involve embedding LATEX code directly in Markdown.
As noted in the introduction to this chapter, this allows us to typeset things
like “typewriter text is different from code”, which in embedded LATEX
appears as follows:

"\texttt{typewriter text} \textsc{is different from} `code`"

This uses \texttt (read “textteetee”) to set typewriter text and
\textsc to set small caps.

Not all of LATEX is supported, of course. The embeddable subset consists
of single commands such as \texttt and \label (Section 3.3.1 and Sec
tion 3.3.2), tables (Section 3.3.3), figures (Section 3.3.4), code listings (Sec
tion 3.3.5), aside boxes (Section 3.3.6), andmathematics (Section 3.3.7). That’s
still a lot, though, and experiencedMarkdown users new to LATEXwill be amazed
at all the things it can do.

Incidentally, in addition to the commands mentioned above, Softcover also
supports LATEX’s syntax for endashes using two dashes (--), as in “1740–
1780”, and emdashes—like this—using three dashes (---):

as in "1740--1780", and em-dashes---like this---using

3.3.1 LATEX commands
In order to use embedded LATEX, we need a crash course on LATEX syntax. Luck
ily, the basics are not complicated. All LATEX commands start with a backslash
\, and typically take 0 or 1 arguments inside curly braces. For example, we saw
above how to typeset typewriter text:

3.3. EMBEDDED LATEX 57

we saw above how to typeset \texttt{typewriter text}

Here \texttt is the command and typewriter text is the argument.3
The LATEX command itself is an example of a command taking no argu

ments:

The \LaTeX\ command itself

Because of how LATEX processes text, any space after a command gets “eaten”,
so here we’ve used the special “backslash space” command to insert a space
after the \LaTeX command.

We mentioned \noindent, another command with zero arguments, back
at the end of Section 3.2.1; when producing PDFs, it prevents indenting lines
after things like code blocks:

The \LaTeX\ command itself is an example of a command taking no arguments:

```latex

The \LaTeX\ command itself

```

\noindent Because of how \LaTeX\ processes text

LATEX also supports various environments, which are defined by the special
begin and end commands. For example, we’ll see in Section 3.3.3 that tables
are set using the tabular environment as follows:

\begin{tabular}

.

.

.

\end{tabular}

Similarly, in Section 3.3.7 we’ll see how to typeset numbered equations using
the equation environment:

3Because of the way Softcover processes text, nested commands won’t work in Markdown, but they will work
in raw PolyTEX.

58 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

\begin{equation}

<math>

\end{equation}

SFM also natively supports any command that doesn’t require special for
matting between \begin and \end, such as the quote environment:

Il semble que la perfection soit atteinte non quand il n’y a plus rien
à ajouter, mais quand il n’y a plus rien à retrancher.
—Antoine de SaintExupéry, Terre des hommes

This is typeset as in Listing 3.1.

Listing 3.1: Typesetting an embedded quote environment. Compare with
Listing 2.1.

\begin{quote}

Il semble que la perfection soit atteinte non

quand il n'y a plus rien \`{a} ajouter,

mais quand il n'y a plus rien \`{a} retrancher.

---Antoine de Saint-Exup\'{e}ry, \emph{Terre des hommes}

\end{quote}

Listing 3.1 uses the native LATEX commands for typesetting emdashes
(---) and foreign accents (as in \`{a} for the grave accent à and \'{e}
for the acute accent é), but as we saw in Listing 2.1 SFM also supports the raw
Unicode characters (i.e., —, à, and é).

Finally, here’s one weird trick for including literal commands inside a line
using the \verb command, as in “\LaTeX”:

as in "\verb+\LaTeX+"

The \verb command is unusual in that it doesn’t formally take any argu
ments, but rather is followed by literal text surround by any two identical char
acters. The usual convention is to use plus signs, as in \texttt, but other
characters like exclamation points also work, as in \textsc:

http://www.slate.com/articles/business/moneybox/2013/07/how_one_weird_trick_conquered_the_internet_what_happens_when_you_click_on.html

3.3. EMBEDDED LATEX 59

The usual convention is to use plus signs, as in \verb+\texttt+, but other

characters like exclamation points also work, as in \verb!\textsc!

3.3.2 Labels and crossreferences
One of the biggest advantages of using embedded LATEX is being able to use
crossreferences to tie together the structure of the document. Crossreferences
consist of pairing a label (\label) with a reference (\ref).

For example, at the beginning of this chapter is a label appearing immedi
ately after the chapter indicator:

Softcover-flavored Markdown

\label{cha:softcover_flavored_markdown}

This allows the definition of a crossreference using the \ref command,
whose argument is the label name. Thus,

Chapter~\ref{cha:introduction_to_markdown}

produces “Chapter 2”. Similarly, the beginning of this section has

Embedded \LaTeX

\label{sec:embedded_latex}

so that

Section~\ref{sec:embedded_latex}

produces “Section 3.3”. These crossreferences are clickable links across all
output formats (HTML, EPUB, MOBI, and PDF).

Incidentally, the tilde

60 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

~

is LATEX’s nobreak space, which in

Section~\ref{sec:embedded_latex}

connects the number to the word preceding it. This common typesetting con
vention prevents the number breaking across a line. Such crossreferences are
the only special use of tildes in SFM, and ordinarily a tilde appears as follows:
∼. To get a literal tilde, use the LATEX command \textasciitilde:

\textasciitilde

This yields ~, and is especially useful if you want to put a tilde in an inline
code environment, as in cd ~.

In addition to working with chapters and sections, Softcover crossrefer
ences also work with code listings, aside boxes, figures, tables, and centered
equations. The label names can be virtually anything, but I follow the common
convention of namespacing them by type, so that chapter labels are prefixed
with cha:, sections with sec:, codelistings with code:, etc.

In the context of book crossreferences, the advantage of using named la
bels instead of hardcoded numbers can hardly be overstated: it means that if
you add a new chapter to the beginning of your book, all the subsequent cross
references will automatically be renumbered. There is simply no way an author
could keep track of more than a few crossreferences by hand, but with Soft
cover the computer does the heavy lifting so that you can use as many as you
want.

I am a strong advocate of extensive crossreferencing, and not only because
of their obvious benefits to readers. Crossreferences are extraordinarily useful
for authors as well: they let you immediately orient yourself when picking up
after leaving off or going back later to edit. They are also useful when deferring
material to the future, as undefined crossreferences are helpful reminders to fill
in the material later. I like to say that crossreferences are the connective tissue
in the body of a book.

https://en.wikipedia.org/wiki/Namespace

3.3. EMBEDDED LATEX 61

3.3.3 Tabular and tables
We saw in Section 3.1.1 that Softcover supports tables via a literalminded
kramdown syntax, as in

| A simple | table |

| with multiple | lines|

Softcover also supports more powerful LATEX tables via the tabular environ
ment:4

2A hexadecimal (base 16)
52 octal (base 8)

101010 binary (base 2)
42 decimal (base 10)

All your base are belong to us.
This is produced by the code in Listing 3.2.

Listing 3.2: Code to produce a tabular environment.

