
server.route({
 method: 'GET',
 path: '/',
 handler: function (request, reply) {
 reply(‘Learn at http://hapibook.jjude.com!’);
 }
});

server.start((err) => {
 console.log(`Server running at: ${server.info.uri}`);
});

W I T H C O D E S A M P L E S A N D DOC K E R I M AG E S

TYPESCRIPT

HAPI WITH

JOSEPH JUDE

2

Hapi With Typescript

Build scalable applications with ease

Joseph Jude

ii

Contents

Preface v

0.1 What this book covers . v

0.2 How this book is written vii

0.3 How this book is organized vii

0.4 Conventions . viii

0.5 What you need to follow this book ix

0.6 Your feedback . ix

0.7 Connect with me . x

0.8 Other books by me . x

0.9 Need help for your Hapi project? x

1 Basics of Hapi & TypeScript 1

1.1 First Hapi app . 2

1.2 Converting to TypeScript 3

1.3 Adding routes . 4

1.4 Using plugins . 6

iii

iv CONTENTS

1.5 Connecting to DB . 7

1.6 Summary . 12

2 Introducing TypeScript 13

2.1 Why TypeScript? . 13

2.2 Components of TypeScript 15

2.3 Installing and using TypeScript 15

2.4 Types for existing modules 18

2.5 TypeScript Basics . 19

2.6 Automating your workflow with npm scripts 33

2.7 Summary . 35

3 Routes, request, and reply 37

3.1 Basics of routing . 37

3.2 Route Methods . 39

3.3 Path Parameters . 41

3.4 Optional parameters . 43

3.5 Wildcard parameters . 44

3.6 Route handlers . 44

3.7 Query strings . 44

3.8 Payload . 45

3.9 Summary . 45

4 Using SQL Databases 47

CONTENTS v

4.1 ORM and its usage . 48

4.2 Introducing TypeORM . 48

4.3 Initialization . 49

4.4 Connecting to DB . 50

4.5 Defining the models . 51

4.6 Reading and writing entities 52

4.7 Putting it all together . 53

4.8 Summary . 55

5 Modularizing with plugins 57

5.1 Why modularize your application 58

5.2 Using a Hapi plugin . 59

5.3 Composing with glue . 61

5.4 Creating a plugin . 63

5.5 Creating environment specific manifest 66

5.6 Summary . 69

6 Validations with Joi 71

6.1 Schema validations with joi 72

6.2 Top level schema types . 76

6.3 Validating Hapi routes . 76

6.4 Summary . 81

7 Testing using lab 83

vi CONTENTS

7.1 Basics of testing . 83

7.2 Getting started with lab and code 85

7.3 Testing Hapi code . 87

7.4 Code coverage . 88

7.5 Reporting . 89

7.6 Summary . 89

8 Supporting Resources 95

8.1 Hapidock, hapi inside docker 95

8.2 npm modules used in this book 98

Preface

0.1 What this book covers

Hapi.JS (called Hapi in this book) is a nodejs framework developed,

originally, in Walmart Labs. What’s so special about Hapi? Let us hear

from the man himself who developed it. Eran Hammer developed Hapi

and still serves as its lead contributor. He wrote an introductory post

describing Hapi (emphasis by Eran himself):

hapi was created around the idea that configuration is bet-

ter than code, that business logic must be isolated from the

transport layer, and that native node constructs

like buffers and stream should be supported as first class

objects. But most importantly, it was created to provide a

modern, comprehensive environment in which as much of

the effort is spent delivering business value.

As emphasised by Eran, we, the software developers, should choose

tools that aid us in delivering business value as quickly as possible.

Business owners want to experiment with ideas fast and move further

with ideas that fetch maximum value. This is why Hapi is attractive.

vii

viii PREFACE

Eran and team used Hapi to power the e-commerce sites at Walmart,

even during the peak black friday sale. Hapi is a proven enterprise-

scale nodejs framework. If you are learning a nodejs framework, you

should learn the battle-tested framework.

Though originally built at Walmart labs, a large community has devel-

oped around Hapi. Hapi is now used to power e-commerce sites, fin-

tech apps and so on. As you can see from Hapi community page, both

large and small companies use Hapi.

In this book we will also use another great developer tool–typescript.

Over the history of JavaScript there has been many attempts to mod-

ernize JavaScript. The most recent and a successful one is an attempt by

Microsoft. TypeScript was introduced in October 2012, after two years

of internal development at Microsoft. TypeScript brings all the features

lacking in JavaScript. Yet, it does so without abandoning JavaScript.

TypeScript is just a superset of JavaScript.

So what are the benefits TypeScript brings to JavaScript?

