
Herman Melville
OR, THE WHALE

MOBY-DICK

Michael Hartl
BOOK AND SCREENCASTS BY

OR, THE WHALE
MOBY-DICKversion

3.2

RUBY ON RAILS
THE

TUTORIAL

LEARN WEB DEVELOPMENT BY EXAMPLE

COVER IMAGE
please add a print sized

2

The Python Book

Python for Information Systems Majors

James Davis, PhD

ii

Contents

Preface v

1 Technology Stack 1
1.1 Full Stack Development . 1
1.2 Demystifying Stacks . 3
1.3 What I use for development 5

1.3.1 My Machine . 5
1.3.2 Text Editor . 6

2 Version Control, Git and GitHub 9
2.1 Not having version control 9
2.2 Advantages of version control 10
2.3 Git . 10

2.3.1 Installing Git . 10
2.3.2 Git basics . 17

2.4 GitHub . 20
2.4.1 Authenticating with GitHub 20
2.4.2 Celebrate . 21

3 Build and Host a Static Website 23
3.1 Static vs Dynamic Websites 23
3.2 Our First Gig . 23
3.3 Plagiarize . 26
3.4 Zurb Foundation . 27
3.5 Hosting Webpages . 36

iii

iv CONTENTS

3.6 The Connection . 38
3.6.1 Configure CloudFlare 39
3.6.2 Update GitHub . 43

4 Sprint Zero 45
4.1 Python versions . 45

4.1.1 Anaconda Distribution 46
4.1.2 Python PIP . 48
4.1.3 Pyenv, Pipenv & Virtualenv (optional) 48

4.2 Jupyter Notebook . 49
4.3 SQLite . 50

4.3.1 SQLite on Windows 51
4.4 Celebrate . 51

5 Data Types 53
5.1 Boolean . 55
5.2 Numeric . 56

5.2.1 Integer . 56
5.2.2 Float . 57

5.3 String . 57
5.4 DateTime . 58
5.5 Conclusion . 58

6 Python Containers 61
6.1 Lists . 61

6.1.1 List structure . 62
6.1.2 Modifying lists . 63
6.1.3 Sorting . 65
6.1.4 Aliasing . 65
6.1.5 Equality . 67

6.2 Dictionaries . 67
6.2.1 Dictionary structure 68
6.2.2 Dictionary methods 68
6.2.3 Loop through a Dictionary 69

CONTENTS v

7 Control Statements 71
7.1 Conditional Statements . 72

7.1.1 The if statement . 72
7.1.2 Adding else . 73
7.1.3 The elif statement 73

7.2 For Loops . 75
7.3 While Loops . 75
7.4 Nested Loops . 76

8 Files 79
8.1 Reading from a file . 81
8.2 Writing to a file . 81
8.3 Appending a file . 82
8.4 The with statement . 82
8.5 JSON . 83
8.6 Other file types . 84

9 Database Connections 85
9.1 Structured Query Language 86
9.2 SQLAlchemy . 89
9.3 Connecting to a database . 89
9.4 Viewing Table Details . 90
9.5 Querying . 90

9.5.1 Dealing with Large ResultSet 91
9.6 Filter . 91
9.7 Join . 92

10 Functions 93
10.1 Built-in Functions . 94
10.2 Writing Functions in Python 94
10.3 Void Functions . 95
10.4 Value-returning Functions 96
10.5 Passing Arguments to Functions 97

vi CONTENTS

11 Classes 99
11.1 Data & code . 101
11.2 Object reusability . 101
11.3 Defining the object . 102
11.4 Class definitions . 103
11.5 Class inheritance . 104

12 Working with Dates 107
12.1 strptime . 107
12.2 strftime . 107

13 Django: MVC Framework 109
13.1 Creating a project . 110
13.2 Set up a database . 111
13.3 The development server . 112
13.4 Create a Blog app . 113
13.5 Django models . 115
13.6 Create tables for models in your database 116
13.7 Introducing the Django Admin 117
13.8 Starting a Git repository . 121
13.9 Handling URLs with Django 122
13.10blog.urls . 123
13.11Django views . 124
13.12Django templates . 125
13.13Show data dynamically . 127
13.14QuerySet . 128
13.15Template extending . 129
13.16Post detail . 131
13.17URL for post detail . 132
13.18Add a post’s detail view . 133
13.19Template for the post details 133
13.20Django forms . 135
13.21Link for new post . 136
13.22URL for new post . 136

CONTENTS vii

13.23Add post_new to the view . 137
13.24Template . 137
13.25Save the form . 140
13.26Edit post . 140
13.27Security . 142
13.28Commit your code . 142

viii CONTENTS

Preface
Admittedly, this book represents my opinionated technology stack
for developing applications. - Dr. Davis

This book is intended to give Information Systems students a foundational
understanding of programming and application development. To do so, we will
need to use a programming language to better illustrate logic, data structures,
and other important concepts. While there are multiple options, to me, we
need a language that is robust, versatile, popular, and free. There are other
languages, such as Ruby, that meet these requirements but the rising popularity
of Python plus hundreds of readily available packages gives Python an edge
above the competition.

A simple search of ‘python popularity’ will return pages of articles, blogs,
and information about The Incredible Growth of Python.

As a comment on the versatility of Python, it comes preloaded on many
systems from the Raspberry Pi to the MacBook Pro. It is popular within the
scientific community, tech startups and the top software companies including:

• Google

• Instagram

• Spotify

• Quora

• Netflix

ix

https://stackoverflow.blog/2017/09/06/incredible-growth-python/

x PREFACE

• Dropbox

• Reddit

Chapter 1

Technology Stack
A technology stack is the combination of all the products and programming
languages used to create an application. For many applications, the ‘stack’
used in its development might include:

• Database management system (DBMS)

• Language(s) for backend logic

• Language(s) for frontend logic or presentation

• Web server

• Operating system

1.1 Full Stack Development
You may have also heard the term ‘full-stack developer’. A full-stack devel-
oper is knowledgable in all aspects of software development from concept to
a finished product. The key here is ‘knowledgable’. It is acceptable that you
might not know the answer to all technical questions but you should be able to
find answers in a timely manner.

The opposite of a full-stack developer would be someone with a very spe-
cialized and limited skillset. A database administrator (DBA) will have a very

1

2 CHAPTER 1. TECHNOLOGY STACK

deep understanding of his/her particular database management system (DBMS)
along with the concept of table spaces, triggers, SQL, etc. but probably has a
minimal understanding of UI/UX, responsive frontends, or javascript.

Over the years, the technology stack a developer was required to know has
gotten more complex.

Other important skills for a full-stack developer to know:

• Server, network, and hosting environment

• Relational and non-relational databases

1.2. DEMYSTIFYING STACKS 3

• How to interact with APIs and the external world

• User interface and user experience

• Quality assurance

• Security concerns throughout the program

• Understanding customer and business needs

• Version control

1.2 Demystifying Stacks

Geek speak, or technical jargon, is the terms, phrases, and expressions that
the members of the technology community use in their, or if you identify as a
techie, ‘our’, communication.

To the outsider or someone new to community, this jargon can be confusing,
intimidating, and possibly a barrier. I’ve found comparing technology stacks to
a bento box helps to remove some of the mystery of our field.

Box 1.1. Bento

4 CHAPTER 1. TECHNOLOGY STACK

Bento is a popular box meal common in Japanese cuisine. It brings together rice
or noodles, fish or meat, with pickled and cooked vegetables, in a yummy box.

You need a balanced mix of things. Its a puzzle - putting everything together in
the box. Ekiben - content which is arranged in the most efficient, graceful manner.
The bento is presented in a simple, beautiful, balanced way. Nothing lacking.
Nothing superfluous. Not decorated, but wonderfully designed.

Likewise, we can think of the technology stack as a bento consisting of our
protein, starch, veggies, and lagniappe1. Our technology bento will be used to

1The word comes from the Louisiana French referring to the extra items.

1.3. WHAT I USE FOR DEVELOPMENT 5

classify the technology as storage, infrastructure, logic, and style/structure.

1.3 What I use for development
The Golf Channel has a segment called “What’s in the bag?” where they an-
alyze the clubs used by a particular professional golfer. During the course of
this book, I’m going to give you my “What’s in the bag?” for developing a
software product. Like pro golfers, my selections change as the technology
changes. Here is what I’m currently using for development. . . to include writ-
ing this book!

1.3.1 My Machine
Most developers I know working at startups or active in the open source com-
munity use Mac computers 2. Those not using a Mac tend to select some flavor

2This is completely my observation with no quantitative support.

6 CHAPTER 1. TECHNOLOGY STACK

of Linux (with Ubuntu being a personal favorite). I was a long term ThinkPad
owner (dual booting between Windows & Ubuntu) but made the switch to a
MacBook in 2013 and haven’t looked back. When working in software de-
velopment, you will eventually want to create a mobile app. The only way to
create and deploy an app for the iOS is by using a Mac. With my MacBook
Pro, I can do web development, android development, and ios development.

1.3.2 Text Editor

Yes, a text editor is exactly what it sounds like. It edits text. In coding, the term
‘editor’ has a slightly different meaning. Used in software development, it is an
application used for editing your code files. Most web development languages
are interpreted, not compiled, so there isn’t a need for a robust integrated devel-
opment environment (IDE). For the past 5 years, I have been using TextMate
as my coding editor.

You might be wondering why would you need a special code editor, rather
than using something like Word or Notepad.

The main reason is that code needs to be plain text, and the problem with
programs like Word is that they don’t actually produce plain text, they produce
rich text (with fonts and formatting) along with other meta data created as part
of the file.

Another reason is that code editors are specialized for editing code, so they
can provide helpful features like highlighting code with color according to its
meaning, or automatically closing tags for you.

I’ve found most developers become very passionate about their particular
editor. Soon, you’ll come to think of your trusty code editor as one of your
favorite tools.

1.3. WHAT I USE FOR DEVELOPMENT 7

VS Code (recommended)

Visual Studio Code is a free editor from Microsoft. It is popular in the .NET
community but a little too heavy for my needs. If plan on using any of the
Visual Studio products or .NET in the future, I would recommend VS Code.

Atom (recommended)

Atom is a code editor created by GitHub. It’s free, open-source and available
for Windows, OS X and Linux. If you are not already attached to an editor, I
would recommend Atom.