1 \begin{tabular}{|r|lc|}

2 \hline

3 2A & hexadecimal & (base 16) \\

4 52 & octal & (base 8) \\

5 101010 & binary & (base 2) \\

6 \hline

7 42 & decimal & (base 10) \\

8 \hline

9 \multicolumn{3}{|c|}{\textsc{All your base are belong to us.}} \\

10 \hline

11 \end{tabular}

Let’s examine the anatomy of the table in Listing 3.2:

• Line 1 shows that begin in the tabular environment takes two argu
ments. The first argument simply identifies it as a tabular environment,
while the second, |r|lc| defines the alignment of each column (r for

4The phrase “All your base are belong to us [sic]” is a broken English phrase from the video game “ZeroWing”
that has become an Internet meme.

http://en.wikipedia.org/wiki/All_your_base_are_belong_to_us

62 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

Table 3.4: An important answer in several bases.

2A hexadecimal (base 16)
52 octal (base 8)

101010 binary (base 2)
42 decimal (base 10)

All your base are belong to us.

“right”, l for “left”, and c for “center”) and the presence or absence of
vertical borders between them (borders everywhere except between the
second and third columns).

• Lines 2, 6, 8, and 10 use the\hline command a horizontal line between
rows using the.

• Lines 3–5 and line 7 include three entries each, one for each column.
Each cell is separated by an ampersand character &, and each line is ended
with a doublebackslash \\.

• Line 9 shows a \multicolumn command to create a row that spans
three columns. It takes three arguments: the number of columns (3), the
alignment and vertical borders (|c|, or centered with borders on either
side) and the contents (AYBABTU).

In addition to the tabular environment, Softcover also supports the simi
larly named table environment, which produces a “float” that in a print or PDF
document will be placed automatically by TEX’s floatplacement algorithms. A
table environment is typically used with a caption and a label (which should
be placed inside the caption), which yields numbered, crossreferenced tables,
as seen in Table 3.4. The code to produce Table 3.4 appears in Listing 3.3.
Note that because of how tables are processed, it is important that the caption
contents appear in a single line of text; it’s fine if the line wraps in your text
editor, but it should contain no newlines.

https://en.wikipedia.org/wiki/All_your_base_are_belong_to_us

3.3. EMBEDDED LATEX 63

Listing 3.3: The code to produce Table 3.4.

\begin{table}

\caption{An important answer in several bases.\label{table:answer}}

\begin{tabular}{|r|lc|}

\hline

2A & hexadecimal & (base 16) \\

52 & octal & (base 8) \\

101010 & binary & (base 2) \\

\hline

42 & decimal & (base 10) \\

\hline

\multicolumn{3}{|c|}{\textsc{All your base are belong to us.}} \\

\hline

\end{tabular}

\end{table}

Wrapping long lines

Sometimes text in a table cell will be too long for the line. In HTML, this text
gets wrapped automatically, but to get the line to wrap in the PDF as well you
have to use the \pbox (“paragraph box”) command. The \pbox command
takes two arguments, the width of the box (typically in centimeters) and the
text itself:

\pbox{9cm}{Lorem ipsum...}

To find a good width, make a guess and the build the PDF to see how it looks,
iterating as necessary.

An example of a table with a \pbox command appears in Table 3.5, with
the corresponding code as in Listing 3.4.

Listing 3.4: Source for Table 3.5 (long line truncated).

\begin{table}

\caption{A table with a long line.\label{table:long_line}}

\begin{tabular}{c|l}

\textbf{Source} & \textbf{Text} \\ \hline

Seneca & \emph{Docendo discimus.} \\

64 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

Table 3.5: A table with a long line.

Source Text
Seneca Docendo discimus.

Cicero (fragment)

Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et do
lore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor in rep
rehenderit in voluptate velit esse cillum dolore eu fu
giat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

Cicero (fragment) & \pbox{9cm}{\emph{Lorem ipsum...}}

\end{tabular}

\end{table}

3.3.4 Figures
We saw in Section 2.3 how to include raw images into Softcover books:

As a reminder, this is produced using the following code:

3.3. EMBEDDED LATEX 65

![Some dude.](images/figures/01_michael_hartl_headshot.jpg)

Softcover also allows authors tomake numbered figures, including captions,
by including a label in the image’s bracketed text. Figure 3.2 shows the result,
which is produced by Listing 3.5.

Figure 3.2: Some dude.

Listing 3.5: The code to produce Figure 3.2.

![Some dude.\label{fig:michael_hartl}](images/figures/01_michael_hartl_headshot.jpg)

Using a bare label with no caption text yields a figure with just a number
(Figure 3.3 and Listing 3.6). Note that in both cases the labels are namespaced
with fig:.

66 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

Figure 3.3

Listing 3.6: The code to produce Figure 3.3.

![\label{fig:mhartl_headshot}](images/figures/01_michael_hartl_headshot.jpg)

Placement

In HTML, and thus in EPUB and MOBI, images and figures are placed exactly
where they appear in the book source, but in PDFs this is true only of raw im
ages. This is because PDFs are bound by the constraints of print documents,
so figure placement in general must be allowed to “float” in order to achieve a
sensible layout for the surrounding text. (As with tables (Section 3.3.3), figures
are thus often described as “floats”.) By default, figures in PDFs are placed us
ing LATEX’s floatplacement algorithms, which sometimes leads to figures not
being located where you want them to be. Unfortunately, there is noMarkdown
syntax for overriding LATEX’s defaults, but authors desiring finergrained con
trol can use embedded LATEX to use more advanced floatplacement options, as
described in Section 4.2.5.

3.3. EMBEDDED LATEX 67

3.3.5 Code listings
In addition to syntaxhighlighted source code, Softcover also supports code list
ings, which are numbered code blocks with optional captions. For example,

\begin{codelisting}

\label{code:palindrome}

\codecaption{Adding a \texttt{palindrome?} method to strings.}

```ruby

class String

def palindrome?

self == self.reverse

end

end

```

\end{codelisting}

produces Listing 3.7. The crossreference itself is set using the code in List
ing 3.8.

Listing 3.7: Adding a palindrome? method to strings.

class String

def palindrome?

self == self.reverse

end

end

Listing 3.8: A reference to the palindrome code listing.

Listing~\ref{code:palindrome}

To get a code listing with only a number, simply leave the\codecaption
empty. For example, the code in Listing 3.9 produces Listing 3.10.

Listing 3.9

\begin{codelisting}

\label{code:palindrome_no_caption}

68 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

\codecaption{}

```ruby

class String

def palindrome?

self == self.reverse

end

end

```

\end{codelisting}

Listing 3.10

class String

def palindrome?

self == self.reverse

end

end

Obviously, making code listings involves lots of typing, so I recommend
you use macros. If there is sufficient demand, I plan to release my macros for
Sublime Text, and Mark Bates has released Softcover Vim snippets as well.

3.3.6 Aside boxes
In the course of writing a long document like a book, you may find that you
want to make an aside, i.e., a digression that covers some ancillary topic in
more depth. In order to prevent breaking up the narrative, Softcover supports
an aside box environment suitable for crossreferencing. We’ve seen several
examples so far in this manual, most recently in Box 3.1. The code to produce
that aside appears in Listing 3.11, and the code to produce the reference appears
in Listing 3.12.