1. TypeScript brings classes, and interfaces thereby bringing object

oriented support;

2. TypeScript adds types to JavaScript, so errors are identified at

compile time;

3. Because TypeScript brings static types, it has become easier to add

intellisense and syntax checking to tools and IDEs;

4. Because of the same reason, it has become easier to refactor large

codebase.

These features bring tremendous productivity gains for large teams with

large code bases.

https://hapijs.com/community

0.2. HOW THIS BOOK IS WRITTEN ix

0.2 How this book is written

I’m writing this book in an incremental and iterative fashion, also called

as agile method in the software development world. I’m using softcover

as a publishing platform to distribute the book. You can read the book

for free. If you want the book in an e-book format or want the accompa-

nying code, then you have to buy the book. I’m also planning to create

screencasts along with the book.

0.3 How this book is organized

Chapter 1: Basics of Hapi & TypeScript introduces all essential concepts

of Hapi. You will learn to handle urls using routes, connect to db to

store and retrieve values, and use nunjucks templates. You will get an

overall view of Hapi with this chapter.

Chapter 2: Introduction to TypeScript, introduces all the concepts of type-

script and how to compile TypeScript code automatically using npm

scripts.

Chapter 3: Routes, request, and reply introduces how Hapi deals with

incoming requests.

Chapter 4: Using SQL Databases introduces connecting to SQL dbs using

TypeORM.

Chapter 5: Hapi plugin system introduces how to use Hapi plugin sys-

tems to modularize your Hapi project.

Chapter 6: Validating with Joi introduces joi plugin to validate route pa-

rameters.

Chapter 7: Testing Hapi introduces lab plugin to write automated test

https://www.softcover.io/
http://jjude.in/hapibook

x PREFACE

cases.

Chapter 8: Supporting resources introduces hapidock, a docker based

container that you can use to quickly start developing Hapi applica-

tions.

0.4 Conventions

In this book, you will find a number of text styles that distinguish be-

tween different kinds of information. Here are some examples of these

styles and an explanation of their meaning.

A block of code is shown as below:

Listing 1: Sample Code

1 server.start((err) => {

2 if (err) {

3 throw err;

4 }

5 console.log('Server running at:', server.info.uri);

6 });

In the course of the book, I will have to describe an ancillary topic. In-

stead of breaking the flow, these ancillary topics will be listed within

a box as below. Same is true for important notes that I want you to

remember.

Box 0.1. NOTE

Warnings or important notes appear in a box like this

0.5. WHAT YOU NEED TO FOLLOW THIS BOOK xi

Tips are also shown in boxes.

Box 0.2. TIP

Tips and tricks appear like this

0.5 What you need to follow this book

You need only 3 things besides this book: access to internet, a text editor,

and a terminal application.

If you purchase the book, then you will get access to hapidock. Hapi-

dock is a definition file to download and setup all the essential com-

ponents in one go. If you do that, then you don’t need internet access

on an ongoing basis. Otherwise you will need internet access as you

progress through the book.

There are so many choices for text editors and terminal applications in

all the popular platforms. I use Vim and Visual Studio Code. Visual

Studio Code comes with all batteries included. If you have not yet de-

veloped a preference, I strongly recommend Visual Studio Code.

0.6 Your feedback

I welcome your feedback. Please let me know your comments—what

you liked and disliked. Your feedback will help me improve this book.

Please send your feedback to feedback@jjude.com.

https://github.com/vim/vim
https://code.visualstudio.com/
mailto:feedback@jjude.com

xii PREFACE

0.7 Connect with me

I write regularly at my blog about software development topics. Sub-

scribe, to learn as I write.

You can also connect with me on twitter at http://twitter.com/jjude.

0.8 Other books by me

Ionic 2: Definite Guide

Books I have written are listed at my site: https://jjude.com/books/.

0.9 Need help for your Hapi project?

https://jjude.com
https://jjude.com/feed
https://jjude.com/feed
http://twitter.com/jjude
https://jjude.com/books/

0.9. NEED HELP FOR YOUR HAPI PROJECT? xiii

• Using Hapi for your internal tools?

• A project that needs to be rescued?

You don’t have to do it alone. I can help.

I can help you:

• Build your next MVP

• Testing

• Implement build and deployment automation

Get in touch with me at consulting@jjude.com.

mailto:consulting@jjude.com

xiv PREFACE

Chapter 1

Basics of Hapi &
TypeScript

This chapter gives you a comprehensive overview of Hapi. After read-

ing this chapter, you will know:

• how to write a simple server program in Hapi and TypeScript

• how to map Hapi functions to incoming requests, generally called

as routes

• how to connect to SQL db

• how to use templates

This should be sufficient enough for you to understand Hapi. Subse-

quent chapters will go into depth of each of these concepts.

