

 [image: cover]

 The Python Book
Python for Information Systems Majors
James Davis, PhD

Contents
	Preface
	Chapter 1 Technology Stack
		1.1 Full Stack Development
	1.2 Demystifying Stacks
	1.3 What I use for development
		1.3.1 My Machine
	1.3.2 Text Editor

	Chapter 2 Version Control, Git and GitHub
		2.1 Not having version control
	2.2 Advantages of version control
	2.3 Git
		2.3.1 Installing Git
	2.3.2 Git basics

	2.4 GitHub
		2.4.1 Authenticating with GitHub
	2.4.2 Celebrate

	Chapter 3 Build and Host a Static Website
		3.1 Static vs Dynamic Websites
	3.2 Our First Gig
	3.3 Plagiarize
	3.4 Zurb Foundation
	3.5 Hosting Webpages
	3.6 The Connection
		3.6.1 Configure CloudFlare
	3.6.2 Update GitHub

	Chapter 4 Sprint Zero
		4.1 Python versions
		4.1.1 Anaconda Distribution
	4.1.2 Python PIP
	4.1.3 Pyenv, Pipenv & Virtualenv (optional)

	4.2 Jupyter Notebook
	4.3 SQLite
		4.3.1 SQLite on Windows

	4.4 Celebrate

	Chapter 5 Data Types
		5.1 Boolean
	5.2 Numeric
		5.2.1 Integer
	5.2.2 Float

	5.3 String
	5.4 DateTime
	5.5 Conclusion

	Chapter 6 Python Containers
		6.1 Lists
		6.1.1 List structure
	6.1.2 Modifying lists
	6.1.3 Sorting
	6.1.4 Aliasing
	6.1.5 Equality

	6.2 Dictionaries
		6.2.1 Dictionary structure
	6.2.2 Dictionary methods
	6.2.3 Loop through a Dictionary

	Chapter 7 Control Statements
		7.1 Conditional Statements
		7.1.1 The if statement
	7.1.2 Adding else
	7.1.3 The elif statement

	7.2 For Loops
	7.3 While Loops
	7.4 Nested Loops

	Chapter 8 Files
		8.1 Reading from a file
	8.2 Writing to a file
	8.3 Appending a file
	8.4 The with statement
	8.5 JSON
	8.6 Other file types

	Chapter 9 Database Connections
		9.1 Structured Query Language
	9.2 SQLAlchemy
	9.3 Connecting to a database
	9.4 Viewing Table Details
	9.5 Querying
		9.5.1 Dealing with Large ResultSet

	9.6 Filter
	9.7 Join

	Chapter 10 Functions
		10.1 Built-in Functions
	10.2 Writing Functions in Python
	10.3 Void Functions
	10.4 Value-returning Functions
	10.5 Passing Arguments to Functions

	Chapter 11 Classes
		11.1 Data & code
	11.2 Object reusability
	11.3 Defining the object
	11.4 Class definitions
	11.5 Class inheritance

	Chapter 12 Working with Dates
		12.1 strptime
	12.2 strftime

	Chapter 13 Django: MVC Framework
		13.1 Creating a project
	13.2 Set up a database
	13.3 The development server
	13.4 Create a Blog app
	13.5 Django models
	13.6 Create tables for models in your database
	13.7 Introducing the Django Admin
	13.8 Starting a Git repository
	13.9 Handling URLs with Django
	13.10 blog.urls
	13.11 Django views
	13.12 Django templates
	13.13 Show data dynamically
	13.14 QuerySet
	13.15 Template extending
	13.16 Post detail
	13.17 URL for post detail
	13.18 Add a post’s detail view
	13.19 Template for the post details
	13.20 Django forms
	13.21 Link for new post
	13.22 URL for new post
	13.23 Add post_new to the view
	13.24 Template
	13.25 Save the form
	13.26 Edit post
	13.27 Security
	13.28 Commit your code

Preface

Admittedly, this book represents my opinionated technology
stack for developing applications. - Dr. Davis

This book is intended to give Information Systems students a foundational understanding
of programming and application development. To do so, we will need to use a
programming language to better illustrate logic, data structures, and other
important concepts. While there are multiple options, to me, we need a language that is
robust, versatile, popular, and free. There are other languages, such as Ruby, that meet these requirements but the rising popularity of Python plus hundreds of readily available packages gives Python an edge above the competition.

A simple search of ‘python popularity’ will return pages of articles, blogs, and information about
The Incredible Growth of Python.

As a comment on the versatility of Python, it comes preloaded on many systems from the
Raspberry Pi to the MacBook Pro. It is popular within the scientific community,
tech startups and the top software companies including:

	Google

	Instagram

	Spotify

	Quora

	Netflix

	Dropbox

	Reddit

 Chapter 1 Technology Stack

A technology stack is the combination of all the products and programming languages used to create
an application. For many applications, the ‘stack’ used in its development might include:

	Database management system (DBMS)

	Language(s) for backend logic

	Language(s) for frontend logic or presentation

	Web server

	Operating system

1.1 Full Stack Development

You may have also heard the term ‘full-stack developer’. A full-stack developer is knowledgable in all aspects of software development from concept to a finished product. The key here is ‘knowledgable’. It is acceptable that you might not know the answer to all technical questions but you should be able to find answers in a timely manner.

The opposite of a full-stack developer would be someone with a very specialized and limited skillset. A database administrator (DBA) will have a very deep understanding of his/her particular database management system (DBMS) along with the concept of table spaces, triggers, SQL, etc. but probably has a minimal understanding of UI/UX, responsive frontends, or javascript.

Over the years, the technology stack a developer was required to know has gotten more complex.

[image: images/stacks-change]

Other important skills for a full-stack developer to know:

	Server, network, and hosting environment

	Relational and non-relational databases

	How to interact with APIs and the external world

	User interface and user experience

	Quality assurance

	Security concerns throughout the program

	Understanding customer and business needs

	Version control

1.2 Demystifying Stacks

Geek speak, or technical jargon, is the terms, phrases, and expressions that the members of the technology community use in their, or if you identify as a techie, ‘our’, communication.

To the outsider or someone new to community, this jargon can be confusing, intimidating, and possibly a barrier. I’ve found comparing technology stacks to a bento box helps to remove some of the mystery of our field.

Box 1.1.

Bento

[image: images/bento_box]

Bento is a popular box meal common in Japanese cuisine. It brings together rice or noodles, fish or meat, with pickled and cooked vegetables, in a yummy box.

You need a balanced mix of things. It’s a puzzle - putting everything together in the box. “Ekiben“ - content which is arranged in the most efficient, graceful manner. The bento is presented in a simple, beautiful, balanced way. Nothing lacking. Nothing superfluous. Not decorated, but wonderfully designed.

Likewise, we can think of the technology stack as a bento consisting of our protein, starch, veggies, and lagniappe1. Our technology bento will be used to classify the
technology as storage, infrastructure, logic, and style/structure.

[image: images/bento_worksheet]

1.3 What I use for development

The Golf Channel has a segment called “What’s in the bag?” where they analyze the clubs used by a particular professional golfer. During the course of this book, I’m going to give you my “What’s in the bag?” for developing a software product. Like pro golfers, my selections change as the technology changes. Here is what I’m currently using for development…to include writing this book!

1.3.1 My Machine

Most developers I know working at startups or active in the open source community use Mac computers 2. Those not using a Mac tend to select some flavor of Linux (with Ubuntu being a personal favorite). I was a long term ThinkPad owner (dual booting between Windows & Ubuntu) but made the switch to a MacBook in 2013 and haven’t looked back. When working in software development, you will eventually want to create a mobile app. The only way to create and deploy an app for the iOS is by using a Mac. With my MacBook Pro, I can do web development, android development, and ios development.

1.3.2 Text Editor

Yes, a text editor is exactly what it sounds like. It edits text. In coding, the term ‘editor’ has a slightly different meaning. Used in software development, it is an application used for editing your code files. Most web development languages are interpreted, not compiled, so there isn’t a need for a robust integrated development environment (IDE). For the past 5 years, I have been using TextMate as my coding editor.

You might be wondering why would you need a special code editor, rather than using something like Word or Notepad.

The main reason is that code needs to be plain text, and the problem with programs like Word is that they don’t actually produce plain text, they produce rich text (with fonts and formatting) along with other meta data created as part of the file.

Another reason is that code editors are specialized for editing code, so they can provide helpful features like highlighting code with color according to its meaning, or automatically closing tags for you.

I’ve found most developers become very passionate about their particular editor. Soon, you’ll come to think of your trusty code editor as one of your favorite tools.

[image: images/textmate]

VS Code (recommended)

Visual Studio Code is a free editor from Microsoft. It is
popular in the .NET community but a little too heavy for my needs. If plan on using any of
the Visual Studio products or .NET in the future, I would recommend VS Code.

Atom (recommended)

Atom is a code editor created by GitHub. It’s free, open-source and available for Windows, OS X and Linux. If you are not already attached to an editor, I would recommend Atom.

Eclipse IDE

Eclipse is an integrated development environment (IDE) which is much more than a code editor. IDEs are typically associated with compiled languages (such as Java) but can still be used with other languages. I have used Eclipse in the past but it is very heavy in terms of application size.

Box 1.2.

Who cares what I think?

Who is this guy and why should you care what I think about development? If you are one of my students, you are a captive audience and your grade is an incentive to care. Otherwise, here is some more information about me. I haven’t always been an academic and these are the cliff notes. I’ve been writing code since the mid-1980s. As a kid, my parents bought me a Commodore Vic-20 and I would write games for me and my friends. In college, I majored in math while taking programming classes in Fortran, Pascal, COBOL, and C. There was a 4ish year hiatus from coding because I used the army to help pay for college (whole different story for a completely different book) but quickly returned to software development after my time in the military. While working on an MS in Computer Science, I paid the bills by developing software for the healthcare industry. Not knowing when to quit, I completed the MS and picked up a PhD program in Information Systems.

Somewhere in graduate school things got a bit more interesting. I started working with some fellow researchers on social networking algorithms and knowledge networks. Long story made short, we found success in a startup venture developing an application to track the knowledge networks of organizations. We had a good exit, I did some more army stuff, worked as an enterprise architect for a bit, and then returned to academics while still partaking in the occasional side venture.

LinkedIn

 	The word comes from the Louisiana French referring to the extra items. ↑

 	This is completely my observation with no quantitative support. ↑

 Chapter 2 Version Control, Git and GitHub

Version control is a system that records changes to a file or group of files. It allows developers to maintain a log of code changes with minimal effort. More importantly, it allows multiple developers to work on the same project at the same time and provides a robust method for sharing & merging work.

2.1 Not having version control

How many versions of code can exist? Even on a small project there could be dozens of versions. Imagine being in an IT Department with a desktop computer at a “work” location and another at home. Most of us want continue working in the evenings so you put the code for a project on a USB drive and bring it home. At home, you put the updated code on another computer and do some additional development. At this point, there are two versions of the code at three locations (work computer, thumb drive, & home computer). As this process continues and you rotate through multiple USB drives, your code can get disjointed and you will find yourself spending time & effort researching file modification dates to realign code. This complexity would increase exponentially when working with multiple developers.

As projects scale, your team will likely require testing, staging, and production environments each built from a similar code base at different time periods. Maintaining and cascading changes would be problematic even in the smallest of development teams.

2.2 Advantages of version control

A robust version control system, such as git, supports multiple development versions (one for each developer) along with as many staging, testing, and production environments that are desired. It also provides the foundation for other agile software development practices such as test driven development (TDD), continuous integration, and continuous deployment.

2.3 Git

Git is the most commonly used version control platform. It’s amazingly fast, it’s very efficient with large projects, and it has an incredible branching system for non-linear development.

2.3.1 Installing Git

If you have done some coding in the past, you may already have git on your system. Git is already packaged with Xcode and some other development environments.

$ git --version

If you don’t have a version, git is relatively easy to install.

Install on Windows

The recommended method for utilizing git on Windows is through an installer available at the Git website, git-scm.com.

[image: images/git-win-installer]

Start the setup installer. You should accept the default settings during the installation with a few exceptions noted below.

[image: images/git-win-setup]

I would suggest changing the default editor to something other than VIM.

[image: images/git-win-editor]

Select ‘Use Windows default console window’. This is important to properly launch interactive Python in later chapters of the book.

[image: images/git-win-terminal-emulator]

After installation is complete, you can interact with git by selecting ‘Git Bash’ in your windows menu.

[image: images/git-win-menu]

This bash prompt will provide the command line interface for git commands. Type ‘git –version’ to confirm git is intalled.

$ git --version
git version 2.16.1.windows.1

[image: images/git-win-bash]

Install on Mac

Typing the ‘git –version’ command above should prompt you to install it. If not, a macOS Git installer is maintained and available for download at the Git website, at
git-scm.com.

[image: images/git-osx-installer]

Install on Ubuntu

$ sudo apt-get install git-all

For other flavors of Linux, checkout this website for more information git-scm.com.