Listing 3.11: The code to produce Box 3.1.

\begin{aside}

\label{aside:polytex_markdown}

\heading{Markdown, \PolyTeX, and Hartl's Tenth Rule of Typesetting}

\noindent I've been a fan of Markdown since it first appeared in 2004,

https://gist.github.com/markbates/2c2e6d37dd98c43e6d7e

3.3. EMBEDDED LATEX 69

.

.

.

If your curiosity about \PolyTeX\ has been piqued,

Chapter~\ref{cha:polytex_tutorial} will get you started.

\end{aside}

Listing 3.12: The code to make a reference to Box 3.1.

We've seen several examples so far in this manual, most recently in

Box~\ref{aside:polytex_markdown}.

As with previous environments, the aside code in Listing 3.11 uses a prefix
for the label—in this case, aside:. We also see that aside box captions are
created using the \heading command, whose argument is optional; the code

\heading{}

produces a box with a number but no text.

3.3.7 Math and numbered equations
We saw in Section 3.2.4 that Softcover supports embedded mathematics using
the ugly {$$}...{/$$} syntax, but I strongly recommend you use the proper
LATEX syntax instead. For inline math, this means using LATEX’s native “back
slash parenthesis” notation, as in ϕ2 − ϕ− 1 = 0, which is set as follows:

as in \(\phi^2 - \phi - 1 = 0 \), which is set as follows

Some authors may be aware of the pithier TEXstyle dollarsign notation, which
sets inline math using notation like x. In order to avoid confusion with ordi
nary dollar signs, this is not supported by Markdown input, but it is supported
by PolyTEX, so power users who want to be able to write

70 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

x

instead of

\(x \)

should use raw PolyTEX instead (Chapter 6).
Softcover also supports centered math, as follows:

ϕ2 − ϕ− 1 = 0.

This equation is set using LATEX’s native “backslash square bracket” notation:

\[\phi^2 - \phi - 1 = 0. \]

As with inline math, TEX provides an alternate dollarsign syntax, in this case
using $$...$$ for centered math. As with single dollar signs, this notation
is not supported Markdown input but it supported by PolyTEX, so power users
who want to be able to write

$$ \phi^2 - \phi - 1 = 0. $$

instead of

\[\phi^2 - \phi - 1 = 0. \]

should use raw PolyTEX instead. (I actually prefer TEXstyle dollar signs for
inline math but LATEXstyle backslash square brackets for centered math.)

3.3. EMBEDDED LATEX 71

Finally, Softcover supports numbered, crossreferenced equations using the
equation environment, as shown in Eq. (3.1). The code to produce this equa
tion is shown in Listing 3.13. To my knowledge, Softcover is the only typeset
ting system capable of producing numbered, linked, crossreferenced equations
in all output formats (HTML, EPUB, MOBI, and PDF).5

ϕ =
1 +

√
5

2
≈ 1.618 The Golden Ratio (3.1)

Listing 3.13: The LATEX code to produce Eq. (3.1).

\begin{equation}

\label{eq:golden_ratio}

\phi = \frac{1+\sqrt{5}}{2}\approx 1.618 \qquad{\text{The Golden Ratio}}

\end{equation}

Softcover supports both common LATEX methods for referencing equations:
normal references using \ref, as in Eq. 3.1, and the preferred \eqref, which
automatically adds parentheses around the equation number, as in Eq. (3.1).
The latter is especially useful when omitting the “Eq.” part, allowing compact
equation references like (3.1). Listing 3.14 compares the methods.

Listing 3.14: Comparing the equation reference methods.

Eq.~\ref{eq:golden_ratio} % produces "Eq. 3.1"

Eq.~\eqref{eq:golden_ratio} % produces "Eq. (3.1)"

\eqref{eq:golden_ratio} % produces "(3.1)"

3.3.8 Colored text
Via the \coloredtext and \coloredtexthtml commands, Softcover
supports including colored text across all output formats:

5The real challenge is producing EPUB and MOBI output. The trick is to (1) create a selfcontained HTML
page with embedded math, (2) include the amazing MathJax JavaScript library, configured to render math as SVG
images, (3) hit the page with the headless PhantomJS browser to force MathJax to render the math (including any
equation numbers) as SVGs, (4) extract selfcontained SVGs from the rendered pages, and (5) use Inkscape to
convert the SVGs to PNGs for inclusion in EPUB and MOBI books. Easy, right? In fact, no—it was excruciating
and required excessive amounts of profanity to achieve. But it’s done, so ha.

http://www.mathjax.org/
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://phantomjs.org/
http://www.inkscape.org/

72 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

Softcover supports \coloredtext{red}{colored} \coloredtexthtml{E8AB3A}{text}

See Section 6.2.1 for more details.

3.3.9 Inputting contents of other files
LATEX’s \input command inputs the contents of a external file into the current
file:

This includes the contents of example.tex:

\input{example}

In this example, \input{example} automatically includes the contents of
example.tex into the current file; i.e., LATEX infers the .tex filename exten
sion. This is fine when writing PolyTEX documents (chapter 6), but it doesn’t
work for including Markdown documents. To fix this, Softcover overrides the
default behavior of \input so that, in Markdown documents, the code

\input{chapters/example}

causes chapters/example.md to be included into the current file. Thismakes
it possible to break long chapters into smaller pieces and then assemble them
using repeated invocations of \input:

Example chapter

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,

quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo

consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse

cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non

proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\input{chapters/a_section}

\input{chapters/another_section}

\input{chapters/yet_another_section}

3.3. EMBEDDED LATEX 73

Note also that \input is recursive, so the included documents can themselves
use \input, and so on ad infinitum.

74 CHAPTER 3. SOFTCOVERFLAVORED MARKDOWN

Chapter 4

Customization and advanced
options
Softcover includes a large number of advanced options such as CLI customiza
tion, userdefined styling and typesetting commands, and foreignlanguage
support. Many of these options are in active development, so I recommend
requesting an invitation to the Softcover Google Group to get the inside track
on their status.

4.1 Commandline interface
Two of the most important commands in the Softcover CLI are build:all
and deploy. Their default behavior is sufficient for most purposes, but some
authors will want to customize them for their specific needs. Softcover allows
such customization via dotfiles in the book’s root directory, as described be
low.

4.1.1 Customizing builds
By default, softcover build:all generates HTML, EPUB, MOBI, and
PDF files, but it’s easy to customize. All you need to do is edit the file
.softcover-build in the book’s root directory (Listing 4.1).

75

https://groups.google.com/forum/#!forum/softcover-publishing
https://en.wikipedia.org/wiki/Dot-file

76 CHAPTER 4. CUSTOMIZATION AND ADVANCED OPTIONS

Listing 4.1: The default build configuration file.
$ROOT_DIRECTORY/.softcover-build

Edit this file to customize your build steps with custom command options

or additional commands.

#

softcover build:pdf

softcover build:mobi

softcover build:preview

For example, if you wanted to build previews (Section 1.1.4) by default,
you can use the .softcover-build file shown in Listing 4.2. (Note that
Listing 4.2 omits softcover build:epub because EPUB files are generated
automatically as a sideeffect of building MOBI.)

Listing 4.2: Building previews by default.
$ROOT_DIRECTORY/.softcover-build

Edit this file to customize your build steps with custom command options

or additional commands.

#

softcover build:pdf

softcover build:mobi

softcover build:preview

4.1.2 Customizing deploys
You can customize the behavior of softcover deploy by editing the file
.softcover-deploy in the project’s root directory (Listing 4.3).