Eclipse IDE

Eclipse is an integrated development environment (IDE) which is much more
than a code editor. IDEs are typically associated with compiled languages (such

https://code.visualstudio.com/
https://atom.io/
http://www.eclipse.org/home/index.php

8 CHAPTER 1. TECHNOLOGY STACK

as Java) but can still be used with other languages. I have used Eclipse in the
past but it is very heavy in terms of application size.

Box 1.2. Who cares what I think?

Who is this guy and why should you care what I think about development? If you
are one of my students, you are a captive audience and your grade is an incentive to
care. Otherwise, here is some more information about me. I haven’t always been
an academic and these are the cliff notes. I’ve been writing code since the mid-
1980s. As a kid, my parents bought me a Commodore Vic-20 and I would write
games for me and my friends. In college, I majored in math while taking program-
ming classes in Fortran, Pascal, COBOL, and C. There was a 4ish year hiatus from
coding because I used the army to help pay for college (whole different story for
a completely different book) but quickly returned to software development after
my time in the military. While working on an MS in Computer Science, I paid
the bills by developing software for the healthcare industry. Not knowing when to
quit, I completed the MS and picked up a PhD program in Information Systems.

Somewhere in graduate school things got a bit more interesting. I started work-
ing with some fellow researchers on social networking algorithms and knowledge
networks. Long story made short, we found success in a startup venture devel-
oping an application to track the knowledge networks of organizations. We had a
good exit, I did some more army stuff, worked as an enterprise architect for a bit,
and then returned to academics while still partaking in the occasional side venture.

LinkedIn

https://www.linkedin.com/in/jdavisphd/

Chapter 2

Version Control, Git and
GitHub
Version control is a system that records changes to a file or group of files. It
allows developers to maintain a log of code changes with minimal effort. More
importantly, it allows multiple developers to work on the same project at the
same time and provides a robust method for sharing & merging work.

2.1 Not having version control
How many versions of code can exist? Even on a small project there could be
dozens of versions. Imagine being in an IT Department with a desktop com-
puter at a “work” location and another at home. Most of us want continue
working in the evenings so you put the code for a project on a USB drive and
bring it home. At home, you put the updated code on another computer and
do some additional development. At this point, there are two versions of the
code at three locations (work computer, thumb drive, & home computer). As
this process continues and you rotate through multiple USB drives, your code
can get disjointed and you will find yourself spending time & effort research-
ing file modification dates to realign code. This complexity would increase
exponentially when working with multiple developers.

As projects scale, your team will likely require testing, staging, and produc-

9

10 CHAPTER 2. VERSION CONTROL, GIT AND GITHUB

tion environments each built from a similar code base at different time periods.
Maintaining and cascading changes would be problematic even in the smallest
of development teams.

2.2 Advantages of version control
A robust version control system, such as git, supports multiple development
versions (one for each developer) along with as many staging, testing, and pro-
duction environments that are desired. It also provides the foundation for other
agile software development practices such as test driven development (TDD),
continuous integration, and continuous deployment.

2.3 Git
Git is the most commonly used version control platform. Its amazingly fast, its
very efficient with large projects, and it has an incredible branching system for
non-linear development.

2.3.1 Installing Git
If you have done some coding in the past, you may already have git on your
system. Git is already packaged with Xcode and some other development en-
vironments.

$ git --version

If you don’t have a version, git is relatively easy to install.

Install on Windows

The recommended method for utilizing git on Windows is through an installer
available at the Git website, git-scm.com.

http://git-scm.com/download/win

2.3. GIT 11

Start the setup installer. You should accept the default settings during the
installation with a few exceptions noted below.

12 CHAPTER 2. VERSION CONTROL, GIT AND GITHUB

I would suggest changing the default editor to something other than VIM.

2.3. GIT 13

Select ‘Use Windows default console window’. This is important to prop-
erly launch interactive Python in later chapters of the book.

14 CHAPTER 2. VERSION CONTROL, GIT AND GITHUB

After installation is complete, you can interact with git by selecting ‘Git
Bash’ in your windows menu.

2.3. GIT 15

This bash prompt will provide the command line interface for git com-
mands. Type ‘git –version’ to confirm git is intalled.

$ git --version
git version 2.16.1.windows.1

16 CHAPTER 2. VERSION CONTROL, GIT AND GITHUB

Install on Mac

Typing the ‘git –version’ command above should prompt you to install it. If
not, a macOS Git installer is maintained and available for download at the Git
website, at git-scm.com.

http://git-scm.com/download/mac

2.3. GIT 17

Install on Ubuntu

$ sudo apt-get install git-all

For other flavors of Linux, checkout this website for more information git-
scm.com.

2.3.2 Git basics

After you install Git, set your name and password. Git uses this information to
track changes and it is immutably baked into your committed code.

http://git-scm.com/download/linux
http://git-scm.com/download/linux

18 CHAPTER 2. VERSION CONTROL, GIT AND GITHUB

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

Note: Use your name and email address for the above and not “John
Doe”.

You can confirm your Git configuration with the list tag.

$ git config --list

credential.helper=osxkeychain
user.name=John Doe
user.email=johndoe@example.com
core.editor=mate -w
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true
core.ignorecase=true
core.precomposeunicode=true
remote.origin.url=git@github.com:johndoe/test.git
remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*
branch.master.remote=origin
branch.master.merge=refs/heads/master

Now that you have Git properly setup, change to a directory where you
want to utilize version control. For me, I my coding projects in a ‘Projects’
folder.

$ cd Projects/mysite

This particular folder contains a basic Django project but you can use any
project you may want to add version control.

$ ls
blog db.sqlite3 manage.py mysite notes.txt

To setup this project with Git, I run the init command.

2.3. GIT 19

$ git init

Which returns something like this.

Initialized empty Git repository in /Users/james/Projects/mysite/.git/

The ‘git init’ command created a new subdirectory named .git that contains
the skeleton files fora Git repository. At this point, nothing in your project is
tracked, yet. . . .

To add files to the Git repository, you can type ‘git add .’ which will add all
the files or you can add the files by name.

$ git add .

Files have been added to Git but not commited. To finish the commit pro-
cess, add the commit command.

$ git commit -m "initial commit for the mysite project"

If you are ever unsure about the status of your Git repository, you can run
the status command.

$ git status
On branch master
nothing to commit, working tree clean

Excellent! You can now create Git repositories and commit code. Next we
will learn how to integrate with a remote repository.

20 CHAPTER 2. VERSION CONTROL, GIT AND GITHUB

2.4 GitHub

GitHub is a cloud hosting service for git repositories. It is mostly used for
computer code although it can be used for other types of version control. Note:
this book is maintained using Git & GitHub as well as the code for the
hosting platform, Softcover. GitHub offers all of the distributed version con-
trol and source code management functionality of Git as well as adding its own
features.

Signing up for a GitHub account is straight forward, easy, and free. After
you get an account I would envite you to participate in one of their tutorials
such as GitHub Hello World. The Hello World tutorial covers some basics
about how to create a repository and branching. We will cover more about
cloning, branching, pull requests, merging, and other Git commands later in
this book.

2.4.1 Authenticating with GitHub

When you connect to a GitHub repository from Git, you’ll need to authenticate
with GitHub using either HTTPS or SSH. . . with HTTPS being the recom-
mended method.

Connecting over HTTPS (recommended)

If you clone with HTTPS, you can cache your GitHub password in Git using a
credential helper.

Connecting over SSH

If you clone with SSH, you must generate SSH keys on each computer you use
to push or pull from GitHub.

https://guides.github.com/activities/hello-world/
https://help.github.com/articles/which-remote-url-should-i-use/#cloning-with-https-urls-recommended
https://help.github.com/articles/caching-your-github-password-in-git
https://help.github.com/articles/which-remote-url-should-i-use#cloning-with-ssh-urls
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

2.4. GITHUB 21

2.4.2 Celebrate
Congratulations, you now have Git and GitHub all set up! You can also check-
out the Git Cheatsheet and GitHub Flow documents. Don’t worry about mas-
tering the Git commands and flow of versioning control. It will start meaning
more to you later.

https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://guides.github.com/introduction/flow/

22 CHAPTER 2. VERSION CONTROL, GIT AND GITHUB

Chapter 3

Build and Host a Static
Website
Everybody has to start somewhere. . . so let’s start with a static website!

3.1 Static vs Dynamic Websites
Static means the pages delivered to the client are the same for everyone. Dy-
namic is the opposite and each client may receive different content. In gen-
eral, web applications are dynamic because users are authenticated against a
database and receive content based on their account, privileges, and/or roles. A
website advertising the hours for a local hardware store could be static in that
every one visiting that website sees the same information. Static web servers
give everyone the same html file. Dynamic servers involve logic, database
connections, and provide changing content by building the html file ‘on the
fly’. . . aka dynamically.

3.2 Our First Gig
As an example, this chapter will focus on building a website for a technology
consulting service, AgilePhd. Note: This exercise assumes that you are fa-

23

24 CHAPTER 3. BUILD AND HOST A STATIC WEBSITE

miliar with creating GitHub repositories. If not, try working through the
GitHub Hello World tutorial.

The finished product will look something like this:

. . . but you usually start with something like this:

https://guides.github.com/activities/hello-world/

3.2. OUR FIRST GIG 25

Generated with this minimal code:

Listing 3.1: index.html

<html>
<body>
Coming soon!

</body>
</html>

Inside your Projects folder, create a subfolder called ‘agilephd’ and copy
the above code into a file called index.html.

We are going to use a service called GitHub Pages so let’s create a git
repository for this code. You get one freely hosted website per GitHub account.
Head over to GitHub and create a new repository named username.github.io,
where username is your username on GitHub.

$ git init
$ git add .
$ git remote add origin git@github.com:username/username.github.io.git

https://pages.github.com/
https://github.com/

26 CHAPTER 3. BUILD AND HOST A STATIC WEBSITE

(where username is your username)
$ git push -u origin master

Goto your new GitHub repository and visit the settings page. Scroll down
to the ‘GitHub Pages’ section and publish the page.

Now you should be able to view your ‘coming soon!’ page at username.github.io

3.3 Plagiarize
In technology, plagiarism is not only tolerated but it is encouraged and cel-
ebrated. Open source communities endorse this practice by publicly posting
code. All that is asked in return is that you share your enhancements with the
community creating a win-win atmosphere.

Don’t spend time reinventing the wheel. Find a solution that works and
borrow heavily. That is exactly where we are going to start with our static
website.