2.3.2 Git basics

After you install Git, set your name and password. Git uses this information to track changes and it is immutably baked into your committed code.

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

Note: Use your name and email address for the above and not “John Doe”.

You can confirm your Git configuration with the list tag.

$ git config --list

credential.helper=osxkeychain
user.name=John Doe
user.email=johndoe@example.com
core.editor=mate -w
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true
core.ignorecase=true
core.precomposeunicode=true
remote.origin.url=git@github.com:johndoe/test.git
remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*
branch.master.remote=origin
branch.master.merge=refs/heads/master

Now that you have Git properly setup, change to a directory where you want to utilize version control. For me, I my coding projects in a ‘Projects’ folder.

$ cd Projects/mysite

This particular folder contains a basic Django project but you can use any project you may want to add version control.

$ ls
blog		db.sqlite3	manage.py	mysite		notes.txt

To setup this project with Git, I run the init command.

$ git init

Which returns something like this.
Initialized empty Git repository in /Users/james/Projects/mysite/.git/

The ‘git init’ command created a new subdirectory named .git that contains the skeleton files for a Git repository. At this point, nothing in your project is tracked, yet….

To add files to the Git repository, you can type ‘git add .’ which will add all the files or you can add the files by name.

$ git add .

Files have been added to Git but not commited. To finish the commit process, add the commit command.

$ git commit -m "initial commit for the mysite project"

If you are ever unsure about the status of your Git repository, you can run the status command.

$ git status
On branch master
nothing to commit, working tree clean

Excellent! You can now create Git repositories and commit code. Next we will learn how to integrate with a remote repository.

2.4 GitHub

GitHub is a cloud hosting service for git repositories. It is mostly used for computer code although it can be used for other types of version control. Note: this book is maintained using Git & GitHub as well as the code for the hosting platform, Softcover. GitHub offers all of the distributed version control and source code management functionality of Git as well as adding its own features.

Signing up for a GitHub account is straight forward, easy, and free. After you get an account I would envite you to participate in one of their tutorials such as GitHub Hello World. The Hello World tutorial covers some basics about how to create a repository and branching. We will cover more about cloning, branching, pull requests, merging, and other Git commands later in this book.

2.4.1 Authenticating with GitHub

When you connect to a GitHub repository from Git, you’ll need to authenticate with GitHub using either HTTPS or SSH…with HTTPS being the recommended method.

Connecting over HTTPS (recommended)

If you clone with HTTPS, you can cache your GitHub password in Git using a credential helper.

Connecting over SSH

If you clone with SSH, you must generate SSH keys on each computer you use to push or pull from GitHub.

2.4.2 Celebrate

Congratulations, you now have Git and GitHub all set up! You can also checkout the Git Cheatsheet and GitHub Flow documents. Don’t worry about mastering the Git commands and flow of versioning control. It will start meaning more to you later.

 Chapter 3 Build and Host a Static Website

Everybody has to start somewhere…so let’s start with a static website!

3.1 Static vs Dynamic Websites

Static means the pages delivered to the client are the same for everyone. Dynamic is the opposite and each client may receive different content. In general, web applications are dynamic because users are authenticated against a database and receive content based on their account, privileges, and/or roles. A website advertising the hours for a local hardware store could be static in that every one visiting that website sees the same information. Static web servers give everyone the same html file. Dynamic servers involve logic, database connections, and provide changing content by building the html file ‘on the fly’…aka dynamically.

3.2 Our First Gig

As an example, this chapter will focus on building a website for a technology consulting service, AgilePhd. Note: This exercise assumes that you are familiar with creating GitHub repositories. If not, try working through the GitHub Hello World tutorial.

The finished product will look something like this:

[image: images/agilephd]

…but you usually start with something like this:

[image: images/agilephd_start]

Generated with this minimal code:

Listing 3.1:

index.html

<html>
<body>
 Coming soon!
</body>
</html>

Inside your Projects folder, create a subfolder called ‘agilephd’ and copy the above code into a file called index.html.

We are going to use a service called GitHub Pages so let’s create a git repository for this code. You get one freely hosted website per GitHub account. Head over to GitHub and create a new repository named username.github.io, where username is your username on GitHub.

$ git init
$ git add .
$ git remote add origin git@github.com:username/username.github.io.git
 (where username is your username)
$ git push -u origin master

Goto your new GitHub repository and visit the settings page. Scroll down to the ‘GitHub Pages’ section and publish the page.

[image: images/agilephd_publish]

Now you should be able to view your ‘coming soon!’ page at username.github.io

3.3 Plagiarize

In technology, plagiarism is not only tolerated but it is encouraged and celebrated. Open source communities endorse this practice by publicly posting code. All that is asked in return is that you share your enhancements with the community creating a win-win atmosphere.

Don’t spend time reinventing the wheel. Find a solution that works and borrow heavily. That is exactly where we are going to start with our static website.

3.4 Zurb Foundation

HTML is the language of the web. Web-servers know how to send it and browsers know how to interpret it. HTML is great. HTML is awesome…but writing it can be a bit mundane and slow. Did I mention you should borrow from others? No, it is not stealing and it is not wrong. We all do it and as a community, we all ‘borrow’ from each other. Let’s start by borrowing from a company that has made it easy to find their code.

Zurb is a design firm that creates awesome websites for clients. They are also the creators of Foundation, a responsive front-end framework. Zurb’s Foundation or Zurb Foundation or just Foundation is a javascript library that helps your web pages look better. Foundation, and other responsive frameworks such as Bootstrap, make it easy to design beautiful responsive websites, apps and emails that look amazing on any browser or any device.

Check out Zurb to learn more about the framework (but don’t spend too much time as it is not important for this course).

Zurb provides several templates of their framework. Sign up to download all the templates or you can scroll down to view demos.

[image: images/foundation_templates]

For the consulting firm gig, let’s start with the ‘agency’ template.

[image: images/agency_template]

For the cost of signing up with Zurb (which was free), we now have some robust HTML code to build upon.

Listing 3.2:

index.html

<!doctype html>
<html class="no-js" lang="en">
 <head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>Foundation | Welcome</title>
 <link rel="stylesheet"
 href="https://dhbhdrzi4tiry.cloudfront.net/cdn/sites/foundation.min.css">
 </head>
 <body>

 <!-- Start Top Bar -->
 <div class="top-bar">
 <div class="top-bar-left">
 <ul class="menu">
 <li class="menu-text">Yeti Agency
 One
 Two

 </div>
 <div class="top-bar-right">
 <ul class="menu">
 Three
 Four
 Five
 Six

 </div>
 </div>
 <!-- End Top Bar -->

 <div class="callout large">
 <div class="row column text-center">
 <h1>Changing the World Through Design</h1>
 <p class="lead">
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Nullam in dui mauris.
 </p>
 Learn More
 Learn Less
 </div>
 </div>

 <div class="row">
 <div class="medium-6 columns medium-push-6">

 </div>
 <div class="medium-6 columns medium-pull-6">
 <h2>Our Agency, our selves.</h2>
 <p>
 Vivamus luctus urna sed urna ultricies ac tempor dui sagittis.
 In condimentum facilisis porta. Sed nec diam eu diam mattis viverra.
 Nulla fringilla, orci ac euismod semper, magna diam porttitor mauris,
 quis sollicitudin sapien justo in libero. Vestibulum mollis mauris enim.
 Morbi euismod magna ac lorem rutrum elementum. Donec viverra auctor.
 </p>
 </div>
 </div>

 <div class="row">
 <div class="medium-4 columns">
 <h3>Photoshop</h3>
 <p>Vivamus luctus urna sed urna ultricies ac tempor dui sagittis.
 In condimentum facilisis porta. Sed nec diam eu diam mattis viverra.
 Nulla fringilla, orci ac euismod semper, magna.</p>
 </div>
 <div class="medium-4 columns">
 <h3>Javascript</h3>
 <p>Vivamus luctus urna sed urna ultricies ac tempor dui sagittis.
 In condimentum facilisis porta. Sed nec diam eu diam mattis viverra.
 Nulla fringilla, orci ac euismod semper, magna.</p>
 </div>
 <div class="medium-4 columns">
 <h3>Marketing</h3>
 <p>Vivamus luctus urna sed urna ultricies ac tempor dui sagittis.
 In condimentum facilisis porta. Sed nec diam eu diam mattis viverra.
 Nulla fringilla, orci ac euismod semper, magna.</p>
 </div>
 </div>

 <hr>

 <div class="row column">
 <ul class="vertical medium-horizontal menu expanded text-center">
 <div class="stat">28</div>Websites
 <div class="stat">43</div>Apps
 <div class="stat">95</div>Ads
 <div class="stat">59</div>Cakes
 <div class="stat">18</div>Logos

 </div>

 <hr>

 <div class="row column">
 <h3>Our Recent Work</h3>
 </div>

 <div class="row medium-up-3 large-up-4">
 <div class="column">

 </div>
 <div class="column">

 </div>
 <div class="column">

 </div>
 <div class="column">

 </div>
 <div class="column">

 </div>
 <div class="column">

 </div>
 <div class="column">

 </div>
 <div class="column">

 </div>
 <div class="column">

 </div>
 <div class="column">

 </div>
 <div class="column">

 </div>
 <div class="column">

 </div>
 </div>

 <hr>

 <div class="row column">
 <ul class="menu">
 One
 Two
 Three
 Four

 </div>

 <script src="https://code.jquery.com/jquery-2.1.4.min.js"></script>
 <script src="https://dhbhdrzi4tiry.cloudfront.net/cdn/sites/foundation.js">
 </script>
 <script>
 $(document).foundation();
 </script>
 </body>
</html>

Copy / paste the above code into your index.html file and push to github.

$ git add .
$ git commit -m "updating page with a template from Zurb Foundation"
$ git push

Now you should be able to view the Zurb Foundation template page at username.github.io

Time to modify the template for the AgilePhD consulting firm.

Listing 3.3:

index.html

<!doctype html>
<html class="no-js" lang="en">
 <head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>AgilePhD | Welcome</title>
 <link rel="stylesheet"
 href="https://dhbhdrzi4tiry.cloudfront.net/cdn/sites/foundation.min.css">
 <link rel="stylesheet" href="https://s3.amazonaws.com/agilephd/styles/main.css">
 <link href="https://fonts.googleapis.com/css?family=Montserrat" rel="stylesheet">
 </head>
 <body>

 <!-- Start Top Bar -->
 <div class="top-bar">
 <div class="top-bar-left">
 <ul class="menu">
 <li class="menu-text agilephd">AgilePhD

 </div>
 <div class="top-bar-right">
 <ul class="menu">
 <a data-open="contactModal">Contact

 </div>
 </div>
 <!-- End Top Bar -->

 <div class="callout large scrum">
 <div class="row column text-center bottom">
 <h1 class="scrum_h1 bottom">Organizational Change Through Agile Methods</h1>
 </div>
 </div>

 <div class="row">
 <div class="medium-6 columns medium-push-6">
 <img class="thumbnail pm_image"
 src="https://s3.amazonaws.com/agilephd/project_management.jpg">
 </div>
 <div class="medium-6 columns medium-pull-6">
 <h2>Agile Project Management</h2>
 <p>
 As an experienced agile project manager, AgilePhD is the niche provider
 clients seek out when they are looking to implement business-enhancing,
 agile PMO services that improve project and portfolio performance.
 </p>

 </div>
 </div>

 <div class="row">
 <div class="medium-4 columns">
 <h3>Project Management</h3>
 <p>
 Speed is what companies want as they adopt Agile. Traditional
 plan-driven methodologies like Waterfall make a lot of up front
 assumptions and leave no flexibility to adapt to the changing
 needs of the customer.
 </p>
 </div>
 <div class="medium-4 columns">
 <h3>Software Development</h3>
 <p>
 It's all about that MVP (minimally viable product) and getting
 it in front of your customers. I love building technology products.
 </p>
 </div>
 <div class="medium-4 columns">
 <h3>Cloud Services</h3>
 <p>
 As an early adopter several cloud technologies, AgilePhD can
 help you develop a scalable solutions allowing you to focus
 on your core business.
 </p>
 </div>
 </div>

 <hr>

 <div class="row column">
 <ul class="vertical medium-horizontal menu expanded text-center">

 <div class="stat">600+</div>Students Trained

 <div class="stat">20+</div>Web App Projects

 <div class="stat">12+</div>Mobile App Projects

 </div>

 <hr>

 <div class="row column">
 <h3>Recent Web Apps</h3>
 </div>

 <div class="row medium-up-3 ">
 <div class="column">
 <img class="thumbnail"
 src="https://s3.amazonaws.com/agilephd/damagelist.png">
 </div>
 <div class="column">
 <img class="thumbnail"
 src="https://s3.amazonaws.com/agilephd/health_engagements.png">
 </div>
 <div class="column">
 <img class="thumbnail"
 src="https://s3.amazonaws.com/agilephd/animalminder_2.jpg">
 </div>
 <div class="column">
 <img class="thumbnail"
 src="https://s3.amazonaws.com/agilephd/sabot_solutions.png">
 </div>
 <div class="column">
 <img class="thumbnail"
 src="https://s3.amazonaws.com/agilephd/sicklewell.png">
 </div>
 <div class="column">
 <img class="thumbnail"
 src="https://s3.amazonaws.com/agilephd/rails_girls.png">
 </div>