Listing 4.3: The default deployment configuration file.
$ROOT_DIRECTORY/.softcover-deploy

Edit this file to customize your deployment steps with custom command options

or additional commands.

#

softcover build:all

softcover build:preview

softcover publish

4.2. COMMANDS AND STYLES 77

For example, Listing 4.4 removes the softcover build:preview com
mand while adding git push origin to sync the local copy with a remote
Git repository.

Listing 4.4: Removing previews and adding a Git push.
$ROOT_DIRECTORY/.softcover-deploy

Edit this file to customize your deployment steps with custom command options

or additional commands.

#

softcover build:all

softcover publish

git push origin

4.2 Commands and styles
Softcover books are based on LATEX (for PDF) andHTML (for EPUB andMOBI),
both of which allow for extensive customization via style files and CSS, respec
tively. There is even one point of overlap: commands defined inlatex_styles/custom.sty
are available across all output formats (Section 4.2.1).

4.2.1 Custom commands
LATEX natively supports custom commands using newcommand, and Softcover
adds support for newcommand to HTML (and thus EPUB/MOBI) as well. The
default customization file has examples to get you started (Listing 4.5). As indi
cated in the comment at the top of Listing 4.5, commands that only make sense
for PDF output—such as hyphenation definitions or specific LATEX package
includes—should be included in custom_pdf.sty instead of custom.sty
(Section 4.2.4).

Listing 4.5: The default customization file.
latex_styles/custom.sty

78 CHAPTER 4. CUSTOMIZATION AND ADVANCED OPTIONS

% Place additional custom commands below.

% NOTE: These commands will generally be available across output formats.

% For commands (such as hyphenation) that only pertain to PDF output, use the

% file `custom_pdf.sty` instead.

% Examples:

% No arguments:

% Insert '\emph{The Ruby on Rails Tutorial}' wherever '\tutorial' occurs:

%

% \newcommand{\tutorial}{\emph{The Ruby on Rails Tutorial}}

%

% One argument:

% Convert '\bfi{text}' to '\textbf{\textit{text}}' (boldface italic):

%

% \newcommand{\bfi}[1]{\textbf{\textit{{#1}}}}

For example, looking at the sample in Listing 4.5, we see how to define the
command \bfi to take one argument and set it in boldface italic, as shown in
Listing 4.6.

Listing 4.6: Defining a boldface italic command.
latex_styles/custom.sty

\newcommand{\bfi}[1]{\textbf{\textit{{#1}}}}

Because the custom.sty file is raw LATEX, definitions must be in PolyTEX
(Chapter 6) and not Markdown. This isn’t as hard as you think, though, and
LATEX commands are highly Googleable. Try, for example, the search “latex
boldface italic” to see how you might have guessed the definition of \bfi
without my help.

Note: Custom math commands are supported locally but are not currently
supported on the Softcover site. We’re planning to add it as soon as someone
wants it, though, so send a request to michael@softcover.io and we’ll
get right on it.

4.2.2 HTML style
You can customize Softcover’s HTML styles using the custom.css file in the
html/stylesheets directory. As noted in the comment shown in Listing 4.7,

http://lmgtfy.com/?q=latex+boldface+italic
http://lmgtfy.com/?q=latex+boldface+italic

4.2. COMMANDS AND STYLES 79

the only caveat is that the CSS rules have to be scoped by the #book id.

Listing 4.7: The generated custom CSS file.
html/stylesheets/custom.css

/* Place custom styles here, scoped by the CSS id '#book' */

/* To sync up PDF styles, edit custom.sty */

/* Google for "LaTeX style files" to learn how to use custom.sty */

/*

body #book {

background: green;

}

#book p {

color: purple;

}

*/

Note: Custom CSS is supported locally but is not currently not supported
on the Softcover site. We’re planning to add it as soon as someone wants it,
though, so send a request to michael@softcover.io and we’ll get right
on it.

4.2.3 EPUB/MOBI style
Any changes you make in custom.css (Section 4.2.2) will automatically be
incorporated into the EPUB and MOBI styles as well, but sometimes you’ll
want additional customization that applies just to EPUB and MOBI books. The
file custom_epub.css allows for this extra layer of detail (Listing 4.8). (Its
somewhat strangelooking directory location is set by the EPUB standard.)

Listing 4.8: The generated custom CSS file for EPUB/MOBI.
epub/OEBPS/styles/custom_epub.css

/* Custom styles specific to EPUB (and hence MOBI) books */

80 CHAPTER 4. CUSTOMIZATION AND ADVANCED OPTIONS

The custom EPUB file used to come with default styles, but now it’s initally
empty, and all necessary styles are contained in epub.css.

In earlier versions of Softcover, the entire epub/ directory was ignored by
default, so Git users may have to add the custom CSS file by hand:

$ git add --force epub/OEBPS/styles/custom_epub.css

4.2.4 PDF style
You can customize the PDF styles in two different ways. The first and sim
pler way is to edit the file latex_styles/custom_pdf.sty, whose default
content is shown in Listing 4.9. This file gets included last, so any rules in
custom_pdf.sty will override the defaults. Common uses for the custom
PDF style file include defining hyphenation rules for words LATEX can’t hy
phenate natively and adding support for any Unicode characters not supported
by the PDF typesetting engine (xelatex). For example, uncommenting the code
in Listing 4.9 adds the rule for hyphenating “JavaScript” and adds PDF support
for the Unicode characters ⋆ and ž (Listing 4.10).

Listing 4.9: The default custom PDF style file.
latex_styles/custom_pdf.sty

% You should use this file to define commands that *only* pertain to the PDF.

% Otherwise, use `custom.sty`.

% For example, you can define the proper hypenation of any words that LaTeX

% can't hyphenate natively.

% \hyphenation{Ja-va-Script}

% You can also include and use packages.

% \usepackage{newunicodechar}

% \newunicodechar{⋆}{\ensuremath{\star}}
% \newunicodechar{ž}{\v{z}}

Listing 4.10: Uncommenting the default PDF style file.
latex_styles/custom_pdf.sty

4.2. COMMANDS AND STYLES 81

\hyphenation{Ja-va-Script}

\usepackage{newunicodechar}

\newunicodechar{⋆}{\ensuremath{\star}}
\newunicodechar{ž}{\v{z}}

Changing paragraph styles

One use of custom_pdf.sty is important enough to deserve special mention,
namely, changing the default paragraph indentation and spacing. In line with
standard practices for professionally typeset books, the default behavior in PDF
is for all paragraphs after the first one in a section to be indented. This inden
tation serves as a visual marker for paragraph boundaries, making them easier
to parse visually. On the other hand, this convention requires suppressing in
dentation by hand (using a \noindent) after elements like code blocks, as
discussed at the end of Section 3.2.1. Without a \noindent, any text after
the code block gets interpreted as a new paragraph and is indented, which is
often not what you want.

My preference is to make PDFs as close to traditional printquality as pos
sible, but some authors would rather make their documents look more like web
pages. To arrange for this behavior, you need to tell LATEX not to indent para
graphs, while also increasing the vertical space between paragraphs so that they
still stand out. The code to accomplish this appears in Listing 4.11.