3.4. ZURB FOUNDATION 27

3.4 Zurb Foundation
HTML is the language of the web. Web-servers know how to send it and
browsers know how to interpret it. HTML is great. HTML is awesome. . . but
writing it can be a bit mundane and slow. Did I mention you should borrow
from others? No, it is not stealing and it is not wrong. We all do it and as a
community, we all ‘borrow’ from each other. Let’s start by borrowing from a
company that has made it easy to find their code.

Zurb is a design firm that creates awesome websites for clients. They are
also the creators of Foundation, a responsive front-end framework. Zurb’s
Foundation or Zurb Foundation or just Foundation is a javascript library that
helps your web pages look better. Foundation, and other responsive frame-
works such as Bootstrap, make it easy to design beautiful responsive websites,
apps and emails that look amazing on any browser or any device.

Check out Zurb to learn more about the framework (but don’t spend too
much time as it is not important for this course).

Zurb provides several templates of their framework. Sign up to download
all the templates or you can scroll down to view demos.

https://foundation.zurb.com/
https://foundation.zurb.com/templates.html

28 CHAPTER 3. BUILD AND HOST A STATIC WEBSITE

For the consulting firm gig, let’s start with the ‘agency’ template.

For the cost of signing up with Zurb (which was free), we now have some
robust HTML code to build upon.

Listing 3.2: index.html

<!doctype html>
<html class="no-js" lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Foundation | Welcome</title>
<link rel="stylesheet"
href="https://dhbhdrzi4tiry.cloudfront.net/cdn/sites/foundation.min.css">

</head>
<body>

<!-- Start Top Bar -->
<div class="top-bar">
<div class="top-bar-left">
<ul class="menu">

<li class="menu-text">Yeti Agency
One

3.4. ZURB FOUNDATION 29

Two

</div>
<div class="top-bar-right">
<ul class="menu">

Three
Four
Five
Six

</div>

</div>
<!-- End Top Bar -->

<div class="callout large">
<div class="row column text-center">
<h1>Changing the World Through Design</h1>
<p class="lead">

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Nullam in dui mauris.

</p>
Learn More
Learn Less

</div>
</div>

<div class="row">
<div class="medium-6 columns medium-push-6">

</div>
<div class="medium-6 columns medium-pull-6">
<h2>Our Agency, our selves.</h2>
<p>

Vivamus luctus urna sed urna ultricies ac tempor dui sagittis.
In condimentum facilisis porta. Sed nec diam eu diam mattis viverra.
Nulla fringilla, orci ac euismod semper, magna diam porttitor mauris,
quis sollicitudin sapien justo in libero. Vestibulum mollis mauris enim.
Morbi euismod magna ac lorem rutrum elementum. Donec viverra auctor.

</p>
</div>

</div>

<div class="row">
<div class="medium-4 columns">
<h3>Photoshop</h3>
<p>Vivamus luctus urna sed urna ultricies ac tempor dui sagittis.
In condimentum facilisis porta. Sed nec diam eu diam mattis viverra.
Nulla fringilla, orci ac euismod semper, magna.</p>

</div>
<div class="medium-4 columns">
<h3>Javascript</h3>

30 CHAPTER 3. BUILD AND HOST A STATIC WEBSITE

<p>Vivamus luctus urna sed urna ultricies ac tempor dui sagittis.
In condimentum facilisis porta. Sed nec diam eu diam mattis viverra.
Nulla fringilla, orci ac euismod semper, magna.</p>

</div>
<div class="medium-4 columns">
<h3>Marketing</h3>
<p>Vivamus luctus urna sed urna ultricies ac tempor dui sagittis.
In condimentum facilisis porta. Sed nec diam eu diam mattis viverra.
Nulla fringilla, orci ac euismod semper, magna.</p>

</div>
</div>

<hr>

<div class="row column">
<ul class="vertical medium-horizontal menu expanded text-center">
<div class="stat">28</div>Websites
<div class="stat">43</div>Apps
<div class="stat">95</div>Ads
<div class="stat">59</div>Cakes
<div class="stat">18</div>Logos

</div>

<hr>

<div class="row column">
<h3>Our Recent Work</h3>

</div>

<div class="row medium-up-3 large-up-4">
<div class="column">

</div>
<div class="column">

</div>
<div class="column">

</div>
<div class="column">

</div>
<div class="column">

</div>
<div class="column">

</div>
<div class="column">

3.4. ZURB FOUNDATION 31

</div>
<div class="column">

</div>
<div class="column">

</div>
<div class="column">

</div>
<div class="column">

</div>
<div class="column">

</div>
</div>

<hr>

<div class="row column">
<ul class="menu">
One
Two
Three
Four

</div>

<script src="https://code.jquery.com/jquery-2.1.4.min.js"></script>
<script src="https://dhbhdrzi4tiry.cloudfront.net/cdn/sites/foundation.js">
</script>
<script>
$(document).foundation();

</script>
</body>

</html>

Copy / paste the above code into your index.html file and push to github.

$ git add .
$ git commit -m "updating page with a template from Zurb Foundation"
$ git push

Now you should be able to view the Zurb Foundation template page at
username.github.io

Time to modify the template for the AgilePhD consulting firm.

32 CHAPTER 3. BUILD AND HOST A STATIC WEBSITE

Listing 3.3: index.html

<!doctype html>
<html class="no-js" lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>AgilePhD | Welcome</title>
<link rel="stylesheet"
href="https://dhbhdrzi4tiry.cloudfront.net/cdn/sites/foundation.min.css">

<link rel="stylesheet" href="https://s3.amazonaws.com/agilephd/styles/main.css">
<link href="https://fonts.googleapis.com/css?family=Montserrat" rel="stylesheet">

</head>
<body>

<!-- Start Top Bar -->
<div class="top-bar">
<div class="top-bar-left">
<ul class="menu">

<li class="menu-text agilephd">AgilePhD

</div>
<div class="top-bar-right">
<ul class="menu">

<a data-open="contactModal">Contact

</div>
</div>
<!-- End Top Bar -->

<div class="callout large scrum">
<div class="row column text-center bottom">
<h1 class="scrum_h1 bottom">Organizational Change Through Agile Methods</h1>

</div>
</div>

<div class="row">
<div class="medium-6 columns medium-push-6">
<img class="thumbnail pm_image"

src="https://s3.amazonaws.com/agilephd/project_management.jpg">
</div>
<div class="medium-6 columns medium-pull-6">
<h2>Agile Project Management</h2>
<p>

As an experienced agile project manager, AgilePhD is the niche provider
clients seek out when they are looking to implement business-enhancing,
agile PMO services that improve project and portfolio performance.

</p>

</div>
</div>

3.4. ZURB FOUNDATION 33

<div class="row">
<div class="medium-4 columns">
<h3>Project Management</h3>
<p>

Speed is what companies want as they adopt Agile. Traditional
plan-driven methodologies like Waterfall make a lot of up front
assumptions and leave no flexibility to adapt to the changing
needs of the customer.

</p>
</div>
<div class="medium-4 columns">
<h3>Software Development</h3>
<p>

It's all about that MVP (minimally viable product) and getting
it in front of your customers. I love building technology products.

</p>
</div>
<div class="medium-4 columns">
<h3>Cloud Services</h3>
<p>

As an early adopter several cloud technologies, AgilePhD can
help you develop a scalable solutions allowing you to focus
on your core business.

</p>
</div>

</div>

<hr>

<div class="row column">
<ul class="vertical medium-horizontal menu expanded text-center">

<div class="stat">600+</div>Students Trained

<div class="stat">20+</div>Web App Projects

<div class="stat">12+</div>Mobile App Projects

</div>

<hr>

<div class="row column">
<h3>Recent Web Apps</h3>

</div>

<div class="row medium-up-3 ">
<div class="column">

34 CHAPTER 3. BUILD AND HOST A STATIC WEBSITE

<img class="thumbnail"
src="https://s3.amazonaws.com/agilephd/damagelist.png">

</div>
<div class="column">
<img class="thumbnail"

src="https://s3.amazonaws.com/agilephd/health_engagements.png">
</div>
<div class="column">
<img class="thumbnail"

src="https://s3.amazonaws.com/agilephd/animalminder_2.jpg">
</div>
<div class="column">
<img class="thumbnail"

src="https://s3.amazonaws.com/agilephd/sabot_solutions.png">
</div>
<div class="column">
<img class="thumbnail"

src="https://s3.amazonaws.com/agilephd/sicklewell.png">
</div>
<div class="column">
<img class="thumbnail"

src="https://s3.amazonaws.com/agilephd/rails_girls.png">
</div>

</div>

<hr>

<div class="row column">
<h3>Recent Mobile Apps</h3>

</div>

<div class="row small-up-2 medium-up-5 ">
<div class="column">
<img class="thumbnail"

src="https://s3.amazonaws.com/agilephd/damagelist_ios_3.jpg">
</div>
<div class="column">
<img class="thumbnail"

src="https://s3.amazonaws.com/agilephd/btr_crime.jpeg">
</div>
<div class="column">
<img class="thumbnail"

src="https://s3.amazonaws.com/agilephd/seattle_crime.jpeg">
</div>
<div class="column">
<img class="thumbnail"

src="https://s3.amazonaws.com/agilephd/sfo_crime.jpeg">
</div>
<div class="column">
<img class="thumbnail"

3.4. ZURB FOUNDATION 35

src="https://s3.amazonaws.com/agilephd/sicklewell_ios.png">
</div>

</div>

<hr>

<div class="row column">
<ul class="menu">

</div>

<div class="reveal" id="contactModal" data-reveal>
<h4>Contact information</h4>
<ul class="no-bullet">
Dr. James Davis, PhD, PMP, CSP, CSM

james@agilephd.com

+1.225.892.0230

<button class="close-button" data-close aria-label="Close modal" type="button">
×

</button>
</div>

<script src="https://code.jquery.com/jquery-2.1.4.min.js"></script>
<script src="https://dhbhdrzi4tiry.cloudfront.net/cdn/sites/foundation.js"></script>
<script>
$(document).foundation();

</script>
</body>

</html>

Update the index.html file with the new code (from above) and push to
github.

36 CHAPTER 3. BUILD AND HOST A STATIC WEBSITE

$ git add .
$ git commit -m "customizing index.html for AgilePhd"
$ git push

When viewed in a browser, username.github.io should look something like
this:

3.5 Hosting Webpages

Now that we have a decent static webpage, it is time to host it.
We are living in the glory days of technology. While there are unlimited

options for hosting websites, we are going to focus on options that are 1) free
and 2) worthy your time & effort.1

1If you are in a startup organization, titles really don’t matter and nothing should be considered ‘beneath’ you.
You and your co-founders should be willing to do everything and anything to see the venture move forward.