 </div>

 <hr>

 <div class="row column">
 <h3>Recent Mobile Apps</h3>
 </div>

 <div class="row small-up-2 medium-up-5 ">
 <div class="column">
 <img class="thumbnail"
 src="https://s3.amazonaws.com/agilephd/damagelist_ios_3.jpg">
 </div>
 <div class="column">
 <img class="thumbnail"
 src="https://s3.amazonaws.com/agilephd/btr_crime.jpeg">
 </div>
 <div class="column">
 <img class="thumbnail"
 src="https://s3.amazonaws.com/agilephd/seattle_crime.jpeg">
 </div>
 <div class="column">
 <img class="thumbnail"
 src="https://s3.amazonaws.com/agilephd/sfo_crime.jpeg">
 </div>
 <div class="column">
 <img class="thumbnail"
 src="https://s3.amazonaws.com/agilephd/sicklewell_ios.png">
 </div>

 </div>

 <hr>

 <div class="row column">
 <ul class="menu">

 </div>

 <div class="reveal" id="contactModal" data-reveal>
 <h4>Contact information</h4>
 <ul class="no-bullet">
 Dr. James Davis, PhD, PMP, CSP, CSM

 james@agilephd.com

 +1.225.892.0230

 <button class="close-button" data-close aria-label="Close modal" type="button">
 ×
 </button>
 </div>

 <script src="https://code.jquery.com/jquery-2.1.4.min.js"></script>
 <script src="https://dhbhdrzi4tiry.cloudfront.net/cdn/sites/foundation.js"></script>
 <script>
 $(document).foundation();
 </script>
 </body>
</html>

Update the index.html file with the new code (from above) and push to github.

$ git add .
$ git commit -m "customizing index.html for AgilePhd"
$ git push

When viewed in a browser, username.github.io should look something like this:

[image: images/agilephd_local]

3.5 Hosting Webpages

Now that we have a decent static webpage, it is time to host it.

We are living in the glory days of technology. While there are unlimited options for hosting websites, we are going to focus on options that are 1) free and 2) worthy your time & effort.1

Box 3.1.

Hosting Services

Word Press, Wix, Squarespace, along with most Domain Registration Services, have wizard-style website creation abilities. While this may work for some situations, I’ve found these ‘wizard’ solutions to be very heavy and overly constraining. As the technical lead for your venture, developing your own webpages gives you flexibility with hosting options and features.

While laws vary from state to state, content, such as a website, is owned by the person or entity that created it. This is more reason to for you to develop your own websites and/or applications. If you do happen to utilize outside services, read the contract and consult an attorney as needed.

If you didn’t already think of yourself as a web developer, now you can. You have created an HTML page and published it at username.github.io (where ‘username’ is your github username). While this may be sufficient for some projects or personal pages, you usually want your page accessible through a custom URL. For this gig, I want to use ‘agilephd.com’.

There are dozens, if not hundreds, of domain registration firms. I’ve used several and at the moment, GoDaddy is my favorite. If you don’t already have one, create an account with GoDaddy.

GoDaddy allows users to search for domain names. If your desired domain name isn’t available, GoDaddy offers suggestions. I was lucky and registered ‘agilephd.com’ years ago.

Box 3.2.

Domain Names

What’s in a domain name? Names can be meaningful or meaningless. IBM.com and LSU.edu
are very meaningful names. I imagine the discussion for lsu.edu started with
“We are Louisiana State University and must have lsu.edu”.

To me, other domain name, such as heroku.com, are a less meaningful in that the
founders likely started with the question “What domain names are available? Heroku.com is available and sounds cool…let’s get it.”

After finding the appropriate domain name, you register it with GoDaddy. During the registration process, domain registration firms are usually very persistent about up-selling additional services to you. These services may include hiding your registration name, SSL, coming soon pages, templates, and web development services. You don’t need any of those and can opt out.

Once you have purchased a domain name, you must keep it registered with a registration service to maintain ownership.

3.6 The Connection

The last step is to select the DNS servers for your newly registered domain such that it ‘points’ to the location of your content. You could configure GoDaddy to use GitHub’s DNS servers but I use a service called CloudFlare.

3.6.1 Configure CloudFlare

[image: images/cloudflare_main]

Create an account with CloudFlare and add your website to your account.

[image: images/cloudflare_addsite]

Like many other SaaS solutions, CloudFlare utilizes the freemium model. At the free level, you get basic routing and CloudFlare’s robust protection service. In the past, we had to buy expensive hardware solutions from companies like Cisco and configure complicated firewall servers. CloudFlare keeps your application safer (there is no such thing as completely safe) from threats such as DDOS attacks and other evilness in cyber world.

Box 3.3.

Nameservers

To use Cloudflare, you need to change your domain’s authoritative DNS servers, which
are also referred to as just ‘nameservers’. This change would be made in your
hosting service account (GoDaddy).

As a reference, these are an example of Cloudflare nameservers you may be assigned.
isla.ns.cloudflare.com
ken.ns.cloudflare.com

In my GoDaddy account, I change the DNS settings to the nameservers provided by CloudFlare.

[image: images/godaddy_dns]

Back at CloudFlare page for your website, select the DNS page. Similar to the image below, I will add CNAME and MX records routing traffic through the Cloudflare system.

	CNAME agilephd.com is an alias of cavalryjim.github.io

	CNAME www is an alias of agilephd.com

	MX agilephd.com mail handled by mx2.zoho.com

	MX agilephd.com mail handled by mx.zoho.com

[image: images/cloudflare_dns]

Box 3.4.

DNS Record Types

A Canonical Name or ‘CNAME’ record is a type of DNS record that maps an alias name to a true or canonical domain name. An ‘A’ record returns a 32-bit IPv4 address such as ‘192.0.2.23’. An ‘MX’ record is a mail exchange record that is used for mapping email traffic.

NAME TYPE VALUE
--
bar.example.com CNAME foo.example.com
foo.example.com A 192.0.2.23
example.com MX mx.mail.com

DNS changes can take a few minutes to a few hours to propagate through the ‘Internet’. This delay is caused by Internet Service Providers and other entities caching DNS settings. Mental note: Don’t make DNS changes before an important demo of your product.

3.6.2 Update GitHub

Lastly, you need to let GitHub know that you are using a custom domain name.

[image: images/github-custom-domain]

At this point, you are ready to call your client (or co-workers) and tell them the new website is done and has been deployed. Good job!

 	If you are in a startup organization, titles really don’t matter and nothing should be considered ‘beneath’ you. You and your co-founders should be willing to do everything and anything to see the venture move forward. ↑

 Chapter 4 Sprint Zero

In agile software development frameworks, such as Scrum, development is conducted in time-boxed work iterations called Sprints. Sprint Zero is all the work that needs to happen before you can start actually development1.

4.1 Python versions

Technology is constantly changing. That the great thing about our industry and the frustrating thing about our industry. In Python, there was a bit of a riff when the language went from version 2.x to 3.x. The debate is mostly over but know that some popular packages were slow to embrace Python 3 and developers were forced to choose between versions.

[image: images/python-2-vs-python-3]

Despite a few staunch holdouts, Python 3 is the present and future of the language. You can read more about the version debate at wiki.python.org.

For this book, we’re going to use Python 3. If you’re using MacOS or Linux, you probably have a version of Python already installed. Verify by typing ‘python –version’ in the terminal.
$ python --version
Python 3.6.3

If you have Python version 3 or later, you are good and can skip the section on installing Python.

4.1.1 Anaconda Distribution

If you don’t have Python version 3.6 or later on your computer, the Anaconda Distribution is the recommended installation. Anaconda is an open source distribution of Python that comes with many of the popular data science packages.

[image: images/anaconda_download]

The Anaconda Distribution is available at https://www.anaconda.com/.

Once installed, you should be able to verify the Python version in the terminal by using python –version or python3 –version.
$ python3 --version
Python 3.6.3

Anaconda comes with all of the Python packages we will be using in this course. You can view a list of the packages at https://docs.anaconda.com/. We will be using:

	sqlalchemy

	pandas

	scikit-learn

	beautifulsoup4

	flask

	django

	jupyter

	…and many others

4.1.2 Python PIP

PIP is the recommended tool for installing Python packages. It comes with the Anaconda Distribution. Verify that pip is installed with pip –version or pip3 –version.
$ pip --version
pip 9.0.1

$ pip3 --version
pip 9.0.1

4.1.3 Pyenv, Pipenv & Virtualenv (optional)

[image: images/virtualenv]

If you expect to use Python outside of this course, you are encouraged to isolate your Python environments. Isolating your environments allows you to work with different versions of packages for different projects. It also allows you to share the exact package versions being used on a project with other collaborators.

Using isolated environments is optional and you can easily transition when the need arises. You can find more information about at the following websites:

	https://github.com/pyenv/pyenv

	https://pipenv.readthedocs.io/

	https://virtualenv.pypa.io/

4.2 Jupyter Notebook

[image: images/jupyterpreview]

The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text. It is popular among data scientists and comes as part of the Anaconda Distribution. We will be using Jupyter later in this book. Confirm Jupyter’s installation with jupyter –version

$ jupyter --version
4.4.0

4.3 SQLite

[image: images/sqlite_logo]

SQLite is a compact, cross platform, self-contained relational database management system that is available in the public domain. SQLite is included with Mac OS X by default. It is located in the /usr/bin directory and called sqlite3.
$ sqlite3 --version
3.16.2 2017-01-06 16:32:41 a65a62893ca8319e89e48b8a38cf8a59c69a8209

Using SQLite, users can create file-based databases that can be transported across machines, platforms, etc. The only thing needed to then view or edit these databases is the SQLite command line program, a GUI tool capable of communicating with SQLite, or python packages (such as sqlalchemy) that were created for database interactions.

4.3.1 SQLite on Windows

Instructions for installing SQLite on Windows will be provided if needed. SQLAlchemy may provide the required functionality needed to interaction with a SQLite file.

4.4 Celebrate

You are complete with Sprint Zero and ready to move forward!

 	Some agile practitioners argue there is no such thing as Sprint Zero. My response to them would be - this is my book and I’m going to use the term as I see fit. ↑

 Chapter 5 Data Types

This section will introduce the common data types used in Python. Additional information about Python data types can be found at docs.python.org.

[image: images/data_types]

The data types to be discussed in this chapter include:

	boolean

	numeric

	string

	datetime

Box 5.1.

Interacting with Python (REPL)

At this point, you should have a working Python 3 interpreter at hand. If you need help getting Python set up correctly, please refer to Chapter 4 to get started.

The most straightforward way to start talking to Python is in an interactive Read-Eval-Print Loop (REPL) environment. That simply means starting up an interactive shell and typing commands to it directly.

From the terminal, you can start an interactive shell by typing the command python or python3.

$ python
Python 3.6.3 (default, Nov 2 2017, 10:31:58)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

If you are not seeing the >>> prompt, then you are not talking to the Python interpreter. If you are seeing the prompt, you’re up and running! Try running some simple python commands.

>>> print("Hello, World.")
Hello, World.
>>> x = 2
>>> y = 6
>>> y + x
8
>>> exit()

As a note, use the exit() command to get out of the Python shell environment.

5.1 Boolean

Boolean values are the two constant objects True and False.

They are used to represent truth values (other values can also be considered
true or false).

In numeric contexts (for example, when used as the argument to an
arithmetic operator), they behave like the integers 1 and 0, respectively.

The built-in function bool() can be used to cast any value to a Boolean,
if the value can be interpreted as a truth value.

They are written as True and False, respectively.

Open an interactive Python environment using python or python3 inside your terminal.
>>> t = True
>>> t + t
2
>>> f = False
>>> f
False
>>> f + f
0
>>> type(t)
<class 'bool'>
>>> type(f)
<class 'bool'>
>>> bool(1)
True

Boolean values respond to logical operators and / or

>>> True and False
False
>>> True and True
True
>>> False or True
True
>>> False or False
False

5.2 Numeric

Number data types store numeric values. They are immutable data types, means that changing the value of a number data type results in a newly allocated object.

Box 5.2.

Python 2 vs Python 3

As an example of the differences between Python versions, Python 2 had two integer types int and long. These have been unified in Python 3, so there is now only one type, int.

5.2.1 Integer

Integers, or ints, are positive or negative whole numbers with no decimal point. Use int() to cast other data types as an integer, if the value can be interpreted as an integer.