Listing 4.11: Removing paragraph indentation and adding vertical space.
latex_styles/custom_pdf.sty

% You can also use this file to define commands that *only* pertain to the PDF.

% Distinguish paragraphs by vertical spacing instead of by indentation.

\setlength{\parindent}{0.0in}

\setlength{\parskip}{0.1in}

The second way to customize PDF output is to edit the file preamble.tex
in the config directory; the default contents appear in Listing 4.12. By editing
this file, you can do things like change the PDF font size or include packages
that don’t work when included in custom_pdf.sty. For example, the default

82 CHAPTER 4. CUSTOMIZATION AND ADVANCED OPTIONS

font size (14pt) is designed to look good on tablet devices such as iPad, but
some authors may prefer the smaller fonts typically used for print publications
(10pt or 12pt). These smaller fonts use the default book class in place of the
extbook class needed for 14pt fonts, as shown in Listing 4.13.

Listing 4.12: The preamble file for changing fonts, etc.
config/preamble.tex

\documentclass[14pt]{extbook} % Edit this line to change the documentclass.

% Add custom preamble content below.

% Example commands for using the Polyglossia package with French are

% included for reference.

% You may also have to edit config/lang.yml to sync up the HTML/EPUB/MOBI.

% \usepackage{polyglossia}

% \setdefaultlanguage{french}

% \DeclareTextCommandDefault{\nobreakspace}{\leavevmode\nobreak\ }

Listing 4.13: Setting the font size to 12pt.
config/preamble.tex

\documentclass[12pt]{book}

The preamble.tex file is especially important for foreign language sup
port, which requires that the appropriate polyglossia package be included
before the default softcover.sty file. See Section 4.3 for details.

4.2.5 Advanced figure placement
As mentioned in Section 3.3.4, figure placement in PDF documents is deter
mined automatically by LATEX’s floatplacement algorithms. These often work
well, but sometimes they result in placement different from that desired by the
author. Using embedded LATEX, authors can override the default algorithms by
passing options to the figure command, as shown in Listing 4.14.

4.2. COMMANDS AND STYLES 83

Table 4.1: Options for the placement specifier in Listing 4.14.

Specifier Placement
h Place the float approximately here
h! Place the float (almost) exactly here
H Place the float exactly here (requires Listing 4.16)
t Place at the top of the page
b Place at the bottom of the page
p Put on a special page for floats only

Listing 4.14: A template for passing a figure placement specifier.

\begin{figure}[placement specifier]

\image{images/figures/image.png}

\end{figure}

Some common options for the placement specifier appear in Table 4.1.
Listing 4.15 shows a concrete example of using the H option, whose result

appears in Figure 4.1. As indicated in Table 4.1, the H option, which places the
figure exactly “here”, requires including the float package to work. As de
scribed in Section 4.2.4, this can be accomplished by editing the configuration
file custom_pdf.sty, as shown in Listing 4.16.

Listing 4.15: A working example of figure placement.

\begin{figure}[H]

\image{images/figures/01_michael_hartl_headshot.jpg}

\caption{An image placed ``here''.\label{fig:figure_placement_example}}

\end{figure}

Listing 4.16: Including the float package to enable the H option.
latex_styles/custom_pdf.sty

\include{float}

84 CHAPTER 4. CUSTOMIZATION AND ADVANCED OPTIONS

[H]

Figure 4.1: An image placed exactly “here”.

Note that \image in the examples above is a special image command de
fined by the Softcover system (in latex_styles/softcover.sty). To in
sert an image with a border box, use the closely related command \imagebox
(Listing 4.17 and Figure 4.2).

Listing 4.17: Using an imagebox.

\begin{figure}[H]

\imagebox{images/figures/01_michael_hartl_headshot.jpg}

\caption{An image with a border box.\label{fig:imagebox}}

\end{figure}

4.3 Foreignlanguage support

Softcover has experimental support for foreign languages. Please request an
invitation to the Softcover Google Group and send us a note if you’re interested
in writing a Softcover book in a language other than English.

https://groups.google.com/forum/#!forum/softcover-publishing

4.3. FOREIGNLANGUAGE SUPPORT 85

[H]

Figure 4.2: An image with a border box.

4.3.1 Polyglossia and lang.yml
Only two steps are required to support foreign languages across different out
put formats. For concreteness, we’ll use French as an example. First, to en
able French support in PDF, we need to edit preamble.tex to include the
polyglossia package and set the default language to french, as shown in
Listing 4.18. (The final line in Listing 4.18 is needed to work around an error
when building the PDF; although I’ve been using LATEX for years, I solved it
the same way you would have: by Googling the error message.)

Listing 4.18: Setting the default language to French using polyglossia.
config/preamble.tex

\documentclass[14pt]{extbook}

\usepackage{polyglossia}

\setdefaultlanguage{french}

\DeclareTextCommandDefault{\nobreakspace}{\leavevmode\nobreak\ }

Second, to enable foreign language support in HTML/EPUB/MOBI, we
need to edit the file lang.yml in the config directory to tell Softcover the
names of the various elements (chapter, section, listing, etc.). The default (En

86 CHAPTER 4. CUSTOMIZATION AND ADVANCED OPTIONS

glish) values are shown in Listing 4.19, while the edited values for French are
shown in Listing 4.20.

Listing 4.19: The default language settings.
config/lang.yml

chapter:

word: Chapter

order: standard # Use 'reverse' to change 'Chapter 1' to '1 Chapter'

section: Section

table: Table

figure: Figure

fig: Fig

aside: Box

listing: Listing

equation: Equation

eq: Eq

frontmatter: Frontmatter

contents: Contents

Listing 4.20: French language settings.
config/lang.yml

chapter:

word: Chapitre

order: standard # Use 'reverse' to change 'Chapter 1' to '1 Chapter'

section: Section

table: Table

figure: Figure

fig: Fig

aside: Encadré

listing: Listing

equation: Équation

eq: Éq

frontmatter: Introduction

contents: Table des matières

With the settings as in Listing 4.20, labels such as “Chapitre” for “Chapter”
will be unified across output formats. In addition, crossreferences will link to
the full word in addition to the number, so that, e.g., the link “Encadré 1.1”
would include the word “Encadré” as well as “1.1” (as in Box 1.1).

4.3. FOREIGNLANGUAGE SUPPORT 87

It’s worth noting that in all cases authors still have to translate the corre
sponding words in the source, as shown here:

Chapitre~\ref{cha:customization} contient Encadré~\ref{aside:softcover_uses}.

4.3.2 Terrifyingly advanced comments on Hungarian
The order option in Listing 4.19 is included to support languages such as Hun
garian, in which the translation of “Chapter 1” appears as “1 fejezet”. As indi
cated by the comment in Listing 4.19, this can be arranged by setting order:
reverse in lang.yml (Listing 4.21). Ironically, the Polyglossia support for
Hungarian gets the order wrong; a fix appears in Listing 4.22.

Listing 4.21: Reversing chapter/number order to get ‘1 fejezet’.
config/lang.yml

chapter:

word: fejezet

order: reverse # Use 'reverse' to change 'Chapter 1' to '1 Chapter'

.

.

.