3.5. HOSTING WEBPAGES 37

Box 3.1. Hosting Services

Word Press, Wix, Squarespace, along with most Domain Registration Services,
have wizard-style website creation abilities. While this may work for some situa-
tions, I’ve found these ‘wizard’ solutions to be very heavy and overly constraining.
As the technical lead for your venture, developing your own webpages gives you
flexibility with hosting options and features.

While laws vary from state to state, content, such as a website, is owned by the
person or entity that created it. This is more reason to for you to develop your own
websites and/or applications. If you do happen to utilize outside services, read the
contract and consult an attorney as needed.

If you didn’t already think of yourself as a web developer, now you can.
You have created an HTML page and published it at username.github.io (where
‘username’ is your github username). While this may be sufficient for some
projects or personal pages, you usually want your page accessible through a
custom URL. For this gig, I want to use ‘agilephd.com’.

There are dozens, if not hundreds, of domain registration firms. I’ve used
several and at the moment, GoDaddy is my favorite. If you don’t already have
one, create an account with GoDaddy.

GoDaddy allows users to search for domain names. If your desired domain
name isn’t available, GoDaddy offers suggestions. I was lucky and registered
‘agilephd.com’ years ago.

Box 3.2. Domain Names

What’s in a domain name? Names can be meaningful or meaningless. IBM.com
and LSU.edu are very meaningful names. I imagine the discussion for lsu.edu
started with “We are Louisiana State University and must have lsu.edu”.

https://wwww.godaddy.com

38 CHAPTER 3. BUILD AND HOST A STATIC WEBSITE

To me, other domain name, such as heroku.com, are a less meaningful in that
the founders likely started with the question “What domain names are available?
Heroku.com is available and sounds cool. . . let’s get it.”

After finding the appropriate domain name, you register it with GoDaddy.
During the registration process, domain registration firms are usually very per-
sistent about up-selling additional services to you. These services may include
hiding your registration name, SSL, coming soon pages, templates, and web
development services. You don’t need any of those and can opt out.

Once you have purchased a domain name, you must keep it registered with
a registration service to maintain ownership.

3.6 The Connection

The last step is to select the DNS servers for your newly registered domain such
that it ‘points’ to the location of your content. You could configure GoDaddy
to use GitHub’s DNS servers but I use a service called CloudFlare.

3.6. THE CONNECTION 39

3.6.1 Configure CloudFlare

Create an account with CloudFlare and add your website to your account.

40 CHAPTER 3. BUILD AND HOST A STATIC WEBSITE

Like many other SaaS solutions, CloudFlare utilizes the freemium model.
At the free level, you get basic routing and CloudFlare’s robust protection ser-
vice. In the past, we had to buy expensive hardware solutions from companies
like Cisco and configure complicated firewall servers. CloudFlare keeps your
application safer (there is no such thing as completely safe) from threats such
as DDOS attacks and other evilness in cyber world.

Box 3.3. Nameservers

To use Cloudflare, you need to change your domain’s authoritative DNS servers,
which are also referred to as just ‘nameservers’. This change would be made in
your hosting service account (GoDaddy).

As a reference, these are an example of Cloudflare nameservers you may be
assigned.

isla.ns.cloudflare.com
ken.ns.cloudflare.com

In my GoDaddy account, I change the DNS settings to the nameservers
provided by CloudFlare.

3.6. THE CONNECTION 41

Back at CloudFlare page for your website, select the DNS page. Similar to
the image below, I will add CNAME and MX records routing traffic through
the Cloudflare system.

• CNAME agilephd.com is an alias of cavalryjim.github.io

• CNAME www is an alias of agilephd.com

• MX agilephd.com mail handled by mx2.zoho.com

• MX agilephd.com mail handled by mx.zoho.com

42 CHAPTER 3. BUILD AND HOST A STATIC WEBSITE

Box 3.4. DNS Record Types

A Canonical Name or ‘CNAME’ record is a type of DNS record that maps an
alias name to a true or canonical domain name. An ‘A’ record returns a 32-bit
IPv4 address such as ‘192.0.2.23’. An ‘MX’ record is a mail exchange record that
is used for mapping email traffic.

NAME TYPE VALUE
--
bar.example.com CNAME foo.example.com
foo.example.com A 192.0.2.23
example.com MX mx.mail.com

DNS changes can take a few minutes to a few hours to propagate through
the ‘Internet’. This delay is caused by Internet Service Providers and other en-
tities caching DNS settings. Mental note: Don’t make DNS changes before

3.6. THE CONNECTION 43

an important demo of your product.

3.6.2 Update GitHub
Lastly, you need to let GitHub know that you are using a custom domain name.

At this point, you are ready to call your client (or co-workers) and tell them
the new website is done and has been deployed. Good job!

44 CHAPTER 3. BUILD AND HOST A STATIC WEBSITE

Chapter 4

Sprint Zero

In agile software development frameworks, such as Scrum, development is con-
ducted in time-boxed work iterations called Sprints. Sprint Zero is all the work
that needs to happen before you can start actually development1.

4.1 Python versions

Technology is constantly changing. That the great thing about our industry and
the frustrating thing about our industry. In Python, there was a bit of a riff when
the language went from version 2.x to 3.x. The debate is mostly over but know
that some popular packages were slow to embrace Python 3 and developers
were forced to choose between versions.

1Some agile practitioners argue there is no such thing as Sprint Zero. My response to them would be - this is
my book and I’m going to use the term as I see fit.

45

46 CHAPTER 4. SPRINT ZERO

Despite a few staunch holdouts, Python 3 is the present and future of the
language. You can read more about the version debate at wiki.python.org.

For this book, we’re going to use Python 3. If you’re using MacOS or
Linux, you probably have a version of Python already installed. Verify by
typing ‘python –version’ in the terminal.

$ python --version
Python 3.6.3

If you have Python version 3 or later, you are good and can skip the section
on installing Python.

4.1.1 Anaconda Distribution

If you don’t have Python version 3.6 or later on your computer, the Anaconda
Distribution is the recommended installation. Anaconda is an open source dis-
tribution of Python that comes with many of the popular data science packages.

https://wiki.python.org/moin/Python2orPython3

4.1. PYTHON VERSIONS 47

The Anaconda Distribution is available at https://www.anaconda.com/.
Once installed, you should be able to verify the Python version in the ter-

minal by using python -version or python3 -version.

$ python3 --version
Python 3.6.3

Anaconda comes with all of the Python packages we will be using in this
course. You can view a list of the packages at https://docs.anaconda.com/. We
will be using:

• sqlalchemy

• pandas

• scikit-learn

• beautifulsoup4

• flask

• django

• jupyter

• . . . and many others

https://www.anaconda.com/download/
https://docs.anaconda.com/anaconda/packages/pkg-docs

48 CHAPTER 4. SPRINT ZERO

4.1.2 Python PIP
PIP is the recommended tool for installing Python packages. It comes with
the Anaconda Distribution. Verify that pip is installed with pip -version or
pip3 -version.

$ pip --version
pip 9.0.1

$ pip3 --version
pip 9.0.1

4.1.3 Pyenv, Pipenv & Virtualenv (optional)

If you expect to use Python outside of this course, you are encouraged to
isolate your Python environments. Isolating your environments allows you to
work with different versions of packages for different projects. It also allows

4.2. JUPYTER NOTEBOOK 49

you to share the exact package versions being used on a project with other
collaborators.

Using isolated environments is optional and you can easily transition when
the need arises. You can find more information about at the following websites:

• https://github.com/pyenv/pyenv

• https://pipenv.readthedocs.io/

• https://virtualenv.pypa.io/

4.2 Jupyter Notebook

The Jupyter Notebook is an open-source web application that allows you
to create and share documents that contain live code, equations, visualizations

https://github.com/pyenv/pyenv
https://pipenv.readthedocs.io/
https://virtualenv.pypa.io/

50 CHAPTER 4. SPRINT ZERO

and narrative text. It is popular among data scientists and comes as part of the
Anaconda Distribution. We will be using Jupyter later in this book. Confirm
Jupyter’s installation with jupyter -version

$ jupyter --version
4.4.0

4.3 SQLite

SQLite is a compact, cross platform, self-contained relational database
management system that is available in the public domain. SQLite is included
with Mac OS X by default. It is located in the /usr/bin directory and called
sqlite3.

$ sqlite3 --version
3.16.2 2017-01-06 16:32:41 a65a62893ca8319e89e48b8a38cf8a59c69a8209

Using SQLite, users can create file-based databases that can be transported
across machines, platforms, etc. The only thing needed to then view or edit
these databases is the SQLite command line program, a GUI tool capable of
communicating with SQLite, or python packages (such as sqlalchemy) that
were created for database interactions.

4.4. CELEBRATE 51

4.3.1 SQLite on Windows
Instructions for installing SQLite on Windows will be provided if needed.
SQLAlchemy may provide the required functionality needed to interaction with
a SQLite file.

4.4 Celebrate
You are complete with Sprint Zero and ready to move forward!

52 CHAPTER 4. SPRINT ZERO

Chapter 5

Data Types
This section will introduce the common data types used in Python. Additional
information about Python data types can be found at docs.python.org.

The data types to be discussed in this chapter include:

• boolean

• numeric

53

https://docs.python.org/3/library/datatypes.html

54 CHAPTER 5. DATA TYPES

• string

• datetime

Box 5.1. Interacting with Python (REPL)

At this point, you should have a working Python 3 interpreter at hand. If you need
help getting Python set up correctly, please refer to Chapter 4 to get started.

The most straightforward way to start talking to Python is in an interactive
Read-Eval-Print Loop (REPL) environment. That simply means starting up an
interactive shell and typing commands to it directly.

From the terminal, you can start an interactive shell by typing the command
python or python3.

$ python
Python 3.6.3 (default, Nov 2 2017, 10:31:58)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

If you are not seeing the >>> prompt, then you are not talking to the Python
interpreter. If you are seeing the prompt, youre up and running! Try running some
simple python commands.

>>> print("Hello, World.")
Hello, World.
>>> x = 2
>>> y = 6
>>> y + x
8
>>> exit()

As a note, use the exit() command to get out of the Python shell environ-
ment.