>>> x = 17
>>> y = 3
>>> x + y
20
>>> x - y
14
>>> x * y
51
>>> x / y
5.666666666666667
>>> x // y
5

""" You can also cast other data types as integers """
>>> z = "22"
>>> type(z)
<class 'str'>
>>> a = int(z)
>>> type(a)
<class 'int'>

5.2.2 Float

Floating point real values, also called floats, represent real numbers and are written with a decimal point dividing the integer and fractional parts. Floats may also be in scientific notation, with e indicating the power of 10 (2.5e2 = 2.5 x 102 = 250). Use float() to cast other data types as a float, if the value can be interpreted as an float.

>>> c = 8.0
>>> d = 20.2223
>>> pi = 3.14
>>> type(c)
<class 'float'>
>>> c * pi
25.12
>>> d / c
2.5277875
>>> d // pi
6.0
>>> d / pi
6.440222929936306
>>> i = int(c)
>>> i
8

5.3 String

String literals, or just strings, in python are surrounded by either single quotation marks, or double quotation marks.

‘hello’ is the same as “hello”.

Strings can be output to screen using the print function. For example: print("hello").

Like many other popular programming languages, strings in Python are arrays of bytes representing unicode characters. However, Python does not have a character data type, a single character is simply a string with a length of 1. Square brackets can be used to access elements of the string.

>>> h = "hello world!"
>>> type(h)
<class 'str'>
>>> h[0]
'h'
>>> h[-1]
'!'
>>> len(h)
12
>>> h.upper()
'HELLO WORLD!'
>>> h.lower()
'hello world!'

5.4 DateTime

All of the above data types come “built-in” with Python. While this makes Python a very effective language, you will likely require some additional data types not included with Python, such as dates and times.

The datetime module supplies classes for manipulating dates and times in both simple and complex ways.

>>> import datetime
>>> d = datetime.datetime.now()
>>> type(d)
<class 'datetime.datetime'>
>>> print(d)
2018-09-06 09:51:01.246077
>>> d.year
2018
>>> print(d.strftime("%m/%d/%Y"))
09/06/2018

5.5 Conclusion

Using Python, you will have many data types available to use. Some of the data types come “built-in” to the Python language while others may require importing an additional package.

Box 5.3.

Interacting with Python (Command Line)

Entering commands to the Python interpreter interactively is great for quick testing and exploring features or functionality.

Eventually though, as you create more complex applications, you will develop longer bodies of code that you will want to edit and run repeatedly. You clearly don’t want to re-type the code into the interpreter every time! This is where you will want to create a reusable script file.

Using whatever code editor you’ve chosen, create a script file called hello.py containing the following:

Listing 5.1:

hello.py

print('Enter your name:')
x = input()
print('Hello, ' + x)

Now save the file, keeping track of the directory or folder you chose to save into.

Start a command prompt or terminal window. If the current working directory is the same as the location in which you saved the file, you can simply specify the filename as a command-line argument to the Python interpreter: python hello.py

$ python hello.py
Enter your name:
James
Hello, James

 Chapter 6 Python Containers

Containers are built-in Python data structures that allow other data types to be organized, assessed, and manipulated. In this chapter, we explore the most commonly used data structures: the list and the dictionary.

[image: images/cargo_ship]

Lists and dictionaries provide powerful ways to organize data in useful and interesting applications. In addition to exploring the use of lists and dictionaries, this chapter also introduces some simple control statements.

6.1 Lists

A list is a sequence of data values called items or elements. An item can be of any type.

A Python list is similar to a list you would make in the real-world:

	shopping list

	to-do list

	roster for a team

	guest list for a party

6.1.1 List structure

The logical structure of a list resembles the structure of a string. Items in a list are ordered by position. Each list item has a unique index specifying its position. Like many programming languages, Python is 0-index based, meaning list indexes start at 0, not 1. The index for a list starts with 0 and counts upward.

A list is written as a bracketed sequence of data separated by commas. Here are some examples:

[1971, 1989, 1994] # A list of integers

[‘bananas’, ‘apples’, ‘oranges’] # A list of strings

[[4, 5], [200, 343]] # A list containing two other lists

When using variables, a list is defined by either using the bracket notation [] or by casting any iterable sequence with the list() function.

Start an interactive Python session by using the python command in a terminal.

>>> a = [1, 2, 3, 4]
>>> a
[1, 2, 3, 4]
>>> type(a)
<class 'list'>
>>> b = list("Hello world!")
>>> b
['H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!']
>>> type(b)
<class 'list'>

For convenience, we will be using the range() function to assist with list creation. The range function takes one to three arguments.

	list(range(4)) # create a list up to, but not including, the integer 4.

	list(range(2, 6)) # create a list of integers starting at 2 and going to, but not including, 6.

	list(range(3, 18, 3)) # create a list starting at 3, going to 18, and using steps of 3.

>>> r = list(range(3, 18, 3))
>>> r
[3, 6, 9, 12, 15]
>>> type(r)
<class 'list'>
>>> len(r)
5
>>> 12 in r
True
>>> 13 in r
False

6.1.2 Modifying lists

At any point in a list’s existence, elements can be inserted, removed, or changed. The list will maintain its identity but the contents can change.

>>> t = [34, 12, 24, 77, 234, 65]
>>> type(t)
<class 'list'>
>>> t[1]
12
>>> t[1] = 9
>>> t
[34, 9, 24, 77, 234, 65]

Note that the subscript operation t[1] refers to the element’s position and the target of the assignment.

Use the split function to extract a list of words from a sentence.

>>> s = "This is a sentence with seven words."
>>> words = s.split()
>>> words
['This', 'is', 'a', 'sentence', 'with', 'seven', 'words.']

The list object includes several methods for inserting and removing elements.

	List Method
	Results

	list.append(element)
	Adds element to the end of the list

	list.extend(a_list)
	Adds another list to the list

	list.insert(index, element)
	Inserts element at index

	list.pop()
	Removes and returns the element at the end of the list

	list.pop(index)
	Removes and returns the element at index

The append method takes the new element as an argument and adds it the the end of the list. The method insert does something similar but it takes the index and new element as arguments and adds the element to the given position by shifting the remaining elements to the right. The extend method takes another list and adds those elements to the end of the list.

>>> e = [1, 2, 3, 4, 5, 6]
>>> e.append(7)
>>> e
[1, 2, 3, 4, 5, 6, 7]
>>> e.extend([8, 9, 10])
>>> e
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> e.insert(5, 5.5)
>>> e
[1, 2, 3, 4, 5, 5.5, 6, 7, 8, 9, 10]

The pop method is used to remove an element from a list. If the index position is not specified, pop removes and returns the last element of the list. If a position is specified, pop removes the element at that location and returns it. Remaining elements would then be shifted one position to the left.

>>> e
[1, 2, 3, 4, 5, 5.5, 6, 7, 8, 9, 10]
>>> e
[1, 2, 3, 4, 5, 5.5, 6, 7, 8, 9, 10]
>>> e.pop()
10
>>> e.pop(4)
5
>>> e
[1, 2, 3, 4, 5.5, 6, 7, 8, 9]

6.1.3 Sorting

The list object has a sort method that will arrange its elements in numeric or alphabetical order.

>>> f = [23, 12, 500, 3.3, 42, 92, 7]
>>> f
[23, 12, 500, 3.3, 42, 92, 7]
>>> f.sort()
>>> f
[3.3, 7, 12, 23, 42, 92, 500]

6.1.4 Aliasing

Not all variable names refer to different variables. When two identifiers refer to the same variable (and therefore value), this is known as an alias.

>>> first = [20, 31, 42]
>>> second = first
>>> first
[20, 31, 42]
>>> second
[20, 31, 42]
>>> second.append(53)
>>> second
[20, 31, 42, 53]
>>> first
[20, 31, 42, 53]

In the example above, a single list object is created with two names, or aliases. When an element is appended to the second list, the first list changed also. This happens because the variables first and second refer to the exact same list object.

[image: images/list_alias]

If you do not want an alias, you can pass the source list to a call of the list function.

>>> third = list(first)
>>> third
[20, 31, 42, 53]

[image: images/list_copy]

6.1.5 Equality

Frequently, programmers need to check for equality between variables (are the values equal). There could also be circumstances when you need to know not only if the values are equal but do the variables refer to the same object.

The == operator returns True if two values are equal, or the lists have the same structural equivalence. The Python is operator returns True if two variables refer to the same object.

>>> first == second
True
>>> first == third
True
>>> first is second
True
>>> first is third
False

6.2 Dictionaries

A dictionary is a collection which is unordered, changeable and indexed.

[image: images/dictionary-clipart]

6.2.1 Dictionary structure

A dictionary, or dict, organizes data values by association with other data values rather than by sequential position. A dictionary is a collection which is unordered, changeable and indexed. In Python dictionaries are written with curly brackets, and they have keys and values. Dictionaries are initialized using curly braces { }.

>>> capitals = {'United States': 'Washington, DC','France': 'Paris','Italy': 'Rome'}
>>> capitals
{'United States': 'Washington, DC', 'France': 'Paris', 'Italy': 'Rome'}
>>> type(capitals)
<class 'dict'>
>>> capitals['Italy']
'Rome'
>>> capitals['Spain'] = 'Madrid'
>>> capitals
{'United States': 'Washington, DC', 'France': 'Paris', 'Italy': 'Rome',
'Spain': 'Madrid'}
>>> 'Germany' in capitals
False
>>> 'Italy' in capitals
True
>>> morecapitals = {'Germany': 'Berlin','United Kingdom': 'London'}
>>> capitals.update(morecapitals)
>>> capitals
{'United States': 'Washington, DC', 'France': 'Paris', 'Italy': 'Rome',
'Spain': 'Madrid', 'Germany': 'Berlin', 'United Kingdom': 'London'}
>>> len(capitals)
6

6.2.2 Dictionary methods

Python has a set of built-in methods that you can use on dictionaries.

	Dictionary Method
	Results

	dict.copy()
	Returns a copy of the dictionary

	dict.fromkeys()
	Returns a dictionary with the specified keys and values

	dict.get()
	Returns the value of the specified key

	dict.items()
	Returns a tuple for each key value pair

	dict.keys()
	Returns the dictionary’s keys

	dict.pop()
	Removes the element with the specified key

	dict.popitem()
	Removes the last key-value pair

	dict.setdefault()
	Returns the value of the specified key. If the key does not exist: insert the key, with the specified value

	dict.update()
	Updates the dictionary with the specified key-value pairs

	dict.values()
	Returns a list of all the values in the dictionary

Let’s try some of these functions.

>>> capitals.items()
dict_items([('United States', 'Washington, DC'), ('France', 'Paris'),
('Italy', 'Rome'), ('Spain', 'Madrid'), ('Germany', 'Berlin'),
('United Kingdom', 'London')])
>>> capitals.keys()
dict_keys(['United States', 'France', 'Italy', 'Spain', 'Germany',
'United Kingdom'])
>>> capitals.values()
dict_values(['Washington, DC', 'Paris', 'Rome', 'Madrid', 'Berlin', 'London'])
>>>

6.2.3 Loop through a Dictionary

As an iterable object, we can loop, or iterate, through a dictionary using a for loop. With the for loop we can execute a set of statements, once for each item in a list, tuple, set etc.

>>> for key in capitals.keys():
... print(key)
...
United States
France
Italy
Spain
Germany
United Kingdom

>>> for value in capitals.values():
... print(value)
...
Washington, DC
Paris
Rome
Madrid
Berlin
London

>>> for key, value in capitals.items():
... print(key, value)
...
United States Washington, DC
France Paris
Italy Rome
Spain Madrid
Germany Berlin
United Kingdom London

Box 6.1.

Reading from a file

In Python you need to give access to a file by opening it. You can do it by using
the open() function. Open returns a file object, which has methods and attributes
for getting information about and manipulating the opened file.

Using the with statement, you get better syntax and exceptions handling. In addition, it will automatically close the file. The with statement provides
a way for ensuring that a clean-up is always used.

>>> file = open("welcome.txt")
>>> data = file.read()
>>> print(data)
Hi, this is a text file!

>>> file.close() # It's important to close the file when you're done with it

Opening a file using with is as simple as: with open(filename) as file:

>>> with open("welcome.txt") as file: # Use file to refer to the file object
... data = file.read()
... print(data)

 Chapter 7 Control Statements

I’ve got my own mind. Wanna make my own decisions. When it has to do with my life. I wanna be the one in control. —Janet Jackson, Control

[image: images/puppet]

7.1 Conditional Statements

It is very common for programs to execute statements based on some conditions. In this section we will learn about Python’s if, else, and elif statements.

Box 7.1.

Relational operators

Relational operators are used to compare values. It either returns True or False according to the condition.

	Operator
	Meaning
	Example

	>
	Greater than - True if left operand is greater than the right
	x > y

	<
	Less than - True if left operand is less than the right
	x < y

	==
	Equal to - True if both operands are equal
	x == y

	!=
	Not equal to - True if operands are not equal
	x != y

	>=
	Greater than or equal to - True if left operand is greater than or equal to the right
	x >= y

	<=
	Less than or equal to - True if left operand is less than or equal to the right
	x <= y

7.1.1 The if statement

The if statement evaluates a boolean condition. If the results of the evaluation is True, the code block following the if statement is executed. If the evaluation is False, the code block is not executed.