Listing 4.22: Fixing chapter ordering for Hungarian (magyar).
config/preamble.tex

\documentclass[14pt]{extbook}

\usepackage{polyglossia}

\setdefaultlanguage{magyar}

\usepackage{etoolbox}

\makeatletter

\patchcmd{\@makechapterhead}

{\@chapapp\space \thechapter}

{\thechapter\space \@chapapp}

{}{}

\makeatother

\DeclareTextCommandDefault{\nobreakspace}{\leavevmode\nobreak\ }

88 CHAPTER 4. CUSTOMIZATION AND ADVANCED OPTIONS

4.4 Detailed refinements
Once your book is nearing completion, Softcover helps you put on the final bits
of polish. These include eliminating “overfull hboxes” (Section 4.4.1), han
dling problems with labels and crossreferences (Section 4.4.2), and validating
EPUB books (Section 4.4.3).

4.4.1 Overfull hboxes
When building a PDF, you may notice that some of the error messages indi
cate an “overfull hbox”. This happens when the line is too long for the page,
such as when you include some LongRubyClassName that Softcover doesn’t
know how to hyphenate. Because they can mar the appearance of PDF books,
Softcover comes with a utility to help you find them:1

$ softcover build:pdf --find-overfull

$ softcover build:pdf --find-overfull

(You need to run it twice initially to make sure the crossreference are upto
date, as this can affect the presence of overfull hboxes.) If the second command
returns no results, it means that your book is 100% overfull hbox–free.

Unfortunately, because of the way LATEX processes files, the line numbers
output by the error message aren’t useful for tracking down the source of the
overfull hbox. As a compromise, the --find-overfull flag gives some
context around the problematic line, which should allow you to find the culprit
using the search function in your text editor.

Once you find the source of each overfull hbox, you need to add markup
to help the Softcover system break the line properly. This will typically in
volve telling the system how to hyphenate some word that’s spilling into the
right margin. For ordinary words such as “JavaScript”, you can add custom
hyphenation rules as in Section 4.2.4, but for inline code (and any words LATEX
refuses to hyphenate, such as those already containing a hyphen) you’ll need to

1Because of the way Softcover implements code blocks, every code sample generates an overfull warning.
Since they are not cause for concern, the --find-overfull flag filters them out.

4.4. DETAILED REFINEMENTS 89

add in hyphens by hand using the special LATEX syntax \-. For example, to get
Softcover to hyphenate LongRubyClassName, you could write the following:

`Long\-Ruby\-Class\-Name`

These hyphens will be ignored unless needed to break the text across a line.
Sometimes the source of the problem isn’t a long word, or it’s a word you

don’t want to hyphenate, so you’ll have to force a line break by hand. This is
easy with the \linebreak command:

...for customizing PDF output is to edit the file \linebreak `preamble.tex`

When tracking down overfull hboxes, I recommend rebuilding with

$ softcover build:pdf --find-overfull

after each change and checking the PDF to make sure it’s fixed before moving
on. This can be tedious, but it usually only needs to be done once at the end of
the writing process.

Note: Sometimes it’s virtually impossible to get all the linebreaks just right.
In particularly recalcitrant cases, I’ve even been known to recast the sentence
slightly to fix them. Often, such edits, though born of necessity, nevertheless
manage to improve the prose.

4.4.2 Problems with labels and crossreferences
When building PDFs, the LATEX output will often warn you about undefined ref
erences and multiply defined labels. These are easy to fix with a little practice.

Undefined references

Anundefined reference happenswhen you include a reference (as in Section 3.3.2)
that doesn’t correspond to any label:

90 CHAPTER 4. CUSTOMIZATION AND ADVANCED OPTIONS

Section~\ref{sec:foo_bar}

This is easy to fix by finding the relevant section and adding the corresponding
label:

Foo bar

\label{sec:foo_bar}

Multiply defined labels

A multiply defined label simply means that two elements have the same label.
Here is an example:

Section foo

\label{sec:foo}

Section bar

\label{sec:foo}

These are easy to fix just by changing one of the labels:

Section foo

\label{sec:foo}

Section bar

\label{sec:bar}

4.4.3 EPUB validation
As an optional step, you can validate your book according to the EPUB3 stan
dard using Softcover’s builtin validator:

4.4. DETAILED REFINEMENTS 91

$ softcover epub:validate

This isn’t particularly useful when you’re in the middle of writing your book, as
many things (such as undefined crossreferences) will render your book invalid,
but it’s helpful near the end when you want a stringent check on your book’s
validity.

92 CHAPTER 4. CUSTOMIZATION AND ADVANCED OPTIONS

Chapter 5

Marketing and selling
Softcover combines the production system described starting in Chapter 1 with
an easytouse sales platform. This chapter describes the steps supported by
Softcover.io to market and launch Softcover books and associated media.

We start with simple instructions for optionally including media bundles
(Section 5.2), and then describe the steps needed to create a marketing page for
your products (Section 5.4). We then describe site settings and customizations
(Section 5.5), such as public access, free or pay HTML books, custom domains,
and Google Analytics.

5.1 Publishing a book
To publish a book, you first need to build whichever formats you’re supporting.
For example, if you’re using all of HTML, EPUB, MOBI, and PDF, you can
use this:

$ softcover build

If you’re using just HTML and EPUB (with no MOBI or PDF), then you’d
use this:

93

https://www.softcover.io/

94 CHAPTER 5. MARKETING AND SELLING

$ softcover build:html

$ softcover build:epub

You can customize the build by editing .softcover-build as described
in Section 4.1.1.

Once the files are built, you can publish to Softcover as follows:

$ softcover publish

(You may have to use softcover login to log in first.)
To combine everything into one convenient step, customize the deployment

by editing .softcover-deploy as described in Section 4.1.2 and then use the
following command:

$ softcover deploy

This builds the files as determined by .softcover-deploy.
To see your book on the Softcover website, run the following command:

$ softcover open

5.2 Screencasts and other media
Softcover is designed to make it easy to write and publish books, but books are
only the foundation. Products like the Ruby on Rails Tutorial, Learn Python
the Hard Way, and The App Design Handbook show the value of combining
ebooks with other media (such as screencast videos) to create premium product
bundles.

The current Softcover system supports automatic association of screencast
ZIP files using a simple convention. To include a screencast product along with
a book called example_book, simply create a screencast ZIP file example_book.screencasts.zip

https://www.railstutorial.org/
http://learnpythonthehardway.org/
http://learnpythonthehardway.org/
http://nathanbarry.com/app-design-handbook/

5.3. BOOK DESCRIPTION 95

in the media directory. To include a preview screencast as well, create an m4v
or mp4 formatted video file and put it in media/preview.m4v.

Once the ZIP file is in place, you can publish the screencasts to Softcover
with a simple command:

$ softcover publish:media

To save time, this will only upload new files or ones that have changed since
the last time you last published them.

5.3 Book description

The main description for the book should be placed after the description:
key in config/book.yml (Listing 5.1).

Listing 5.1: The book description.
config/book.yml

slug: softcover_book

filename: softcover_book

title: The Softcover Book

subtitle: Frictionless self-publishing

description: "The manual for the Softcover typesetting and publishing system."

author: Michael Hartl

copyright: 2013

uuid: b2bfdd92-e5f1-4dc6-b7ce-4999e3870a12

pdf_preview_page_range: 1..30

epub_mobi_preview_chapter_range: 0..1

This will be displayed on the main book page (Figure 5.1).