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

5.1. BOOLEAN 55

5.1 Boolean

Boolean values are the two constant objects True and False.
They are used to represent truth values (other values can also be considered

true or false).
In numeric contexts (for example, when used as the argument to an arith-

metic operator), they behave like the integers 1 and 0, respectively.
The built-in function bool() can be used to cast any value to a Boolean, if

the value can be interpreted as a truth value.
They are written as True and False, respectively.
Open an interactive Python environment using python or python3 inside

your terminal.

>>> t = True
>>> t + t
2
>>> f = False
>>> f
False
>>> f + f
0
>>> type(t)
<class 'bool'>
>>> type(f)
<class 'bool'>
>>> bool(1)
True

Boolean values respond to logical operators and / or

>>> True and False
False
>>> True and True
True
>>> False or True
True
>>> False or False
False

56 CHAPTER 5. DATA TYPES

5.2 Numeric
Number data types store numeric values. They are immutable data types,
means that changing the value of a number data type results in a newly al-
located object.

Box 5.2. Python 2 vs Python 3

As an example of the differences between Python versions, Python 2 had two
integer types int and long. These have been unified in Python 3, so there is now
only one type, int.

5.2.1 Integer
Integers, or ints, are positive or negative whole numbers with no decimal point.
Use int() to cast other data types as an integer, if the value can be interpreted
as an integer.

>>> x = 17
>>> y = 3
>>> x + y
20
>>> x - y
14
>>> x * y
51
>>> x / y
5.666666666666667
>>> x // y
5

""" You can also cast other data types as integers """
>>> z = "22"
>>> type(z)
<class 'str'>
>>> a = int(z)
>>> type(a)
<class 'int'>

5.3. STRING 57

5.2.2 Float

Floating point real values, also called floats, represent real numbers and are
written with a decimal point dividing the integer and fractional parts. Floats
may also be in scientific notation, with e indicating the power of 10 (2.5e2 =
2.5 x 102 = 250). Use float() to cast other data types as a float, if the value
can be interpreted as an float.

>>> c = 8.0
>>> d = 20.2223
>>> pi = 3.14
>>> type(c)
<class 'float'>
>>> c * pi
25.12
>>> d / c
2.5277875
>>> d // pi
6.0
>>> d / pi
6.440222929936306
>>> i = int(c)
>>> i
8

5.3 String
String literals, or just strings, in python are surrounded by either single quota-
tion marks, or double quotation marks.

‘hello’ is the same as “hello”.
Strings can be output to screen using the print function. For example:

print("hello").
Like many other popular programming languages, strings in Python are

arrays of bytes representing unicode characters. However, Python does not
have a character data type, a single character is simply a string with a length of
1. Square brackets can be used to access elements of the string.

58 CHAPTER 5. DATA TYPES

>>> h = "hello world!"
>>> type(h)
<class 'str'>
>>> h[0]
'h'
>>> h[-1]
'!'
>>> len(h)
12
>>> h.upper()
'HELLO WORLD!'
>>> h.lower()
'hello world!'

5.4 DateTime
All of the above data types come “built-in” with Python. While this makes
Python a very effective language, you will likely require some additional data
types not included with Python, such as dates and times.

The datetime module supplies classes for manipulating dates and times in
both simple and complex ways.

>>> import datetime
>>> d = datetime.datetime.now()
>>> type(d)
<class 'datetime.datetime'>
>>> print(d)
2018-09-06 09:51:01.246077
>>> d.year
2018
>>> print(d.strftime("%m/%d/%Y"))
09/06/2018

5.5 Conclusion
Using Python, you will have many data types available to use. Some of the
data types come “built-in” to the Python language while others may require
importing an additional package.

5.5. CONCLUSION 59

Box 5.3. Interacting with Python (Command Line)

Entering commands to the Python interpreter interactively is great for quick testing
and exploring features or functionality.

Eventually though, as you create more complex applications, you will develop
longer bodies of code that you will want to edit and run repeatedly. You clearly
dont want to re-type the code into the interpreter every time! This is where you
will want to create a reusable script file.

Using whatever code editor youve chosen, create a script file called hello.py
containing the following:

Listing 5.1: hello.py

print('Enter your name:')
x = input()
print('Hello, ' + x)

Now save the file, keeping track of the directory or folder you chose to save
into.

Start a command prompt or terminal window. If the current working directory
is the same as the location in which you saved the file, you can simply specify the
filename as a command-line argument to the Python interpreter: python hello.py

$ python hello.py
Enter your name:
James
Hello, James

60 CHAPTER 5. DATA TYPES

Chapter 6

Python Containers
Containers are built-in Python data structures that allow other data types to be
organized, assessed, and manipulated. In this chapter, we explore the most
commonly used data structures: the list and the dictionary.

Lists and dictionaries provide powerful ways to organize data in useful and
interesting applications. In addition to exploring the use of lists and dictionar-
ies, this chapter also introduces some simple control statements.

6.1 Lists
A list is a sequence of data values called items or elements. An item can be of
any type.

A Python list is similar to a list you would make in the real-world:

• shopping list

• to-do list

• roster for a team

• guest list for a party

61

62 CHAPTER 6. PYTHON CONTAINERS

6.1.1 List structure
The logical structure of a list resembles the structure of a string. Items in a
list are ordered by position. Each list item has a unique index specifying its
position. Like many programming languages, Python is 0-index based, mean-
ing list indexes start at 0, not 1. The index for a list starts with 0 and counts
upward.

A list is written as a bracketed sequence of data separated by commas. Here
are some examples:

[1971, 1989, 1994] # A list of integers
[‘bananas’, ‘apples’, ‘oranges’] # A list of strings
[[4, 5], [200, 343]] # A list containing two other lists

When using variables, a list is defined by either using the bracket notation
[] or by casting any iterable sequence with the list() function.

Start an interactive Python session by using the python command in a
terminal.

>>> a = [1, 2, 3, 4]
>>> a
[1, 2, 3, 4]
>>> type(a)
<class 'list'>
>>> b = list("Hello world!")
>>> b
['H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!']
>>> type(b)
<class 'list'>

For convenience, we will be using the range() function to assist with list
creation. The range function takes one to three arguments.

• list(range(4)) # create a list up to, but not including, the integer 4.

• list(range(2, 6)) # create a list of integers starting at 2 and going to, but
not including, 6.

• list(range(3, 18, 3)) # create a list starting at 3, going to 18, and using
steps of 3.

6.1. LISTS 63

>>> r = list(range(3, 18, 3))
>>> r
[3, 6, 9, 12, 15]
>>> type(r)
<class 'list'>
>>> len(r)
5
>>> 12 in r
True
>>> 13 in r
False

6.1.2 Modifying lists
At any point in a list’s existence, elements can be inserted, removed, or changed.
The list will maintain its identity but the contents can change.

>>> t = [34, 12, 24, 77, 234, 65]
>>> type(t)
<class 'list'>
>>> t[1]
12
>>> t[1] = 9
>>> t
[34, 9, 24, 77, 234, 65]

Note that the subscript operation t[1] refers to the element’s position and
the target of the assignment.

Use the split function to extract a list of words from a sentence.

>>> s = "This is a sentence with seven words."
>>> words = s.split()
>>> words
['This', 'is', 'a', 'sentence', 'with', 'seven', 'words.']

The list object includes several methods for inserting and removing ele-
ments.

List Method Results

64 CHAPTER 6. PYTHON CONTAINERS

list.append(element) Adds element to the end of the list
list.extend(a_list) Adds another list to the list
list.insert(index, element) Inserts element at index
list.pop() Removes and returns the element at the end of the list
list.pop(index) Removes and returns the element at index

The append method takes the new element as an argument and adds it
the the end of the list. The method insert does something similar but it takes
the index and new element as arguments and adds the element to the given
position by shifting the remaining elements to the right. The extend method
takes another list and adds those elements to the end of the list.

>>> e = [1, 2, 3, 4, 5, 6]
>>> e.append(7)
>>> e
[1, 2, 3, 4, 5, 6, 7]
>>> e.extend([8, 9, 10])
>>> e
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> e.insert(5, 5.5)
>>> e
[1, 2, 3, 4, 5, 5.5, 6, 7, 8, 9, 10]

The pop method is used to remove an element from a list. If the index
position is not specified, pop removes and returns the last element of the list.
If a position is specified, pop removes the element at that location and returns
it. Remaining elements would then be shifted one position to the left.

>>> e
[1, 2, 3, 4, 5, 5.5, 6, 7, 8, 9, 10]
>>> e
[1, 2, 3, 4, 5, 5.5, 6, 7, 8, 9, 10]
>>> e.pop()
10
>>> e.pop(4)
5
>>> e
[1, 2, 3, 4, 5.5, 6, 7, 8, 9]

6.1. LISTS 65

6.1.3 Sorting

The list object has a sort method that will arrange its elements in numeric or
alphabetical order.

>>> f = [23, 12, 500, 3.3, 42, 92, 7]
>>> f
[23, 12, 500, 3.3, 42, 92, 7]
>>> f.sort()
>>> f
[3.3, 7, 12, 23, 42, 92, 500]

6.1.4 Aliasing

Not all variable names refer to different variables. When two identifiers refer
to the same variable (and therefore value), this is known as an alias.

>>> first = [20, 31, 42]
>>> second = first
>>> first
[20, 31, 42]
>>> second
[20, 31, 42]
>>> second.append(53)
>>> second
[20, 31, 42, 53]
>>> first
[20, 31, 42, 53]

In the example above, a single list object is created with two names, or
aliases. When an element is appended to the second list, the first list changed
also. This happens because the variables first and second refer to the exact
same list object.

66 CHAPTER 6. PYTHON CONTAINERS

If you do not want an alias, you can pass the source list to a call of the list
function.

>>> third = list(first)
>>> third
[20, 31, 42, 53]

6.2. DICTIONARIES 67

6.1.5 Equality

Frequently, programmers need to check for equality between variables (are the
values equal). There could also be circumstances when you need to know not
only if the values are equal but do the variables refer to the same object.

The == operator returns True if two values are equal, or the lists have
the same structural equivalence. The Python is operator returns True if two
variables refer to the same object.

>>> first == second
True
>>> first == third
True
>>> first is second
True
>>> first is third
False

6.2 Dictionaries

A dictionary is a collection which is unordered, changeable and indexed.