Listing 7.1:

control.py

today = "Tuesday"

if today == "Tuesday":
 print("We get to write code!")

Create a file using the code above and run the command python control.py in your terminal.
$ python control.py
We get to write code!

7.1.2 Adding else

The else statement only works when following an if statement and the block code following the else gets executed only when the if statement evaluates to False.

Listing 7.2:

control.py (modified)

today = "Wednesday"

if today == "Tuesday":
 print("We get to write code!")
else:
 print("Time to learn Scrum!")

Running the modified file, should provide this output:

$ python control.py
Time to learn Scrum!

7.1.3 The elif statement

Similar to the else statement, an elif statement only works when following an if statement but the elif allows you to evaluate another boolean condition. If the elif statement evaluates to True the code block following will be executed.

Box 7.2.

Membership operators

Keywords in and not in are membership operators in Python. They are used to test whether a value or variable is found in a container (string, list, or dictionary). In a dictionary we can only test for presence of key, not the value.

	Operator
	Meaning
	Example

	in
	True if value/variable is found in the sequence
	5 in x

	not in
	True if value/variable is not found in the sequence
	5 not in x

Listing 7.3:

control.py (modified)

today = "Saturday"
code_days = ["Tuesday", "Thursday"]
scrum_days = ["Monday", "Wednesday", "Friday"]

if today in code_days:
 print("We get to write code!")
elif today in scrum_days:
 print("Time to learn Scrum!")
else:
 print("Time to relax!")

Make the above changes to the control.py file and run it in the terminal.
$ python control.py
Time to relax!

Let’s use the if-elif-else statement combination to help with assigning grades.

Listing 7.4:

letter_grade.py (modified)

num = int(input("Enter your numeric grade: "))
if num >= 90:
 letter_grade = 'A'
elif num >= 80:
 letter_grade = 'B'
elif num >= 70:
 letter_grade = 'C'
elif num >= 60:
 letter_grade = 'D'
else:
 letter_grade = 'F'

print("Your letter grade is " + letter_grade)

7.2 For Loops

Thus far, we have limited ourselves to short sequences of instructions that are executed one after the other. Next we will introduce repetition statements which repeat an action. Each repetition of the action is known as a pass or an iteration.

The Python for loop is a control statement that supports a definite number of iterations.

Listing 7.5:

for_loop.py

weekdays = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"]

for day in weekdays:
 print(day)

for loops are also great for iterating over numbers and making calculations.

Listing 7.6:

avg_loop.py

l = [5, 6, 10, 20]

sum = 0
for num in l:
 sum += num

avg = sum / len(l)
print(avg)

7.3 While Loops

The for loop executes for a definite number of iterations. In some situations, the number of iterations needed is not predictable. The logic needed requires a condition to be met before completing its work.

Listing 7.7:

blackjack.py

import random

card_values = [2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10, 11]
sum = 0
turn = "hit"
while turn == "hit":
 sum += random.choice(card_values)
 print("You currently have: " + str(sum))
 turn = input("What do you want to do? ")

if sum >= 21:
 print("You went over 21!")
else:
 print("You stopped at: " + str(sum))

As a final note on while loops, the command break can also be used to exit a loop.

7.4 Nested Loops

Loops can be nested in that you can put any type of loop inside of any other type of loop. For example a for loop can be inside a while loop or vice versa. Let’s expand the the simple Blackjack code such that it allows us to play multiple games.

Listing 7.8:

blackjack.py (modified)

import random

card_values = [2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10, 11]
play_again = 'yes'
while play_again == 'yes':
 sum = 0
 turn = "hit"
 while turn == "hit":
 sum += random.choice(card_values)
 print("You currently have: " + str(sum))
 turn = input("What do you want to do? ")

 if sum >= 21:
 print("You went over 21!")
 else:
 print("You stopped at: " + str(sum))

 play_again = input("Want to play again? ")

 Chapter 8 Files

[image: images/files]

Thus far, most of our input & output has been limited to the command line. In many situations, we will need to work with larger sets of data. Python easily allows for reading from and writing to files.

The open() method returns a file object, and is most commonly used with two arguments: open(filename, mode).

The first argument is a string containing the filename. The second argument is another string containing a few characters describing the way in which the file will be used. mode can be ’r’ when the file will only be read, ’w’ for only writing, and ’a’ opens the file for appending; any data written to the file is automatically added to the end. ’r+’ opens the file for both reading and writing.

8.1 Reading from a file

As mentioned above to read a file, use the open(filename, ‘r’) method. For reading a file, the mode argument is optional; ’r’ will be assumed if it’s omitted.

Listing 8.1:

read_file.py

file = open("text_file.txt")

for line in file:
 print(line)

file.close()

8.2 Writing to a file

When opening a file using open(filename, ‘w’), the returned file object can be used to write information to the file but any existing files with the same name will be erased when this mode is activated.

Listing 8.2:

write_file.py

students = ["Jennifer", "Craig", "Robert", "Boudreaux", "Thibodeaux"]
file = open("output_file.txt", "w")
file.write("Here is a list of names: \n")

for s in students:
 file.write(s + "\n")

file.close()

8.3 Appending a file

Similar to writing to a file, you can also append new text to the already existing file instead of overwriting an existing file.

Listing 8.3:

append_file.py

more_students = ["Sonja", "Melissa", "Karen"]
file = open("output_file.txt", "a")
file.write("Here are some more names:\n")

for s in more_students:
 file.write(s + "\n")

file.close()

8.4 The with statement

When finished working with a file, use the close() method to end the interaction with the file. This terminates the file object and makes the file available to other resources.

While it is a good programming habit to close files after use, we, as busy human beings, can sometimes forget to close a file after opening it.

Luckily, Python has a with keyword that helps us better manage file resources. It is good practice to use with when using file objects. The advantage is that the file is properly closed after its code block has completed.

Listing 8.4:

with_open.py

with open("text_file.txt") as file:
 for line in file:
 print(line)

8.5 JSON

With files, the read() and write() methods only use strings. This can be problematic when trying to use files to store or share data that isn’t easily converted to and from a string.

Rather than having users constantly writing and debugging code to save complicated data types to files, Python allows you to use the popular data interchange format called JSON (JavaScript Object Notation). The standard module called json can take Python data hierarchies, and convert them to string representations; this process is called serializing. Reconstructing the data from the string representation is called deserializing.

Listing 8.5:

create_json.py

import json

student_scores = {'name': 'John', 'scores': [90, 88, 92]}
with open("student_scores.json", "w") as file:
 json.dump(student_scores, file)

Listing 8.6:

read_json.py

import json

with open("student_scores.json", "r") as file:
 student_scores = json.load(file)

print("The object type is: ", type(student_scores))
print(student_scores)

This simple serialization technique can handle lists and dictionaries, but serializing arbitrary class instances in JSON requires a bit of extra effort. The Python documents reference for the json module contains an explanation of this.

Box 8.1.

Language of APIs

JSON is the language of devices communicating over the Internet. Roughly 80% of all existing APIs use JSON and it is very likely that over 95% of all new APIs are using JSON. Anyone looking for a career in technology or data should be familiar with the producing and consuming JSON.

Here is an example of a JSON feed from an OpenData portal: Baton Rouge Crime

8.6 Other file types

Data can be shared using multiple other file types, such as .csv, .xls, and .xlsx files. To properly read these specifically formatted files, Python usually requires additional packages that can easily be added with the import command.

Listing 8.7:

mpg.py

import csv

with open('mpg.csv') as file:
 mpg_reader = csv.reader(file)
 for row in mpg_reader:
 print(row)

 Chapter 9 Database Connections

Most modern applications contain some sort of database back-end. In general, users never directly interact with the database. Instead, the database is accessed indirectly through an external application that handles connections and logic.

[image: images/connect_database3]

9.1 Structured Query Language

Structured Query Language (SQL) is a data-specific language used in programming and designed for managing data held in a database management system (DBMS). As a programming language, SQL is very powerful when used for searching or manipulating data. While most DBMSs adhere to the ANSI SQL standards, there are varying dialects of SQL based on the organization creating the DBMS. Some DBMS platforms you may encounter:

	Oracle

	SQL Server

	MySQL

	PostgreSQL

	MongoDB

	SQLite

SQL statements can range from a very simple statement such as the example in code listing 9.1 to a more advanced example such as code listing 9.2

Listing 9.1:

Basic SQL statement

SELECT * FROM employees;

Listing 9.2:

Advanced SQL statement

SELECT
 e.employee_id AS "Employee #"
 , e.first_name || ' ' || e.last_name AS "Name"
 , e.email AS "Email"
 , e.phone_number AS "Phone"
 , TO_CHAR(e.hire_date, 'MM/DD/YYYY') AS "Hire Date"
 , TO_CHAR(e.salary, 'L99G999D99', 'NLS_NUMERIC_CHARACTERS = ''.,
 '' NLS_CURRENCY = ''$''') AS "Salary"
 , e.commission_pct AS "Comission %"
 , 'works as ' || j.job_title || ' in ' || d.department_name
 || ' department (manager: ' || dm.first_name || ' ' || dm.last_name
 || ') and immediate supervisor: ' || m.first_name || ' '
 || m.last_name AS "Current Job"
 , TO_CHAR(j.min_salary, 'L99G999D99', 'NLS_NUMERIC_CHARACTERS = ''.,
 '' NLS_CURRENCY = ''$''') || ' - ' ||
 TO_CHAR(j.max_salary, 'L99G999D99', 'NLS_NUMERIC_CHARACTERS = ''.,
 '' NLS_CURRENCY = ''$''') AS "Current Salary"
 , l.street_address || ', ' || l.postal_code || ', ' || l.city || ', '
 || l.state_province || ', '
 || c.country_name || ' (' || r.region_name || ')' AS "Location"
 , jh.job_id AS "History Job ID"
 , 'worked from ' || TO_CHAR(jh.start_date, 'MM/DD/YYYY') || ' to '
 || TO_CHAR(jh.end_date, 'MM/DD/YYYY') ||
 ' as ' || jj.job_title || ' in ' || dd.department_name
 || ' department' AS "History Job Title"
 FROM employees e
 -- to get title of current job_id
 JOIN jobs j
 ON e.job_id = j.job_id
 -- to get name of current manager_id
 LEFT JOIN employees m
 ON e.manager_id = m.employee_id
 -- to get name of current department_id
 LEFT JOIN departments d
 ON d.department_id = e.department_id
 -- to get name of manager of current department
 -- (not equal to current manager and can be equal to the employee itself)
 LEFT JOIN employees dm
 ON d.manager_id = dm.employee_id
 -- to get name of location
 LEFT JOIN locations l
 ON d.location_id = l.location_id
 LEFT JOIN countries c
 ON l.country_id = c.country_id
 LEFT JOIN regions r
 ON c.region_id = r.region_id
 -- to get job history of employee
 LEFT JOIN job_history jh
 ON e.employee_id = jh.employee_id
 -- to get title of job history job_id
 LEFT JOIN jobs jj
 ON jj.job_id = jh.job_id
 -- to get namee of department from job history
 LEFT JOIN departments dd
 ON dd.department_id = jh.department_id

ORDER BY e.employee_id;

Being familiar with multiple programming languages is a good thing and I would encourage interested programmers to learn as much SQL as they feel comfortable learning. Learning some SQL will make application developers better at thinking about data and interacting with a DBMS.

The downside is that maintaining a proficiency in multiple languages can be difficult…especially, in a fast changing sector!

Luckily, we are part of an open source community that seeks to improve our abilities.

9.2 SQLAlchemy

SQLAlchemy is a Python package that provides a nice “Pythonic” way of interacting with databases. So rather than dealing with the differences between specific dialects of traditional SQL, you can leverage the Pythonic framework of SQLAlchemy to streamline your workflow and more efficiently query your data.

The SQLAlchemy package may need to be installed before use. Using the Python package manager pip, type pip install sqlalchemy in your terminal.
$ pip install sqlalchemy
Collecting sqlalchemy
 Downloading https://files.pythonhosted.org/packages/25/c9/b0552098cee325425a61efd
 f380c51b5c721e459081c85bbb860f501c091/SQLAlchemy-1.2.12.tar.gz (5.6MB)
 100% |████████████████████████████████| 5.6MB 226kB/s
Building wheels for collected packages: sqlalchemy
 Running setup.py bdist_wheel for sqlalchemy ... done
 Stored in directory: /Users/james/Library/Caches/pip/wheels/ed/bd/2e/d3874a6e97b8
 cc71e7e177c8d065ead30f67f380c4d9bbadaa
Successfully built sqlalchemy
Installing collected packages: sqlalchemy
Successfully installed sqlalchemy-1.2.12

SQLAlchemy includes the dialects for more popular DBMS platforms and has extensions for some of the more obscure databases.

9.3 Connecting to a database

To start interacting with the database we first we need to establish a connection.