96 CHAPTER 5. MARKETING AND SELLING

Figure 5.1: The book description.

For most books, such as Conquering the Command Line, a longer descrip
tion is appropriate (Listing 5.2 and Figure 5.2).

Listing 5.2: A longer book description.
config/book.yml

title: Conquering the Command Line

slug: unix_commands

author: Mark Bates

filename: unix_commands

subtitle: Unix and Linux Commands for Developers

cover: images/cover.png

description:

|

Learn to master and conquer the most valuable and useful command line tools

for Unix and Linux based systems.

In this book you will find not only the most useful command line tools you

need to know, but also the most helpful options and flags for those tools.

Conquering the Command Line isn't just a rehash of the MAN page for these

tools, but rather a human-readable walk-through of these tools to make you

instantly more productive in your daily development life.

copyright: 2014

uuid: 0d0cde45-2ff4-4845-acf2-f579f3232b8a

https://conqueringthecommandline.com/

5.4. MARKETING PAGE 97

Figure 5.2: A longer book description.

5.4 Marketing page
In addition to providing an online version of your book automatically, the Soft
cover sales platform includes a marketing page for online sales. The contents of
the marketing page are determined by a configuration file, marketing.yml,
in the config directory. The marketing file supports the use of limited Mark
down (links, boldface, and emphasis/italics).

To update the marketing page with the contents of the latest marketing.-
yml file, use the publish command:

$ softcover publish

5.4.1 Prices

The marketing file allows you to create up to three product bundles, each with
different downloadable media formats, as seen in Listing 5.3.

98 CHAPTER 5. MARKETING AND SELLING

Listing 5.3: Pricing options and bundles.
config/marketing.yml

prices:

-

code: ebooks

name: "HTML & Ebook"

description:

|

* Optimized for computer screens, Kindle, and iPad

* Incredibly awesome content

media:

- ebooks

price: 3500

-

code: all

name: "HTML, Ebook, and Screencasts"

description:

|

* Includes 10 hours of video screencasts

* Ebooks inclded in PDF/-EPUB/-MOBI formats

media:

- ebooks

- media/screencasts

price: 12500

When published, the code in Listing 5.3 produces the marketing page
shown in Figure 5.3. %Note that the price can optionally include a regular_-
price field, which displays a “regular” price with a strikethrough (together
with the actual price), as seen in the 3rd option in Figure 5.3.

5.4. MARKETING PAGE 99

Figure 5.3: Pricing options.

5.4.2 Author information and testimonials

Softcover supports automatic display of author information (for single or mul
tiple authors). Each author field should include a name, an image or Gra
vatar email, a contact email, and a brief biography (Listing 5.4). If you use
gravatar_email instead of image, Softcover will automatically pull and dis
play the Gravatar image associated with the given email address. (The Gravatar
email itself won’t be made public.)

http://www.gravatar.com/

100 CHAPTER 5. MARKETING AND SELLING

Listing 5.4: Author(s) information.
config/marketing.yml

authors:

-

name: "The Author"

image: /images/testimonial_1.png

contact_email: "info@softcover.io"

bio:

|

Author bio [link](https://www.softcover.io)

Softcover also supports testimonials, each of which should include a name,
title, image or Gravatar email, and text (Listing 5.5). As with author infor
mation, testimonials support either image or gravatar_email; if neither is
defined, the Softcover logo will be used by default.

Listing 5.5: Testimonials.
config/marketing.yml

testimonials:

-

name: "Person 1"

title: "Person 1 Title"

image: /images/testimonial_1.png

text: "Testimonial 1 text" # limited markdown

-

name: "Person 2"

title: "Person 2 Title"

gravatar_email: "info@softcover.io"

text: "Testimonial 2 text"

The results of Listing 5.4 and Listing 5.5 appear in Figure 5.4.

5.4. MARKETING PAGE 101

Figure 5.4: Authors and Testimonials.

5.4.3 Frequently Asked Questions
Each Softcover marketing page includes an optional area for frequently asked
questions (FAQs), as seen in Listing 5.6. Each FAQ has a question and an
answer; the answer has limited Markdown support, while the question is plain
text. Questions and answers appear on the website in the order defined.

Listing 5.6: Frequently Asked Questions.
config/marketing.yml

faq:

-

102 CHAPTER 5. MARKETING AND SELLING

question: "Question 1 text" # no markdown

answer: "Answer 1 text" # limited markdown

-

question: "Question 2 text"

answer: "Answer 2 text"

5.4.4 Additional information
For maximum flexibility, the Softcover marketing page includes a freeform
“additional information” section (Listing 5.7). You can use this area to add
any additional information about your book or pricing options. The contents of
marketing_content will be rendered in full Markdown at the bottom of the
page.

Another option, contact_email, gives readers a way to contact the au
thor(s). In particular, the contents of the contact_email field provide users
with a public mailto link to the given address.

Finally, Softcover includes an inconspicuous branded footer by default, but
this can be overridden using hide_custom_domain_footer. Setting it to
true disables the rendering of our branded Softcover footer on your custom
domain (Section 5.5.2).

Listing 5.7: Additional marketing information.
config/marketing.yml

marketing_content: ''

contact_email: ''

hide_custom_domain_footer: false

5.5 Site settings and customizations
In this section we’ll discuss the various ways to customize your Softcover site’s
settings using the Manage page for your book. The examples are drawn from
a real site hosted on Softcover, the Ruby on Rails Tutorial. For example, Fig
ure 5.5 shows the button to the Manage page at www.railstutorial.org.

https://www.railstutorial.org/

5.5. SITE SETTINGS AND CUSTOMIZATIONS 103

Figure 5.5: The link to the Manage page.

5.5.1 Access options

As seen in Figure 5.6, Softcover supports four principal access options: public
access, able to purchase, HTML paywall, and free download.

104 CHAPTER 5. MARKETING AND SELLING

Figure 5.6: Setting access options.

1. Public Access: Set this to ON to make your site available to the public.
Default is OFF.

2. Able to Purchase: Set this toON to enable users to purchase your prod
ucts. Default is OFF.

3. HTML Paywall: Set this to ON to put the HTML copy of your book
behind a paywall, so that only paying customers will be able to read it.
Default is OFF.

4. Free Download: Set this to ON to enable free downloads of the PDF/
EPUB/MOBI formats of your ebook. Default is OFF.

5.5. SITE SETTINGS AND CUSTOMIZATIONS 105

The settings in Figure 5.6 arrange for the Ruby on Rails Tutorial to be ac
cessible to the public and available for purchase, while making the HTML (but
not the ebooks) available for free. See Section 5.6 for some additional recom
mendations on how to use these options.

5.5.2 Custom domains

In order to give authors maximum control, Softcover supports custom domains.
To use a custom domain for your book and other products, please email info@softcover.io
for custom support.

5.5.3 Google Analytics

Softcover supports Google Analytics integration. Just put your site’s tracking
id in the relevant box (Figure 5.7) and the proper JavaScript snippet will auto
matically be included on your marketing and book pages.

106 CHAPTER 5. MARKETING AND SELLING

Figure 5.7: Enabling Google Analytics integration.