68 CHAPTER 6. PYTHON CONTAINERS

6.2.1 Dictionary structure
A dictionary, or dict, organizes data values by association with other data val-
ues rather than by sequential position. A dictionary is a collection which is
unordered, changeable and indexed. In Python dictionaries are written with
curly brackets, and they have keys and values. Dictionaries are initialized us-
ing curly braces { }.

>>> capitals = {'United States': 'Washington, DC','France': 'Paris','Italy': 'Rome'}
>>> capitals
{'United States': 'Washington, DC', 'France': 'Paris', 'Italy': 'Rome'}
>>> type(capitals)
<class 'dict'>
>>> capitals['Italy']
'Rome'
>>> capitals['Spain'] = 'Madrid'
>>> capitals
{'United States': 'Washington, DC', 'France': 'Paris', 'Italy': 'Rome',
'Spain': 'Madrid'}
>>> 'Germany' in capitals
False
>>> 'Italy' in capitals
True
>>> morecapitals = {'Germany': 'Berlin','United Kingdom': 'London'}
>>> capitals.update(morecapitals)
>>> capitals
{'United States': 'Washington, DC', 'France': 'Paris', 'Italy': 'Rome',
'Spain': 'Madrid', 'Germany': 'Berlin', 'United Kingdom': 'London'}
>>> len(capitals)
6

6.2.2 Dictionary methods
Python has a set of built-in methods that you can use on dictionaries.

Dictionary Method Results
dict.copy() Returns a copy of the dictionary
dict.fromkeys() Returns a dictionary with the specified keys and values
dict.get() Returns the value of the specified key
dict.items() Returns a tuple for each key value pair
dict.keys() Returns the dictionary’s keys

6.2. DICTIONARIES 69

dict.pop() Removes the element with the specified key
dict.popitem() Removes the last key-value pair
dict.setdefault() Returns the value of the specified key. If the key does not exist: insert the key, with the specified value
dict.update() Updates the dictionary with the specified key-value pairs
dict.values() Returns a list of all the values in the dictionary

Let’s try some of these functions.

>>> capitals.items()
dict_items([('United States', 'Washington, DC'), ('France', 'Paris'),
('Italy', 'Rome'), ('Spain', 'Madrid'), ('Germany', 'Berlin'),
('United Kingdom', 'London')])
>>> capitals.keys()
dict_keys(['United States', 'France', 'Italy', 'Spain', 'Germany',
'United Kingdom'])
>>> capitals.values()
dict_values(['Washington, DC', 'Paris', 'Rome', 'Madrid', 'Berlin', 'London'])
>>>

6.2.3 Loop through a Dictionary
As an iterable object, we can loop, or iterate, through a dictionary using a for
loop. With the for loop we can execute a set of statements, once for each item
in a list, tuple, set etc.

>>> for key in capitals.keys():
... print(key)
...
United States
France
Italy
Spain
Germany
United Kingdom

>>> for value in capitals.values():
... print(value)
...
Washington, DC
Paris
Rome
Madrid

70 CHAPTER 6. PYTHON CONTAINERS

Berlin
London

>>> for key, value in capitals.items():
... print(key, value)
...
United States Washington, DC
France Paris
Italy Rome
Spain Madrid
Germany Berlin
United Kingdom London

Box 6.1. Reading from a file

In Python you need to give access to a file by opening it. You can do it by using
the open() function. Open returns a file object, which has methods and attributes
for getting information about and manipulating the opened file.

Using the with statement, you get better syntax and exceptions handling. In
addition, it will automatically close the file. The with statement provides a way
for ensuring that a clean-up is always used.

>>> file = open("welcome.txt")
>>> data = file.read()
>>> print(data)
Hi, this is a text file!

>>> file.close() # It's important to close the file when you're done with it

Opening a file using with is as simple as: with open(filename) as
file:

>>> with open("welcome.txt") as file: # Use file to refer to the file object
... data = file.read()
... print(data)

Chapter 7

Control Statements

I’ve got my own mind. Wanna make my own decisions. When it
has to do with my life. I wanna be the one in control. —Janet
Jackson, Control

71

72 CHAPTER 7. CONTROL STATEMENTS

7.1 Conditional Statements
It is very common for programs to execute statements based on some condi-
tions. In this section we will learn about Python’s if, else, and elif statements.

Box 7.1. Relational operators

Relational operators are used to compare values. It either returns True or False
according to the condition.

Operator Meaning Example
> Greater than - True if left operand is greater than the right x > y
< Less than - True if left operand is less than the right x < y
== Equal to - True if both operands are equal x == y
!= Not equal to - True if operands are not equal x != y
>= Greater than or equal to - True if left operand is greater than or equal to the right x >= y
<= Less than or equal to - True if left operand is less than or equal to the right x <= y

7.1.1 The if statement
The if statement evaluates a boolean condition. If the results of the evaluation
is True, the code block following the if statement is executed. If the evaluation
is False, the code block is not executed.

Listing 7.1: control.py

today = "Tuesday"

if today == "Tuesday":
print("We get to write code!")

Create a file using the code above and run the command python control.py
in your terminal.

7.1. CONDITIONAL STATEMENTS 73

$ python control.py
We get to write code!

7.1.2 Adding else
The else statement only works when following an if statement and the block
code following the else gets executed only when the if statement evaluates to
False.

Listing 7.2: control.py (modified)

today = "Wednesday"

if today == "Tuesday":
print("We get to write code!")

else:
print("Time to learn Scrum!")

Running the modified file, should provide this output:

$ python control.py
Time to learn Scrum!

7.1.3 The elif statement
Similar to the else statement, an elif statement only works when following an if
statement but the elif allows you to evaluate another boolean condition. If the
elif statement evaluates to True the code block following will be executed.

Box 7.2. Membership operators

Keywords in and not in are membership operators in Python. They are used to
test whether a value or variable is found in a container (string, list, or dictionary).
In a dictionary we can only test for presence of key, not the value.

74 CHAPTER 7. CONTROL STATEMENTS

Operator Meaning Example
in True if value/variable is found in the sequence 5 in x
not in True if value/variable is not found in the sequence 5 not in x

Listing 7.3: control.py (modified)

today = "Saturday"
code_days = ["Tuesday", "Thursday"]
scrum_days = ["Monday", "Wednesday", "Friday"]

if today in code_days:
print("We get to write code!")

elif today in scrum_days:
print("Time to learn Scrum!")

else:
print("Time to relax!")

Make the above changes to the control.py file and run it in the terminal.

$ python control.py
Time to relax!

Let’s use the if-elif-else statement combination to help with assigning grades.

Listing 7.4: letter_grade.py (modified)

num = int(input("Enter your numeric grade: "))
if num >= 90:

letter_grade = 'A'
elif num >= 80:
letter_grade = 'B'

elif num >= 70:
letter_grade = 'C'

elif num >= 60:
letter_grade = 'D'

else:
letter_grade = 'F'

print("Your letter grade is " + letter_grade)

7.2. FOR LOOPS 75

7.2 For Loops
Thus far, we have limited ourselves to short sequences of instructions that are
executed one after the other. Next we will introduce repetition statements
which repeat an action. Each repetition of the action is known as a pass or
an iteration.

The Python for loop is a control statement that supports a definite number
of iterations.

Listing 7.5: for_loop.py

weekdays = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"]

for day in weekdays:
print(day)

for loops are also great for iterating over numbers and making calculations.

Listing 7.6: avg_loop.py

l = [5, 6, 10, 20]

sum = 0
for num in l:

sum += num

avg = sum / len(l)
print(avg)

7.3 While Loops
The for loop executes for a definite number of iterations. In some situations,
the number of iterations needed is not predictable. The logic needed requires a
condition to be met before completing its work.

76 CHAPTER 7. CONTROL STATEMENTS

Listing 7.7: blackjack.py

import random

card_values = [2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10, 11]
sum = 0
turn = "hit"
while turn == "hit":
sum += random.choice(card_values)
print("You currently have: " + str(sum))
turn = input("What do you want to do? ")

if sum >= 21:
print("You went over 21!")

else:
print("You stopped at: " + str(sum))

As a final note on while loops, the command break can also be used to exit
a loop.

7.4 Nested Loops
Loops can be nested in that you can put any type of loop inside of any other type
of loop. For example a for loop can be inside a while loop or vice versa. Let’s
expand the the simple Blackjack code such that it allows us to play multiple
games.

Listing 7.8: blackjack.py (modified)

import random

card_values = [2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10, 11]
play_again = 'yes'
while play_again == 'yes':
sum = 0
turn = "hit"
while turn == "hit":
sum += random.choice(card_values)
print("You currently have: " + str(sum))
turn = input("What do you want to do? ")

if sum >= 21:

7.4. NESTED LOOPS 77

print("You went over 21!")
else:
print("You stopped at: " + str(sum))

play_again = input("Want to play again? ")

78 CHAPTER 7. CONTROL STATEMENTS

79

80 CHAPTER 8. FILES

Chapter 8

Files

8.1. READING FROM A FILE 81

Thus far, most of our input & output has been limited to the command line.
In many situations, we will need to work with larger sets of data. Python easily
allows for reading from and writing to files.

The open() method returns a file object, and is most commonly used with
two arguments: open(filename, mode).

The first argument is a string containing the filename. The second argument
is another string containing a few characters describing the way in which the
file will be used. mode can be ’r’ when the file will only be read, ’w’ for
only writing, and ’a’ opens the file for appending; any data written to the file
is automatically added to the end. ’r+’ opens the file for both reading and
writing.

8.1 Reading from a file
As mentioned above to read a file, use the open(filename, ‘r’) method. For
reading a file, the mode argument is optional; ’r’ will be assumed if its omit-
ted.

Listing 8.1: read_file.py

file = open("text_file.txt")

for line in file:
print(line)

file.close()

8.2 Writing to a file
When opening a file using open(filename, ‘w’), the returned file object can be
used to write information to the file but any existing files with the same name
will be erased when this mode is activated.

82 CHAPTER 8. FILES

Listing 8.2: write_file.py

students = ["Jennifer", "Craig", "Robert", "Boudreaux", "Thibodeaux"]
file = open("output_file.txt", "w")
file.write("Here is a list of names: \n")

for s in students:
file.write(s + "\n")

file.close()

8.3 Appending a file
Similar to writing to a file, you can also append new text to the already existing
file instead of overwriting an existing file.

Listing 8.3: append_file.py

more_students = ["Sonja", "Melissa", "Karen"]
file = open("output_file.txt", "a")
file.write("Here are some more names:\n")

for s in more_students:
file.write(s + "\n")

file.close()

8.4 The with statement
When finished working with a file, use the close() method to end the interaction
with the file. This terminates the file object and makes the file available to other
resources.