Listing 9.3:

Example Connection

import sqlalchemy as db
engine = db.create_engine('dialect+driver://user:pass@host:port/db')

9.4 Viewing Table Details

SQLAlchemy can be used to automatically load tables from a database using something called reflection. Reflection is the process of reading the database and building the metadata based on that information.

Listing 9.4:

census_metadata.py

import sqlalchemy as db

engine = db.create_engine('sqlite:///census.sqlite')
connection = engine.connect()
metadata = db.MetaData()
census = db.Table('census', metadata, autoload=True, autoload_with=engine)

print(census.columns.keys())

print(repr(metadata.tables['census']))

9.5 Querying

SLQAlchemy supports querying of data from a DBMS. If needed or desired, you can open a connection and use SQL for the query.

Listing 9.5:

census_sql.py

import sqlalchemy as db

engine = db.create_engine('sqlite:///census.sqlite')
connection = engine.connect()
results = connection.execute("select * from census")
for row in results:
 print(row)

connection.close()

A better solution would be to allow SQLAlchemy to handle the SQL statement.

Listing 9.6:

census_query.py

import sqlalchemy as db

engine = db.create_engine('sqlite:///census.sqlite')
connection = engine.connect()
metadata = db.MetaData()
census = db.Table('census', metadata, autoload=True, autoload_with=engine)

Equivalent to 'SELECT * FROM census'
query = db.select([census])

proxy = connection.execute(query)
print(proxy)

result = proxy.fetchall()

print(result[:10])

proxy: The object returned by the .execute() method. It can be used in a variety of ways to get the data returned by the query.

results: The actual data asked for in the query when using a fetch method such as .fetchall() on a ResultProxy.

9.5.1 Dealing with Large ResultSet

On occasion, you may encounter very large tables. SQLAlchemy has .fetchmany() to load optimal no of rows and overcome memory issues in case of large datasets

9.6 Filter

Data can be filtered.

Listing 9.7:

census_filter.py

import sqlalchemy as db

engine = db.create_engine('sqlite:///census.sqlite')
connection = engine.connect()
metadata = db.MetaData()
census = db.Table('census', metadata, autoload=True, autoload_with=engine)

Equivalent to:
SELECT * FROM census WHERE sex = F
#query = db.select([census]).where(census.columns.sex == 'F')

Equivalent to:
SELECT state, sex FROM census WHERE state IN (Texas, New York)
query = db.select([census.columns.state, census.columns.sex])
 .where(census.columns.state.in_(['Texas', 'New York']))

proxy = connection.execute(query)
print(proxy)

result = proxy.fetchall()

print(result[:10])

9.7 Join

If you have two tables that already have an established relationship, you can automatically use that relationship by just adding the columns we want from each table to the select statement.

Listing 9.8:

census_join.py

import sqlalchemy as db

engine = db.create_engine('sqlite:///census.sqlite')
connection = engine.connect()
metadata = db.MetaData()
census = db.Table('census', metadata, autoload=True, autoload_with=engine)
state_fact = db.Table('state_fact', metadata, autoload=True, autoload_with=engine)

query = db.select([census.columns.pop2008, state_fact.columns.abbreviation])
result = connection.execute(query).fetchall()

print(result[:10])

 Chapter 10 Functions

Most programs perform tasks that can be broken down into several subtasks. For this reason, programmers usually break down programs into small manageable pieces known as functions. A function is a group of statements, known as a code block, that exist within a program for the purpose of performing a specific task. Instead of writing a large unstructured sequence of commands, it should be written as several smaller functions with each one performing a specific part of the overall task.

[image: images/function-machine-picture]

Also, functions are a key way to define interfaces so programmers can reuse or share their code.

10.1 Built-in Functions

Python has several built-in functions that you have already been using.

>>> len('Hello World!')
12
>>> type(2.0)
<class 'float'>
>>> round(3.14)
3
>>> round(3.14, 1)
3.1

10.2 Writing Functions in Python

As we have seen on previous tutorials, Python makes use of blocks.

A block is a area of code of written in the format of:

block_head():
 first line of code
 second line of code
 ...

Box 10.1.

naming_conventions

Most programming languages have a naming convention that is used for creating the names of variables and functions. Two popular conventions are snake case and camel case. Snake case, also called underscore case, uses an underscore ‘_’ when naming a function that contains multiple words. An example would be ‘compute_pay()’ or ‘complete_order()’.

The camel case naming convention uses capitalization of the first letter of following words. Using the same examples from above would be ‘computePay()’ or ‘completeOrder()’.

The Python community predominately uses snake_case.

10.3 Void Functions

A void function executes a code block and then terminates. It does not return anything.

Listing 10.1:

function_print.py

Define the function
def message():
 print('I like coding.')
 print('Python is my favorite language!')

Call the function
message()

The program above only has one function, but it is common to define multiple functions in a program. There is usually a main function that is called when the program starts. The main fuction would then call other functions.

Listing 10.2:

function_two.py

This program has two functions.
First, define the main() function.
def main():
 print('I have a message for you.')
 message()
 print('See you later!')

Define the function
def message():
 print('I like coding.')
 print('Python is my favorite language!')

Call the function
main()

10.4 Value-returning Functions

As the name sounds, value-returning functions return a value when called. The returned value can be any of the variable types we’ve covered (int, str, float, dict, list) or an object.

Let’s write an actual function for finding the maximum value from a list of numbers. For this example, we will use the height, in inches, for my family.

[image: images/max_function]

Listing 10.3:

function_max.py

def main():
 fam = [40, 55, 62, 72, 65]
 tallest = max(fam)
 print("The tallest is ", tallest)

def max(l):
 m = l[0]
 for h in l:
 if h > m:
 m = h
 return m

main()

Functions can accept input, execute code, return values, or call other functions.

10.5 Passing Arguments to Functions

Sometimes it is useful not only to call a function, but also to send some data to the function. Additional information sent to the function is called arguments.

Listing 10.4:

function_multi_arguments.py

This program demonstrates a function that accepts two arguments.
def main():
 print('The sum of 12 and 45 is')
 calculate_sum(12, 45)

The calculate_sum function accepts two arguments.
def calculate_sum(num1, num2):
 result = num1 + num2
 print(result)

main()

 Chapter 11 Classes

In science, we use classifications to help describe the objects we are studying. Zoologist use terms such as mammals, birds, fish, reptiles, amphibians in the description of animals. This is the class of the animal. Knowing an animals class will provide a basic understanding of that species.

[image: images/animal_classification]

In object oriented programming, classes provide a means of bundling data and functionality together. An object is a software entity that contains data and the ability to execute functions. The data contained in an object is known as the object’s data attributes. Those attributes are simply variables that reference data. The functions that an object can call are known as methods.

11.1 Data & code

[image: images/object_data]

Utilizing objects helps to separate code from the data. Before object oriented programming, code was written in a more procedural format with variables and other data structures, such as lists or dictionaries. Changes at an application’s data-layer could cause multiple errors depending on the application size. With objects, changes in the database are handled inside the object’s class thus minimizing the effort required to accommodate changes.

11.2 Object reusability

In addition to solving problems of code and data separation, object oriented programming empowers developers to reuse objects. An object is not meant to be a stand-alone program but it can be reused in multiple other programs.

11.3 Defining the object

[image: house_blueprint]
Objects are defined a class. A class is code that specifies the data attributes and methods of a particular type of object. Think of a class as a “blueprint” from which an object is created. In construction, a blueprint is used to describe a structure, such as a house, that will be built. The blueprint itself is not a house object, but a description of a house. When the blueprint is used to build an actual house, it can be called an instance of the house described by the blueprint.

Perhaps an even simpler example would be a cookie cutter and a cookie. The cookie cutter would be the class that is used to create the cookies.

Listing 11.1:

class_dog.py

class Dog:

 # the __init__ method initializes the object.
 def __init__(self, name):
 self.name = name
 self.tricks = [] # creates a new empty list for each dog

 def add_trick(self, trick):
 self.tricks.append(trick)

To view the class, we will use the REPL / interactive Python. Inside a terminal, type ‘python’.

>>> from class_dog import Dog
>>> d = Dog('Eli')
>>> type(d)
<class 'class_dog.Dog'>
>>> d.name
'Eli'
>>> d.tricks
[]
>>> d.add_trick("roll over")
>>> d.add_trick("fetch ball")
>>> d.tricks
['roll over', 'fetch ball']

So, a class is a description of an object’s characteristics. When used in a program, a class can be used to create one or more objects. Each object created from a class is called an instance of the class.

11.4 Class definitions

To create a class, we write a class definition. A class definition is a set of statements that define a class’s methods and data attributes.

Suppose you are writing an application to simulate a Magic 8 Ball. In the application, we need to repeatedly ‘shake’ the Magic 8 Ball and each time return an answer. Let’s see what that class might look like.

Listing 11.2:

class_magic8ball.py

import random

class Magic8Ball:
 answers = ["It is certain.", "It is decidedly so.", "Without a doubt.",
 "Yes - definitely.", "You may rely on it.", "As I see it, yes.",
 "Most likely.", "Outlook good.", "Signs point to yes.",
 "Yes.", "Reply hazy, try again", "Ask again later.",
 "Better not tell you now.", "Cannot predict now.",
 "Concentrate and ask again.", "Cannot predict now.",
 "Concentrate and ask again.", "Don't count on it.",
 "My reply is no.", "My sources say no.",
 "Outlook not so good.", "Very doubtful."]

 # the __init__ method initializes the object.
 def __init__(self):
 self.answer = ""

 def shake(self):
 self.answer = random.choice(self.answers)

 def get_answer(self):
 return self.answer

Get ready for some Magic 8 Ball action and use the interactive Python in your terminal.

>>> from class_magic8ball import Magic8Ball
>>> ball = Magic8Ball()
>>> type(ball)
<class 'class_magic8ball.Magic8Ball'>
>>> ball.get_answer()
''
>>> ball.shake()
>>> ball.get_answer()
'Yes - definitely.'

11.5 Class inheritance

Classes can inherit from other classes. A class can inherit attributes and methods from another class, called the superclass. A class which inherits from a superclass is called a subclass, also called child class. Superclasses are sometimes called ancestors as well. There exists a hierarchy relationship between classes. It’s similar to relationships or categorizations that we know from real life.

Listing 11.3:

class_inheritance.py

class Person:

 def __init__(self, first, last):
 self.firstname = first
 self.lastname = last

 def full_name(self):
 return self.firstname + " " + self.lastname

class Employee(Person):

 def __init__(self, first, last, employee_id):
 Person.__init__(self, first, last)
 self.employee_id = employee_id

 def employee_name(self):
 return self.full_name() + ", " + str(self.employee_id)

Once again, open the terminal and type ‘python’.

>>> from class_inheritance import Person, Employee
>>> type(e)
<class 'class_inheritance.Employee'>
>>> e = Employee("james", "davis", 87)
>>> e.employee_name()
'james davis, 87'

We have overridden the method _init_ from Person in Employee. Method overriding is an object-oriented programming feature that allows a subclass to provide a different implementation of a method that is already defined by its superclass or by one of its superclasses. The implementation in the subclass overrides the implementation of the superclass by providing a method with the same name, same parameters or signature, and same return type as the method of the parent class.

 Chapter 12 Working with Dates

12.1 strptime

12.2 strftime

 Chapter 13 Django: MVC Framework

[image: images/mvc]

Portions of this chapter are based on open source tutorials published by the Django Project and Rails Girls.

First, confirm that Django is installed on your computer.

$ python -m django --version
2.0.1

If Django is installed, you should see the version number. If it isn’t, use pip install django to install.

$ pip install django

13.1 Creating a project

Move into the directory where you maintain your projects. For me, that is the Projects folder.
$ cd Projects

Now, you can create a new Django project called mysite.
$ django-admin startproject mysite

This will create a mysite directory in your current directory.

Let’s look at what startproject created:

mysite/
 manage.py
 mysite/
 __init__.py
 settings.py
 urls.py
 wsgi.py

These files are:

	The outer mysite/ root directory is just a container for your project. Its name doesn’t matter to Django; you can rename it to anything you like.

	manage.py: A command-line utility that lets you interact with this Django project in various ways. You will use manage.py to start the project webserver, migrate the database, and other interactions.

	The inner mysite/ directory is the actual Python package for your project. Its name is the Python package name you’ll need to use to import anything inside it (e.g. mysite.urls).

	mysite/_init_.py: An empty file that tells Python that this directory should be considered a Python package.

	mysite/settings.py: Settings/configuration for this Django project. This file contains information about the database connection, time zones, included packages, etc.

	mysite/urls.py: The URL declarations for this Django project; a “table of contents” of your Django-powered site.

	mysite/wsgi.py: An entry-point for WSGI-compatible web servers to serve your project.

13.2 Set up a database

By default, Django uses a database called sqlite3. While sqlite3 is great for development work, you will want to use a more robust database when moving the app to production.