5.5.4 Miscellaneous content

The final form field on the Manage page inserts miscellaneous content on your
book’s purchase page (Figure 5.8). It was originally included to support a
legacy affiliate program used by the Rails Tutorial called zferral (now updated
as Ambassador, which is the site new users should use). It uses Handlebars
syntax like

rev={{amount}}&customerId={{email}}&uniqueId={{id}}&serviceId={{id}}

http://getambassador.com/
http://handlebarsjs.com/

5.6. A TYPICAL LAUNCH SEQUENCE 107

to include the purchase amount, customer email address, and unique purchase
id on the purchase page. It is unlikely that you’ll need this functionality unless
you are also supporting an affiliate program or something similar.

Figure 5.8: Including miscellaneous content on downloads page.

5.6 A typical launch sequence
Using the Softcover features, a typical launch sequence might go like this:

1. Begin work on the book with public access OFF.

108 CHAPTER 5. MARKETING AND SELLING

2. After finishing a few chapters, set up a custom domain, analytics, and a
basic marketing page, then set Public Access ON. Collect email address
and feedback. Reach out to bloggers in your niche to get feedback and
possible links.

3. Continue publishing the bookinprogress (typically one chapter at a
time). Send announcements via email, Twitter, etc., when each chapter
is out.

4. Start selling access to the ebookinprogress by adding an ebook product
category in marketing.yml and setting Able to Purchase to ON.

5. Announce book’s completion while adding a product tier for access to
addon goods as they’re produced.

6. Complete addon products and announce via email, Twitter, etc. Con
tinue reaching out to bloggers, etc., to get inbound links and SEO.

Chapter 6

PolyTEX tutorial
As a final bonus for advanced users, this short chapter gives instructions for
using PolyTEX input directly. In particular, we cover both generating a Poly
TEX book from scratch and converting from Markdown to PolyTEX.

For further information, please consult any of the voluminous Internet re
sources on TEX and LATEX.

6.1 PolyTEX basics
PolyTEX is a strict subset of the LATEX typesetting language. Here are some
resources for getting started with LATEX:

• The generated example book (Section 6.1.1)

• The Wikibooks LaTeX reference

• The LaTeX manual

6.1.1 Generating a PolyTEX book
You can generate an example PolyTEX book as follows:

109

http://en.wikibooks.org/wiki/LaTeX
https://www.google.com/search?q=latex+a+document+preparation+system+site:temple.edu

110 CHAPTER 6. POLYTEX TUTORIAL

$ softcover new --polytex example_polytex_book

6.1.2 From Markdown to PolyTEX
If you’ve generated a Markdown book as in Section 1.1.2 and want to switch
to PolyTEX, just copy the files in the generated_polytex/ directory to the
chapters/ directory and remove the Markdown files:

$ mv generated_polytex/*.tex chapters/

$ rm -f chapters/*.md

Then change Book.txt to use *.tex files in place of *.md. Advanced users
can remove Book.txt and edit <book name>.tex directly. (This requires
running softcover build once to bootstrap the system.) If you do this, you
should add the main LATEX file to Git:

$ git add -f <book name>.tex

6.1.3 PolyTEX vs. LATEX
To learn PolyTEX, I recommend running a local server and trying out LATEX
commands to see if they work:1

$ cd example_polytex_book

$ softcover server -p 4001

Visit http://localhost:4001 to see the result. Then make changes, rinse, and
repeat.

1Here we use the -p flag to run the server on port 4001 in case another book is already running on port 4000
(the default).

http://localhost:4001
http://www.urbandictionary.com/define.php?term=rinse%20repeat
http://www.urbandictionary.com/define.php?term=rinse%20repeat
http://www.urbandictionary.com/define.php?term=rinse%20repeat

6.2. INCLUDED COMMANDS 111

6.2 Included commands
Softcover includes some standard commands as part of softcover.sty. The
most common is \kode (socalled because \code was already taken), which
sets text as inline code:

Softcover includes some standard commands as part of \kode{softcover.sty}.

This is equivalent to Markdown’s backtick environment:

Softcover includes some standard commands as part of `softcover.sty`.

6.2.1 Colored text
Softcover defines the command \coloredtext, used as follows:

\coloredtext{<color name>}{<text>}

For example, this is red text, and this is teal text. The \coloredtext com
mand supports a huge number of colors, including red, green, blue, cyan, ma
genta, yellow, black, gray, white [white], darkgray, lightgray, brown, lime,
olive, orange, pink, purple, teal, violet, and all the svgnames colors (such as
medium sea green and cornflower blue).

In addition to supporting a large number of named colors, for maximum
flexibility Softcover defines the \coloredtexthtml command to allow for
inclusion of arbitrary HTML colors such as red text using hexadecimal RGB
values:

\coloredtexthtml{E8AB3A}{arbitrary HTML colors} such as

\coloredtexthtml{FF0000}{red text}

Note: Unlike HTML, LATEX requires six uppercase hex numbers, so

http://www.latextemplates.com/svgnames-colors

112 CHAPTER 6. POLYTEX TUTORIAL

\coloredtexthtml{ff0000}{red text}

and

\coloredtexthtml{f00}{red text}

won’t work.

6.2.2 Code inclusion
Softcover supports code inclusion via a syntax similar to the Softcoverflavored
Markdown from Section 3.2.3:

%= <<(path/to/filename.ext)

This is equivalent to writing

%= lang:ext

\begin{code}

<contents of filename.ext>

\end{code}

If the language can’t be inferred from the extension, you can include a lang
option:

%= <<(path/to/filename.ext, lang: ruby)

	Getting started
	The Softcover typesetting system
	Installing Softcover
	Creating a Softcover book
	HTML and the Softcover server
	Building ebooks
	Cover images

	Publishing to the Softcover website
	Publishing ebooks
	One command to rule them all
	Articles

	Introduction to Markdown
	Headings
	Text formatting
	Blockquotes
	Source code

	Links and images
	PDF/PNG images
	Screenshots and other large images

	Lists
	Numbered lists
	Unnumbered lists
	Paragraphs in lists

	Softcover-flavored Markdown
	The kramdown extensions
	Tables
	Numbered footnotes
	Miscellaneous features

	Other advanced enhancements
	GitHub-flavored fenced code blocks
	Leanpub-style language blocks
	Code inclusion
	Embedded math

	Embedded LaTeX
	LaTeX commands
	Labels and cross-references
	Tabular and tables
	Figures
	Code listings
	Aside boxes
	Math and numbered equations
	Colored text
	Inputting contents of other files

	Customization and advanced options
	Command-line interface
	Customizing builds
	Customizing deploys

	Commands and styles
	Custom commands
	HTML style
	EPUB/MOBI style
	PDF style
	Advanced figure placement

	Foreign-language support
	Polyglossia and lang.yml
	Terrifyingly advanced comments on Hungarian

	Detailed refinements
	Overfull hboxes
	Problems with labels and cross-references
	EPUB validation

	Marketing and selling
	Publishing a book
	Screencasts and other media
	Book description
	Marketing page
	Prices
	Author information and testimonials
	Frequently Asked Questions
	Additional information

	Site settings and customizations
	Access options
	Custom domains
	Google Analytics
	Miscellaneous content

	A typical launch sequence

	PolyTeX tutorial
	PolyTeX basics
	Generating a PolyTeX book
	From Markdown to PolyTeX
	PolyTeX vs. LaTeX

	Included commands
	Colored text
	Code inclusion