While it is a good programming habit to close files after use, we, as busy
human beings, can sometimes forget to close a file after opening it.

Luckily, Python has a with keyword that helps us better manage file re-
sources. It is good practice to use with when using file objects. The advantage
is that the file is properly closed after its code block has completed.

8.5. JSON 83

Listing 8.4: with_open.py

with open("text_file.txt") as file:
for line in file:

print(line)

8.5 JSON

With files, the read() and write() methods only use strings. This can be prob-
lematic when trying to use files to store or share data that isn’t easily converted
to and from a string.

Rather than having users constantly writing and debugging code to save
complicated data types to files, Python allows you to use the popular data in-
terchange format called JSON (JavaScript Object Notation). The standard
module called json can take Python data hierarchies, and convert them to
string representations; this process is called serializing. Reconstructing the
data from the string representation is called deserializing.

Listing 8.5: create_json.py

import json

student_scores = {'name': 'John', 'scores': [90, 88, 92]}
with open("student_scores.json", "w") as file:

json.dump(student_scores, file)

Listing 8.6: read_json.py

import json

with open("student_scores.json", "r") as file:
student_scores = json.load(file)

print("The object type is: ", type(student_scores))
print(student_scores)

84 CHAPTER 8. FILES

This simple serialization technique can handle lists and dictionaries, but
serializing arbitrary class instances in JSON requires a bit of extra effort. The
Python documents reference for the json module contains an explanation of
this.

Box 8.1. Language of APIs

JSON is the language of devices communicating over the Internet. Roughly 80%
of all existing APIs use JSON and it is very likely that over 95% of all new APIs
are using JSON. Anyone looking for a career in technology or data should be
familiar with the producing and consuming JSON.

Here is an example of a JSON feed from an OpenData portal: Baton Rouge
Crime

8.6 Other file types
Data can be shared using multiple other file types, such as .csv, .xls, and .xlsx
files. To properly read these specifically formatted files, Python usually re-
quires additional packages that can easily be added with the import command.

Listing 8.7: mpg.py

import csv

with open('mpg.csv') as file:
mpg_reader = csv.reader(file)
for row in mpg_reader:

print(row)

https://docs.python.org/3/library/json.html#module-json
https://data.brla.gov/resource/fabb-cnnu.json
https://data.brla.gov/resource/fabb-cnnu.json

Chapter 9

Database Connections

Most modern applications contain some sort of database back-end. In general,
users never directly interact with the database. Instead, the database is accessed
indirectly through an external application that handles connections and logic.

85

86 CHAPTER 9. DATABASE CONNECTIONS

9.1 Structured Query Language
Structured Query Language (SQL) is a data-specific language used in program-
ming and designed for managing data held in a database management system
(DBMS). As a programming language, SQL is very powerful when used for
searching or manipulating data. While most DBMSs adhere to the ANSI SQL
standards, there are varying dialects of SQL based on the organization creating
the DBMS. Some DBMS platforms you may encounter:

• Oracle

• SQL Server

9.1. STRUCTURED QUERY LANGUAGE 87

• MySQL

• PostgreSQL

• MongoDB

• SQLite

SQL statements can range from a very simple statement such as the exam-
ple in code listing 9.1 to a more advanced example such as code listing 9.2

Listing 9.1: Basic SQL statement

SELECT * FROM employees;

Listing 9.2: Advanced SQL statement

SELECT
e.employee_id AS "Employee #"
, e.first_name || ' ' || e.last_name AS "Name"
, e.email AS "Email"
, e.phone_number AS "Phone"
, TO_CHAR(e.hire_date, 'MM/DD/YYYY') AS "Hire Date"
, TO_CHAR(e.salary, 'L99G999D99', 'NLS_NUMERIC_CHARACTERS = ''.,
'' NLS_CURRENCY = ''$''') AS "Salary"

, e.commission_pct AS "Comission %"
, 'works as ' || j.job_title || ' in ' || d.department_name
|| ' department (manager: ' || dm.first_name || ' ' || dm.last_name
|| ') and immediate supervisor: ' || m.first_name || ' '
|| m.last_name AS "Current Job"

, TO_CHAR(j.min_salary, 'L99G999D99', 'NLS_NUMERIC_CHARACTERS = ''.,
'' NLS_CURRENCY = ''$''') || ' - ' ||
TO_CHAR(j.max_salary, 'L99G999D99', 'NLS_NUMERIC_CHARACTERS = ''.,
'' NLS_CURRENCY = ''$''') AS "Current Salary"

, l.street_address || ', ' || l.postal_code || ', ' || l.city || ', '
|| l.state_province || ', '
|| c.country_name || ' (' || r.region_name || ')' AS "Location"

, jh.job_id AS "History Job ID"
, 'worked from ' || TO_CHAR(jh.start_date, 'MM/DD/YYYY') || ' to '
|| TO_CHAR(jh.end_date, 'MM/DD/YYYY') ||
' as ' || jj.job_title || ' in ' || dd.department_name
|| ' department' AS "History Job Title"
FROM employees e
-- to get title of current job_id

88 CHAPTER 9. DATABASE CONNECTIONS

JOIN jobs j
ON e.job_id = j.job_id

-- to get name of current manager_id
LEFT JOIN employees m
ON e.manager_id = m.employee_id

-- to get name of current department_id
LEFT JOIN departments d
ON d.department_id = e.department_id

-- to get name of manager of current department
-- (not equal to current manager and can be equal to the employee itself)
LEFT JOIN employees dm
ON d.manager_id = dm.employee_id

-- to get name of location
LEFT JOIN locations l
ON d.location_id = l.location_id

LEFT JOIN countries c
ON l.country_id = c.country_id

LEFT JOIN regions r
ON c.region_id = r.region_id

-- to get job history of employee
LEFT JOIN job_history jh
ON e.employee_id = jh.employee_id

-- to get title of job history job_id
LEFT JOIN jobs jj
ON jj.job_id = jh.job_id

-- to get namee of department from job history
LEFT JOIN departments dd
ON dd.department_id = jh.department_id

ORDER BY e.employee_id;

Being familiar with multiple programming languages is a good thing and
I would encourage interested programmers to learn as much SQL as they feel
comfortable learning. Learning some SQL will make application developers
better at thinking about data and interacting with a DBMS.

The downside is that maintaining a proficiency in multiple languages can
be difficult. . . especially, in a fast changing sector!

Luckily, we are part of an open source community that seeks to improve
our abilities.

9.2. SQLALCHEMY 89

9.2 SQLAlchemy

SQLAlchemy is a Python package that provides a nice Pythonic way of in-
teracting with databases. So rather than dealing with the differences between
specific dialects of traditional SQL, you can leverage the Pythonic framework
of SQLAlchemy to streamline your workflow and more efficiently query your
data.

The SQLAlchemy package may need to be installed before use. Using
the Python package manager pip, type pip install sqlalchemy in your
terminal.

$ pip install sqlalchemy
Collecting sqlalchemy
Downloading https://files.pythonhosted.org/packages/25/c9/b0552098cee325425a61efd
f380c51b5c721e459081c85bbb860f501c091/SQLAlchemy-1.2.12.tar.gz (5.6MB)
100% || 5.6MB 226kB/s

Building wheels for collected packages: sqlalchemy
Running setup.py bdist_wheel for sqlalchemy ... done
Stored in directory: /Users/james/Library/Caches/pip/wheels/ed/bd/2e/d3874a6e97b8
cc71e7e177c8d065ead30f67f380c4d9bbadaa

Successfully built sqlalchemy
Installing collected packages: sqlalchemy
Successfully installed sqlalchemy-1.2.12

SQLAlchemy includes the dialects for more popular DBMS platforms and
has extensions for some of the more obscure databases.

9.3 Connecting to a database

To start interacting with the database we first we need to establish a connection.

Listing 9.3: Example Connection

import sqlalchemy as db
engine = db.create_engine('dialect+driver://user:pass@host:port/db')

90 CHAPTER 9. DATABASE CONNECTIONS

9.4 Viewing Table Details
SQLAlchemy can be used to automatically load tables from a database using
something called reflection. Reflection is the process of reading the database
and building the metadata based on that information.

Listing 9.4: census_metadata.py

import sqlalchemy as db

engine = db.create_engine('sqlite:///census.sqlite')
connection = engine.connect()
metadata = db.MetaData()
census = db.Table('census', metadata, autoload=True, autoload_with=engine)

print(census.columns.keys())

print(repr(metadata.tables['census']))

9.5 Querying
SLQAlchemy supports querying of data from a DBMS. If needed or desired,
you can open a connection and use SQL for the query.

Listing 9.5: census_sql.py

import sqlalchemy as db

engine = db.create_engine('sqlite:///census.sqlite')
connection = engine.connect()
results = connection.execute("select * from census")
for row in results:

print(row)

connection.close()

A better solution would be to allow SQLAlchemy to handle the SQL state-
ment.

9.6. FILTER 91

Listing 9.6: census_query.py

import sqlalchemy as db

engine = db.create_engine('sqlite:///census.sqlite')
connection = engine.connect()
metadata = db.MetaData()
census = db.Table('census', metadata, autoload=True, autoload_with=engine)

Equivalent to 'SELECT * FROM census'
query = db.select([census])

proxy = connection.execute(query)
print(proxy)

result = proxy.fetchall()

print(result[:10])

proxy: The object returned by the .execute() method. It can be used in a
variety of ways to get the data returned by the query.

results: The actual data asked for in the query when using a fetch method
such as .fetchall() on a ResultProxy.

9.5.1 Dealing with Large ResultSet
On occasion, you may encounter very large tables. SQLAlchemy has .fetch-
many() to load optimal no of rows and overcome memory issues in case of
large datasets

9.6 Filter
Data can be filtered.

Listing 9.7: census_filter.py

import sqlalchemy as db

engine = db.create_engine('sqlite:///census.sqlite')

92 CHAPTER 9. DATABASE CONNECTIONS

connection = engine.connect()
metadata = db.MetaData()
census = db.Table('census', metadata, autoload=True, autoload_with=engine)

Equivalent to:
SELECT * FROM census WHERE sex = F
#query = db.select([census]).where(census.columns.sex == 'F')

Equivalent to:
SELECT state, sex FROM census WHERE state IN (Texas, New York)
query = db.select([census.columns.state, census.columns.sex])

.where(census.columns.state.in_(['Texas', 'New York']))

proxy = connection.execute(query)
print(proxy)

result = proxy.fetchall()

print(result[:10])

9.7 Join
If you have two tables that already have an established relationship, you can
automatically use that relationship by just adding the columns we want from
each table to the select statement.