This is already set up in this part of your mysite/settings.py file:

Listing 13.1:

mysite/settings.py

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

To create a database for the app, run the following in the console: python manage.py migrate (make sure you are in the mysite directory that contains the manage.py file). Ensure you are in the outer mysite directory and run the application. If that goes well, you should see something like this:

$ cd mysite (<- this the outer mysite container)
$ python manage.py migrate
Operations to perform:
 Apply all migrations: auth, admin, contenttypes, sessions
Running migrations:
 Rendering model states... DONE
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK
 Applying contenttypes.0002_remove_content_type_name... OK
 Applying auth.0002_alter_permission_name_max_length... OK
 Applying auth.0003_alter_user_email_max_length... OK
 Applying auth.0004_alter_user_username_opts... OK
 Applying auth.0005_alter_user_last_login_null... OK
 Applying auth.0006_require_contenttypes_0002... OK
 Applying auth.0007_alter_validators_add_error_messages... OK
 Applying sessions.0001_initial... OK

The good news is that Django handles the database creation and maintenance for us. It even knows how to ‘talk’ with most of the popular DBMS systems (Postgres, MySQL, Oracle, and many more).

13.3 The development server

Django comes with a server for development and we can run the application on our local machine. Ensure you are in the outer mysite directory and run the application.

$ python manage.py runserver

You should see output similar to this:

Performing system checks...

System check identified no issues (0 silenced).

February 08, 2018 - 12:46:37
Django version 2.0.1, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

You now have a development server running on your local machine. Go to this link to view it in your browser.

[image: images/django_running]

Use control-c to stop the development server.

13.4 Create a Blog app

The ‘project’ we just setup provides the foundation for developing apps. Similar to starting the project, Django provides the framework for creating apps also.

Box 13.1.

Projects vs apps

What’s the difference between a project and an app? An app is a Web application that does something – e.g., a Weblog system, a database of public records or a simple poll app. A project is a collection of configuration and apps for a particular website. A project can contain multiple apps. An app can be in multiple projects.

In general the apps are created in the root directory of the project (outer mysite container for this project) next to the manage.py file. This simplifies importing the app as a top-level module.

Confirm you are in the same directory as manage.py. If not, ‘cd’ to the appropriate location.
$ ls
db.sqlite3	manage.py	mysite

Now, type this command to create a blog app.
$ python manage.py startapp blog

Django automatically generates the basic file structure of an app, so you can focus on writing code rather than creating directories.
blog/
 __init__.py
 admin.py
 apps.py
 migrations/
 __init__.py
 models.py
 tests.py
 views.py

After creating an application, we also need to tell Django that it should use it. We do that in the file mysite/settings.py. We need to find INSTALLED_APPS and add a line containing ‘blog’ above the closing bracket. So the final product should look like this:

Listing 13.2:

mysite/settings.py

...
INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'blog',
]
...

13.5 Django models

To create content for the Blog app, we first need to create a model. A model is an object that represents the data stored in a database. In general, a model has a direct relationship to a table in the database.

We define our models in the blog/models.py file.

Let’s open blog/models.py, remove everything from it, and write code like this:

Listing 13.3:

models.py

from django.db import models
from django.utils import timezone

class Post(models.Model):
 author = models.ForeignKey('auth.User',on_delete=models.CASCADE)
 title = models.CharField(max_length=255)
 text = models.TextField()
 created_date = models.DateTimeField(
 default=timezone.now)
 published_date = models.DateTimeField(
 blank=True, null=True)

 def publish(self):
 self.published_date = timezone.now()
 self.save()

 def __str__(self):
 return self.title

If the code looks intimidating, don’t worry it will become easier the more we do it. Here is a little explanation about the Post class.

class Post(models.Model): – this line defines our model (it is an object).

	class is a special keyword that indicates that we are defining an object.

	Post is the name of our model. We can give it a different name (but we must avoid special characters and whitespace). Always start a class name with an uppercase letter.

	models.Model means that the Post is a Django Model, so Django knows that it should be saved in the database.

	models.CharField – this is how you define text with a limited number of characters.

	models.TextField – this is for long text without a limit. Sounds ideal for blog post content, right?

	models.DateTimeField – this is a date and time.

	models.ForeignKey – this is a link to another model.

Rather than explain every bit of code (it would take too much time). Django has some very good documentation. Read more about models and field types.

13.6 Create tables for models in your database

Django handles database modifications, such as creating new tables, through migrations. We just have to let Django know to create a migration using python manage.py makemigrations blog.
$ python manage.py makemigrations blog
Migrations for 'blog':
 blog/migrations/0001_initial.py
 - Create model Post

Django prepared a migration file for us that we now have to apply to our database. Type python manage.py migrate blog and the output should be as follows:

$ python manage.py migrate blog
Operations to perform:
 Apply all migrations: blog
Running migrations:
 Applying blog.0001_initial... OK

Good job! There is now a Post table in the database.

13.7 Introducing the Django Admin

Box 13.2.

Purpose

Most applications require an admin module for administering the app. Generating logic to add, change, and delete content is tedious work that doesn’t require much creativity. For that reason, Django entirely automates creation of admin interfaces for models.

Django was written in a newsroom environment, with a very clear separation between “content publishers” and the “public” site. Site managers use the system to add news stories, events, sports scores, etc., and that content is displayed on the public site. Django solves the problem of creating a unified interface for site administrators to edit content.

The admin isn’t intended to be used by site visitors. It’s for site managers.

First we’ll need to create a user who can login to the admin site. Run the following command:

$ python manage.py createsuperuser

Enter your desired username and press enter.
Username: admin

You will then be prompted for your desired email address:

Email address: admin@example.com

The final step is to enter your password. You will be asked to enter your password twice, the second time as a confirmation of the first.
Password: **********
Password (again): *********
Superuser created successfully.

Modify the blog/admin.py file to add the Post model as part of the admin module.

Listing 13.4:

blog/admin.py

from django.contrib import admin
from .models import Post

admin.site.register(Post)

Time to look at our Post model. Run python manage.py runserver in the console to start the development web server.
$ python manage.py runserver

Select this link or go to your browser and type the address http://127.0.0.1:8000/admin/. You will see a login page like this:

[image: images/admin_login]

Login using your superuser credentials and you should see the Django admin dashboard.

[image: images/admin_dashboard]

Go to Posts and experiment a little bit with it. Add five or six blog posts. Don’t worry about the content just get some content into your table. Make sure that at least two or three posts (but not all) have the publish date set. It will be helpful later.

[image: images/add_posts_admin]

Good job!

13.8 Starting a Git repository

This is a good point to start a git repository for this project. Before running any git commands, insure you are in the Projects/mysite folder (or the location where you keep your projects).

For MacOS & Linux users, run this command:

$ pwd
/Users/james/Projects/mysite

For Windows users, run cd.

If you are not in the correct directory, cd to the correct location.

$ cd Projects/mysite

Use the git init command to initialize a new repository.
$ git init
Initialized empty Git repository in /Users/james/Projects/mysite/.git/

Followed by the commands git add . and git commit.
$ git add .
$ git commit -m 'initial commit'
[master (root-commit) 91393be] initial commit
 23 files changed, 236 insertions(+)
 ...
 create mode 100644 mysite/settings.py
 create mode 100644 mysite/urls.py
 create mode 100644 mysite/wsgi.py

13.9 Handling URLs with Django

As mentioned before, mysite/urls.py acts as a ‘table of contents’ and helps route http requests to the correct views. Open up mysite/urls.py and let’s look at the code.

Listing 13.5:

mysite/urls.py

"""mysite URL Configuration
...
"""
from django.contrib import admin
from django.urls import path

urlpatterns = [
 path('admin/', admin.site.urls),
]

Notice the urlpatterns list. It already contains a path for the admin module. This line means that for every path that starts with admin/, Django will find a corresponding view.

Let’s create a path to routes all traffic going to the root URL ‘http://127.0.0.1:8000/’ to our blog and to display a list of posts.

We also want to keep the mysite/urls.py file clean, so we will import URLs from our blog application to the main mysite/urls.py file.

Go ahead, add a line that will import blog.urls. Note that we are using the include function here so you will need to add that import.

Your mysite/urls.py file should now look like this:

Listing 13.6:

mysite/urls.py

"""mysite URL Configuration
...
"""
from django.conf.urls import include
from django.contrib import admin
from django.urls import path

urlpatterns = [
 path('admin/', admin.site.urls),
 path('', include('blog.urls')),
]

Django will now redirect everything that comes to your root URL http://127.0.0.1:8000/ to blog.urls and looks for further instructions there.

13.10 blog.urls

Create a new empty file named urls.py in the blog directory and add this code:

Listing 13.7:

blog/urls.py

from django.urls import path
from . import views

urlpatterns = [
 path('', views.post_list, name='post_list'),
]

Looking at the code, we’re now assigning a view called post_list to the root path. This tells Django that views.post_list is the right place to go if someone enters your website at the root ‘http://127.0.0.1:8000/’ address.

The last part, name=’post_list’, is the name of the path that will be used to identify the view.

Although it will not work correctly, let’s start the development webserver and see what happens.

$ pwd
/Users/james/Projects/mysite <-- checking that I'm in the correct directory
$ python manage.py runserver

If you navigate to your localhost, expect some type of error. This happens because we haven’t setup the appropriate view.

Take a look at your command window where you ran the python manage.py runserver command. There should be a verbose error display. This is a good thing as it will help you find where errors are occurring during your development.

...
File "/Users/james/Projects/mysite/blog/urls.py", line 5, in <module>
 path('', views.post_list, name='post_list'),
AttributeError: module 'blog.views' has no attribute 'post_list'

13.11 Django views

A view function, or just ‘view’, is Python code that returns a response. This response is normally the HTML contents of a Web page although it can also be JSON content, XML content, a file, a redirect, an HTTP error, or any response we can code. The view itself contains whatever arbitrary logic is necessary to return that response.

Views are placed in the views.py file. For the blog app, we will add our views to the blog/views.py file.

Let’s look inside the file.

Listing 13.8:

blog/views.py

from django.shortcuts import render

Create your views here.

The file is relatively empty. Let’s create a function called post_list that takes request and return a function render that will render our template blog/post_list.html.

Listing 13.9:

blog/views.py

from django.shortcuts import render

def post_list(request):
 return render(request, 'blog/post_list.html', {})

Notice the code we just wrote references a template named blog/post_list.html. We will create the template in the following section.

13.12 Django templates

Templates are reusable files that are used to present information. Templates use HTML and embedded Python to accomplish the final product that will be presented to the browser.

Templates are saved in blog/templates/blog directory. So first create a directory called templates inside your blog directory. Then create another directory called blog inside your templates directory:

blog
└───templates
 └───blog

And now create a post_list.html file inside the blog/templates/blog directory and add the code below:

Listing 13.10:

blog/templates/blog/post_list.html

<html>
 <p>Hello!</p>
 <p>It works!</p>
</html>

Because you made changes to the Project structure, you may have to stop and restart your server for the changes to work.

Use CONTROL-C to stop your development server and run python manage.py runserver to start it back.
$ pwd
/Users/james/Projects/mysite
$ python manage.py runserver

If your code is correct, you should see this page.

[image: images/basic_html_page]

13.13 Show data dynamically

We have different pieces in place: the Post model is defined in models.py, we have post_list in views.py and the template added. But how will we actually make our posts appear in our HTML template? Because that is what we want to do – take some content (models saved in the database) and display it nicely in our template, right?

This is exactly what views are supposed to do: connect models and templates. In our post_list view we will need to take the models we want to display and pass them to the template. In a view we decide what (model) will be displayed in a template.

Open blog/views.py and post_list view looks like this:

Listing 13.11:

blog/views.py

from django.shortcuts import render

def post_list(request):
 return render(request, 'blog/post_list.html', {})

To include the model in the view, add the line from .models import Post like this:

Listing 13.12:

blog/views.py

from django.shortcuts import render
from .models import Post

def post_list(request):
 return render(request, 'blog/post_list.html', {})

13.14 QuerySet

A QuerySet is a list of objects of a given Model. QuerySets allow you to read the data from the database, filter it and order it.

Listing 13.13:

blog/views.py

from django.shortcuts import render
from .models import Post

def post_list(request):
 # This is a QuerySet that returns all the posts ordered by the publish date
 posts = Post.objects.order_by('published_date')
 # Pass the posts to the template
 return render(request, 'blog/post_list.html', {'posts': posts})

Now, we need to display the posts in the template.

Listing 13.14:

blog/templates/blog/post_list.html

<div>
 <h1>My Blog</h1>
</div>

{% for post in posts %}
 <div>
 <p>published: {{ post.published_date }}</p>
 <h1>{{ post.title }}</h1>
 <p>{{ post.text|linebreaksbr }}</p>
 </div>
{% endfor %}

Everything you put between {% for %} and {% endfor %} will be repeated for each object in the list. Refresh your page to see the results.

13.15 Template extending

Template extending help us use the same information or layout in more than one place.