Listing 9.8: census_join.py

import sqlalchemy as db

engine = db.create_engine('sqlite:///census.sqlite')
connection = engine.connect()
metadata = db.MetaData()
census = db.Table('census', metadata, autoload=True, autoload_with=engine)
state_fact = db.Table('state_fact', metadata, autoload=True, autoload_with=engine)

query = db.select([census.columns.pop2008, state_fact.columns.abbreviation])
result = connection.execute(query).fetchall()

print(result[:10])

Chapter 10

Functions
Most programs perform tasks that can be broken down into several subtasks.
For this reason, programmers usually break down programs into small man-
ageable pieces known as functions. A function is a group of statements, known
as a code block, that exist within a program for the purpose of performing a
specific task. Instead of writing a large unstructured sequence of commands,
it should be written as several smaller functions with each one performing a
specific part of the overall task.

93

94 CHAPTER 10. FUNCTIONS

Also, functions are a key way to define interfaces so programmers can reuse
or share their code.

10.1 Built-in Functions
Python has several built-in functions that you have already been using.

>>> len('Hello World!')
12
>>> type(2.0)
<class 'float'>
>>> round(3.14)
3
>>> round(3.14, 1)
3.1

10.2 Writing Functions in Python
As we have seen on previous tutorials, Python makes use of blocks.

A block is a area of code of written in the format of:

block_head():
first line of code
second line of code
...

Box 10.1. naming_conventions

Most programming languages have a naming convention that is used for creating
the names of variables and functions. Two popular conventions are snake case
and camel case. Snake case, also called underscore case, uses an underscore
‘_’ when naming a function that contains multiple words. An example would be
‘compute_pay()’ or ‘complete_order()’.

10.3. VOID FUNCTIONS 95

The camel case naming convention uses capitalization of the first letter of
following words. Using the same examples from above would be ‘computePay()’
or ‘completeOrder()’.

The Python community predominately uses snake_case.

10.3 Void Functions
A void function executes a code block and then terminates. It does not return
anything.

Listing 10.1: function_print.py

Define the function
def message():
print('I like coding.')
print('Python is my favorite language!')

Call the function
message()

The program above only has one function, but it is common to define multi-
ple functions in a program. There is usually a main function that is called when
the program starts. The main fuction would then call other functions.

Listing 10.2: function_two.py

This program has two functions.
First, define the main() function.
def main():
print('I have a message for you.')
message()
print('See you later!')

Define the function
def message():
print('I like coding.')
print('Python is my favorite language!')

96 CHAPTER 10. FUNCTIONS

Call the function
main()

10.4 Value-returning Functions
As the name sounds, value-returning functions return a value when called. The
returned value can be any of the variable types we’ve covered (int, str, float,
dict, list) or an object.

Let’s write an actual function for finding the maximum value from a list of
numbers. For this example, we will use the height, in inches, for my family.

Listing 10.3: function_max.py

def main():
fam = [40, 55, 62, 72, 65]
tallest = max(fam)
print("The tallest is ", tallest)

def max(l):
m = l[0]
for h in l:
if h > m:

m = h
return m

main()

10.5. PASSING ARGUMENTS TO FUNCTIONS 97

Functions can accept input, execute code, return values, or call other func-
tions.

10.5 Passing Arguments to Functions
Sometimes it is useful not only to call a function, but also to send some data to
the function. Additional information sent to the function is called arguments.

Listing 10.4: function_multi_arguments.py

This program demonstrates a function that accepts two arguments.
def main():
print('The sum of 12 and 45 is')
calculate_sum(12, 45)

The calculate_sum function accepts two arguments.
def calculate_sum(num1, num2):

result = num1 + num2
print(result)

main()

98 CHAPTER 10. FUNCTIONS

Chapter 11

Classes

In science, we use classifications to help describe the objects we are studying.
Zoologist use terms such as mammals, birds, fish, reptiles, amphibians in the
description of animals. This is the class of the animal. Knowing an animals
class will provide a basic understanding of that species.

99

100 CHAPTER 11. CLASSES

In object oriented programming, classes provide a means of bundling data
and functionality together. An object is a software entity that contains data and
the ability to execute functions. The data contained in an object is known as
the object’s data attributes. Those attributes are simply variables that reference
data. The functions that an object can call are known as methods.

11.1. DATA & CODE 101

11.1 Data & code

Utilizing objects helps to separate code from the data. Before object ori-
ented programming, code was written in a more procedural format with vari-
ables and other data structures, such as lists or dictionaries. Changes at an
application’s data-layer could cause multiple errors depending on the applica-
tion size. With objects, changes in the database are handled inside the object’s
class thus minimizing the effort required to accommodate changes.

11.2 Object reusability
In addition to solving problems of code and data separation, object oriented
programming empowers developers to reuse objects. An object is not meant to

102 CHAPTER 11. CLASSES

be a stand-alone program but it can be reused in multiple other programs.

11.3 Defining the object

Objects are defined a class. A class is code that specifies the data attributes and
methods of a particular type of object. Think of a class as a “blueprint” from
which an object is created. In construction, a blueprint is used to describe a
structure, such as a house, that will be built. The blueprint itself is not a house
object, but a description of a house. When the blueprint is used to build an ac-
tual house, it can be called an instance of the house described by the blueprint.

Perhaps an even simpler example would be a cookie cutter and a cookie.
The cookie cutter would be the class that is used to create the cookies.

11.4. CLASS DEFINITIONS 103

Listing 11.1: class_dog.py

class Dog:

the __init__ method initializes the object.
def __init__(self, name):

self.name = name
self.tricks = [] # creates a new empty list for each dog

def add_trick(self, trick):
self.tricks.append(trick)

To view the class, we will use the REPL / interactive Python. Inside a
terminal, type ‘python’.

>>> from class_dog import Dog
>>> d = Dog('Eli')
>>> type(d)
<class 'class_dog.Dog'>
>>> d.name
'Eli'
>>> d.tricks
[]
>>> d.add_trick("roll over")
>>> d.add_trick("fetch ball")
>>> d.tricks
['roll over', 'fetch ball']

So, a class is a description of an object’s characteristics. When used in a
program, a class can be used to create one or more objects. Each object created
from a class is called an instance of the class.

11.4 Class definitions
To create a class, we write a class definition. A class definition is a set of
statements that define a class’s methods and data attributes.

Suppose you are writing an application to simulate a Magic 8 Ball. In
the application, we need to repeatedly ‘shake’ the Magic 8 Ball and each time
return an answer. Let’s see what that class might look like.

104 CHAPTER 11. CLASSES

Listing 11.2: class_magic8ball.py

import random

class Magic8Ball:
answers = ["It is certain.", "It is decidedly so.", "Without a doubt.",

"Yes - definitely.", "You may rely on it.", "As I see it, yes.",
"Most likely.", "Outlook good.", "Signs point to yes.",
"Yes.", "Reply hazy, try again", "Ask again later.",
"Better not tell you now.", "Cannot predict now.",
"Concentrate and ask again.", "Cannot predict now.",
"Concentrate and ask again.", "Don't count on it.",
"My reply is no.", "My sources say no.",
"Outlook not so good.", "Very doubtful."]

the __init__ method initializes the object.
def __init__(self):

self.answer = ""

def shake(self):
self.answer = random.choice(self.answers)

def get_answer(self):
return self.answer

Get ready for some Magic 8 Ball action and use the interactive Python in
your terminal.

>>> from class_magic8ball import Magic8Ball
>>> ball = Magic8Ball()
>>> type(ball)
<class 'class_magic8ball.Magic8Ball'>
>>> ball.get_answer()
''
>>> ball.shake()
>>> ball.get_answer()
'Yes - definitely.'

11.5 Class inheritance
Classes can inherit from other classes. A class can inherit attributes and meth-
ods from another class, called the superclass. A class which inherits from a

	Preface
	Technology Stack
	Full Stack Development
	Demystifying Stacks
	What I use for development
	My Machine
	Text Editor

	Version Control, Git and GitHub
	Not having version control
	Advantages of version control
	Git
	Installing Git
	Git basics

	GitHub
	Authenticating with GitHub
	Celebrate

	Build and Host a Static Website
	Static vs Dynamic Websites
	Our First Gig
	Plagiarize
	Zurb Foundation
	Hosting Webpages
	The Connection
	Configure CloudFlare
	Update GitHub

	Sprint Zero
	Python versions
	Anaconda Distribution
	Python PIP
	Pyenv, Pipenv & Virtualenv (optional)

	Jupyter Notebook
	SQLite
	SQLite on Windows

	Celebrate

	Data Types
	Boolean
	Numeric
	Integer
	Float

	String
	DateTime
	Conclusion

	Python Containers
	Lists
	List structure
	Modifying lists
	Sorting
	Aliasing
	Equality

	Dictionaries
	Dictionary structure
	Dictionary methods
	Loop through a Dictionary

	Control Statements
	Conditional Statements
	The if statement
	Adding else
	The elif statement

	For Loops
	While Loops
	Nested Loops

	Files
	Reading from a file
	Writing to a file
	Appending a file
	The with statement
	JSON
	Other file types

	Database Connections
	Structured Query Language
	SQLAlchemy
	Connecting to a database
	Viewing Table Details
	Querying
	Dealing with Large ResultSet

	Filter
	Join

	Functions
	Built-in Functions
	Writing Functions in Python
	Void Functions
	Value-returning Functions
	Passing Arguments to Functions

	Classes
	Data & code
	Object reusability
	Defining the object
	Class definitions
	Class inheritance

	Working with Dates
	strptime
	strftime

	Django: MVC Framework
	Creating a project
	Set up a database
	The development server
	Create a Blog app
	Django models
	Create tables for models in your database
	Introducing the Django Admin
	Starting a Git repository
	Handling URLs with Django
	blog.urls
	Django views
	Django templates
	Show data dynamically
	QuerySet
	Template extending
	Post detail
	URL for post detail
	Add a post's detail view
	Template for the post details
	Django forms
	Link for new post
	URL for new post
	Add post_new to the view
	Template
	Save the form
	Edit post
	Security
	Commit your code