A base template is the most basic template that you extend on every page of your website. Let’s create a base.html file in blog/templates/blog/:

blog
└───templates
 └───blog
 base.html
 post_list.html

Inside of the base.html file, paste this code:

Listing 13.15:

blog/templates/blog/base.html

{% load staticfiles %}
<html>
 <head>
 <title>My blog</title>
 <link rel="stylesheet" href="{% static 'css/blog.css' %}">
 </head>
 <body>
 <div>
 <h1>My Blog</h1>
 </div>

 <div>
 {% block content %}
 {% endblock %}
 </div>
 </body>
</html>

Tell the post_list.html to use and extend the content for the base.html file.

Listing 13.16:

blog/templates/blog/post_list.html

{% extends 'blog/base.html' %}

{% block content %}
 {% for post in posts %}
 <div>
 <div>
 {{ post.published_date }}
 </div>
 <h1>{{ post.title }}</h1>
 <p>{{ post.text|linebreaksbr }}</p>
 </div>
 {% endfor %}
{% endblock %}

Check out your website!

[image: images/basic_dynamic_page]

13.16 Post detail

Notice that the links for your individual posts does not work. Let’s fix that. Update the blog/templates/blog/post_list.html file with a better <a href> tag.

Listing 13.17:

blog/templates/blog/post_list.html

{% extends 'blog/base.html' %}

{% block content %}
 {% for post in posts %}
 <div>
 <div>
 {{ post.published_date }}
 </div>
 <h1>

 {{ post.title }}

 </h1>
 <p>{{ post.text|linebreaksbr }}</p>
 </div>
 {% endfor %}
{% endblock %}

What does {% url ’post_detail’ pk=post.pk %} mean? The post_detail part means that Django will be expecting a URL in blog/urls.py with name=post_detail. And how about pk=post.pk? pk is short for primary key, which is a unique name for each record in a database.

13.17 URL for post detail

Time to create a URL in blogs/urls.py for the post_detail view

We want our first post’s detail to be displayed at this URL: http://127.0.0.1:8000/post/1/

Let’s make a URL in the blog/urls.py file to point Django to a view named post_detail, that will show an entire blog post. Add the line path(’post/<int:pk>/’, views.post_detail, name=’post_detail’),, to the blog/urls.py file. The file should look like this:

Listing 13.18:

blog/urls.py

from django.urls import path
from . import views

urlpatterns = [
 path('', views.post_list, name='post_list'),
 path('post/<int:pk>', views.post_detail, name='post_detail'),
]

This code means that when you enter http://127.0.0.1:8000/post/5/ into your browser, Django will understand that you are looking for a view called post_detail and transfer the information that pk equals 5 to that view.

13.18 Add a post’s detail view

This time our view is given an extra parameter, “pk”. Our view needs to catch it, right? So we will define our function as def post_detail(request, pk):.

Since it is possible for someone to type in a URL with a pk that is incorrect, it is time to introduce a Django method that will handle the situation for us: get_object_or_404. When there is no Post with the given pk, it will display much nicer page, the Page Not Found 404 page.

Excellent, time to add a view to our blog/views.py file.

Listing 13.19:

blog/views.py

from django.shortcuts import render, get_object_or_404
from .models import Post

def post_list(request):
 posts = Post.objects.order_by('published_date')
 return render(request, 'blog/post_list.html', {'posts': posts})

def post_detail(request, pk):
 post = get_object_or_404(Post, pk=pk)
 return render(request, 'blog/post_detail.html', {'post': post})

13.19 Template for the post details

Create a file in blog/templates/blog called post_detail.html that looks like this:

Listing 13.20:

blog/templates/blog/post_detail.html

{% extends 'blog/base.html' %}

{% block content %}
 <div class="post">
 {% if post.published_date %}
 <div class="date">
 {{ post.published_date }}
 </div>
 {% endif %}
 <h1>{{ post.title }}</h1>
 <p>{{ post.text|linebreaksbr }}</p>
 </div>
{% endblock %}

Refresh your browser and you should be able to select the link of an individual blog post.

[image: images/post_detail]

13.20 Django forms

The final piece to our blog is creating the ability to add and edit blog posts. Django’s admin is great, but it is intended only for those with the admin role. With Django forms we can create custom interface.

To help us, Django has a ModelForm which will save the result of the form to the model. This is exactly what we want to do: we will create a form for our Post model. Like every important part of Django, forms have their own file: forms.py.

Create a file with this name in the blog directory.

blog
 └── forms.py

Add this code:

Listing 13.21:

blog/forms.py

from django import forms

from .models import Post

class PostForm(forms.ModelForm):

 class Meta:
 model = Post
 fields = ('title', 'text',)

As you might suspect, PostForm is the name of our form. We need to tell Django that this form is a ModelForm (so Django will do some magic for us) – forms.ModelForm is responsible for that.

Next, we have class Meta, where we tell Django which model should be used to create this form (model = Post).

Finally, we can say which fields should end up in our form. In this scenario, we want only title and text to be exposed – author should be the person who is currently logged in (you!) and created_date should be automatically set when we create a post (i.e. in the code), right?

And that’s it! All we need to do now is use the form in a view and display it in a template. So once again we will create a link to the page, a URL, a view and a template.

13.21 Link for new post

Add a link for creating a new post in blog/templates/blog/base.html.

Listing 13.22:

blog/templates/blog/base.html

{% load staticfiles %}
<html>
 <head>
 <title>My blog</title>
 <link rel="stylesheet" href="{% static 'css/blog.css' %}">
 </head>
 <body>
 <div>
 <h1>My Blog</h1>
 <div>Add post</div>
 </div>

 <div>
 {% block content %}
 {% endblock %}
 </div>
 </body>
</html>

After saving and refreshing the page http://127.0.0.1:8000 you will obviously see a familiar NoReverseMatch error, right?

13.22 URL for new post

Inside blog/urls.py add a line with the path for ‘post_new’:

Listing 13.23:

blog/urls.py

from django.urls import path
from . import views

urlpatterns = [
 path('', views.post_list, name='post_list'),
 path('post/<int:pk>', views.post_detail, name='post_detail'),
 path('post/new', views.post_new, name='post_new'),
]

13.23 Add post_new to the view

Import PostForm and add def post_new(request) to the blog/views.py file.

Listing 13.24:

blog/views.py

from django.shortcuts import render, get_object_or_404
from .models import Post
from .forms import PostForm

def post_list(request):
 posts = Post.objects.order_by('published_date')
 return render(request, 'blog/post_list.html', {'posts': posts})

def post_detail(request, pk):
 post = get_object_or_404(Post, pk=pk)
 return render(request, 'blog/post_detail.html', {'post': post})

def post_new(request):
 form = PostForm()
 return render(request, 'blog/post_edit.html', {'form': form})

To create a new Post form, we need to call PostForm() and pass it to the template. We will go back to this view, but for now, let’s quickly create a template for the form.

13.24 Template

Create a file post_edit.html in the blog/templates/blog directory:

Listing 13.25:

blog/templates/blog/post_edit.html

{% extends 'blog/base.html' %}

{% block content %}
 <h1>New post</h1>
 <form method="POST" class="post-form">{% csrf_token %}
 {{ form.as_p }}
 <button type="submit" class="save btn btn-default">Save</button>
 </form>
{% endblock %}

When you select the ‘new post’ link, you should now see something like this:

[image: images/new_post]

What will happen if try to create a new post? Nothing. We need to add code to handle the form submission.

13.25 Save the form

Open blog/views.py and we will change the def post_new(request)::

Listing 13.26:

blog/views.py

from django.utils import timezone
from django.shortcuts import redirect

...

def post_new(request):
 if request.method == "POST":
 form = PostForm(request.POST)
 if form.is_valid():
 post = form.save(commit=False)
 post.author = request.user
 post.published_date = timezone.now()
 post.save()
 return redirect('post_detail', pk=post.pk)
 else:
 form = PostForm()
 return render(request, 'blog/post_edit.html', {'form': form})

This adds logic for the POST request. Let’s see if it works. Go to the page http://127.0.0.1:8000/post/new/, add a title and text, save it… and voilà! The new blog post is added and we are redirected to the post_detail page!

13.26 Edit post

Editing a post is very similar to adding a new one. Open blog/templates/blog/post_detail.html and add a link for editing.

Listing 13.27:

blog/templates/blog/post_detail.html

{% extends 'blog/base.html' %}

{% block content %}
 <div class="post">
 {% if post.published_date %}
 <div class="date">
 {{ post.published_date }}
 </div>
 {% endif %}
 <h1>{{ post.title }}</h1>
 <p>{{ post.text|linebreaksbr }}</p>

 edit

 </div>
{% endblock %}

Add the post_edit function to blog/views.py:

Listing 13.28:

blog/views.py

...
def post_edit(request, pk):
 post = get_object_or_404(Post, pk=pk)
 if request.method == "POST":
 form = PostForm(request.POST, instance=post)
 if form.is_valid():
 post = form.save(commit=False)
 post.author = request.user
 post.published_date = timezone.now()
 post.save()
 return redirect('post_detail', pk=post.pk)
 else:
 form = PostForm(instance=post)
 return render(request, 'blog/post_edit.html', {'form': form})
...

In blog/urls.py add this line:

Listing 13.29:

blog/urls.py

from django.urls import path
from . import views

urlpatterns = [
 path('', views.post_list, name='post_list'),
 path('post/<int:pk>', views.post_detail, name='post_detail'),
 path('post/new', views.post_new, name='post_new'),
 path('post/<int:pk>/edit', views.post_edit, name='post_edit'),
]

Good job! Your application is getting more and more complete.

13.27 Security

At the moment, anyone can add or edit a post.

We can modify the blog/base.html file such that only authenticated users will be able to select the ‘add post’ link.

Listing 13.30:

blog/templates/blog/base.html

...

{% if user.is_authenticated %}
 <div>Add post</div>
{% endif %}

...

Likewise, we can modify the blog/post_detail.html page to keep unauthenticated users from selecting the ‘edit’ link.

Listing 13.31:

blog/templates/blog/post_detail.html

...

{% if user.is_authenticated %}

 edit

{% endif %}

...

Since you’re likely logged in, if you refresh the page, you won’t see anything different. Load the page in a different browser or an incognito window and you’ll see that those links do not show up.

13.28 Commit your code

$ pwd
/Users/james/Projects/mysite
$ git add .
$ git commit -m 'Added views to create/edit blog post inside the site.'

Notice that there is no git push because there are no remote repositories (such as Github) associated with this project.

Table of Contents

		Frontmatter

	Technology Stack

	Version Control, Git and GitHub

	Build and Host a Static Website

	Sprint Zero

	Data Types

	Python Containers

	Control Statements

	Files

	Database Connections

	Functions

	Classes

	Working with Dates

	Django: MVC Framework

OEBPS/Images/image00179.jpeg

OEBPS/Images/image00178.jpeg

OEBPS/Images/image00177.jpeg

OEBPS/Images/image00176.jpeg

OEBPS/Images/image00175.jpeg

OEBPS/Images/image00174.jpeg

OEBPS/Images/image00173.jpeg

OEBPS/Images/image00172.jpeg

OEBPS/Images/image00171.jpeg

OEBPS/Images/image00170.jpeg

OEBPS/Images/image00211.jpeg

OEBPS/Images/image00169.jpeg

OEBPS/Images/image00168.jpeg

OEBPS/Images/image00167.jpeg

OEBPS/Images/image00166.jpeg

OEBPS/Images/image00165.jpeg

OEBPS/Images/image00210.jpeg

OEBPS/Images/image00164.jpeg

OEBPS/Images/image00209.jpeg

OEBPS/Images/image00163.jpeg

OEBPS/Images/image00162.jpeg

OEBPS/Images/image00206.jpeg

OEBPS/Images/image00161.jpeg

OEBPS/Images/image00205.jpeg

OEBPS/Images/image00160.jpeg

OEBPS/Images/image00204.jpeg

OEBPS/Images/image00203.jpeg

OEBPS/Images/image00202.jpeg

OEBPS/Images/image00201.jpeg

OEBPS/Images/image00200.jpeg

OEBPS/Images/cover00207.jpeg

OEBPS/Images/image00199.jpeg

OEBPS/Images/image00198.jpeg

OEBPS/Images/image00197.jpeg

OEBPS/Images/image00196.jpeg

OEBPS/Images/image00195.jpeg

OEBPS/Images/image00194.jpeg

OEBPS/Images/image00193.jpeg

OEBPS/Images/image00192.jpeg

OEBPS/Images/image00191.jpeg

OEBPS/Images/image00190.jpeg

OEBPS/Images/image00189.jpeg

OEBPS/Images/image00188.jpeg

OEBPS/Images/image00187.jpeg

OEBPS/Images/image00186.jpeg

OEBPS/Images/image00185.jpeg

OEBPS/Images/image00184.jpeg

OEBPS/Images/image00183.jpeg

OEBPS/Images/image00182.jpeg

OEBPS/Images/image00181.jpeg

OEBPS/Images/image00180.jpeg