1

2 CHAPTER 1. BASICS OF HAPI & TYPESCRIPT

1.1 First Hapi app

A simple server program in Hapi looks like this:

Listing 1.1: First Hapi app

1 const hapi = require('hapi');

2

3 const server = new hapi.Server();

4 server.connection({port: 3000});

5

6 server.start((err) => {

7 if (err) {

8 throw err;

9 }

10 console.log('Server running at:', server.info.uri);

11 });

This is copy of the first tutorial from Hapi site. If you run it with node .,

it will run the server at port 3000. However, if you open your browser to

http://localhost:3000, it will throw an error, {"statusCode":404,"error":"Not

Found"}. That is because, this little program doesn’t know how to han-

dle the incoming requests.

Let us modify the app so that the app displays “Hello World”. The

additional lines are highlighted in the modified program.

Listing 1.2: Hello World in Hapi

1 const hapi = require('hapi');

2

3 const server = new hapi.Server();

4 server.connection({ port: 3000 });

5

6 server.route({

7 method: 'GET',

8 path: '/',

9 handler: function (request, reply) {

http://hapijs.com/tutorials/getting-started

1.2. CONVERTING TO TYPESCRIPT 3

10 reply('Hello, world!');

11 }

12 });

13

14 server.start((err) => {

15 if (err) {

16 throw err;

17 }

18 console.log('Server running at:', server.info.uri);

19 });

This is the template for all Hapi programs.

1. require Hapi

2. Create a Hapi server using server.connection

3. Process incoming URLs via server.route

4. Start the server using server.start

1.2 Converting to TypeScript

TypeScript brings static type checking to JavaScript. Let us re-write our

program in TypeScript adding types to the variables. Here is the same

program in TypeScript.

Listing 1.3: Hello World in TypeScript

1 "use strict";

2

3 import * as hapi from "hapi";

4

5 const server: hapi.Server = new hapi.Server()

6 server.connection({ port: 3000 });

4 CHAPTER 1. BASICS OF HAPI & TYPESCRIPT

7

8 server.route({

9 method: "GET",

10 path: "/",

11 handler: (request: hapi.Request, reply: hapi.IReply) => {

12 reply("Hello World")

13 }

14 });

15

16 server.start((err) => {

17 if (err) {

18 throw err;

19 }

20 console.log("server running at 3000");

21 })

In line #5, we are indicating to the compiler (and to other developers

who has to use our code) that server is of type hapi.Server. Similarly

in line# 11, we are indicating that request is of type hapi.Request and

reply is of type hapi.IReply.

This helps the IDEs as we code. The IDEs (like Visual Studio Code and

Vim), bring up intellisense to aid us coding. Also the TypeScript com-

piler will throw up errors if we deviate from the definition of these vari-

ables.

From now on, all the programs in this book will be in TypeScript. We

will learn more about TypeScript in Chapter 2.

1.3 Adding routes

When we executed our first code Listing 1.1, we got an error {"statusCode":404,

"error":"Not Found"}. As we found out, that was because the code

didn’t have a function mapped to the incoming request. We solved that

by a adding server.route method Listing 1.2.

1.3. ADDING ROUTES 5

In Hapi, server.route determines how a web-app should handle urls

typed by a user. A server.route has three elements: method, path,

and handler.

Every http request contains a method (most popular are GET, POST, and

DELETE). You can map each of these methods with a single server.route

or you can map multiple methods to a single server.route.

Path indicates the resource accessed. Path can indicate a single resource

or a collection. When we type /questions/5, we are accessing a single

question, whereas when we type /questions, we access all questions.

Handler function takes two parameters: request and reply. The request

parameter contains headers, authentication information, payloads and

others. The reply parameter is used to respond to the requests. Usually

it only contains payload. But it can also have headers, content types,

content length and so on.

Let us put all of these into a code snippet.

Listing 1.4: Handling routes

1 server.route({

2 method: "GET",

3 path: "/",

4 handler: (request: hapi.Request, reply: hapi.IReply) => {

5 reply("This is a GET method")

6 }

7 });

8

9 server.route({

10 method: ["POST","PUT"],

11 path: "/new",

12 handler: (request: hapi.Request, reply: hapi.IReply) => {

13 reply("This is a " + request.method + " method")

14 }

15 });

16

17 server.route({

18 method: "GET",

6 CHAPTER 1. BASICS OF HAPI & TYPESCRIPT

19 path: "/questions/{id}",

20 handler: (request: hapi.Request, reply: hapi.IReply) => {

21 reply("Question requested is: " + request.params.id);

22 }

23 });

There are three blocks of server.route here.

The first code-block is a simple one. Here, we handle only one http

method, GET. It serves root path / and reply with a message.

The second code-block handles both POST and PUT http methods. It

serves the urls at path /new. It just prints type of incoming http method

with request.method. You can use request.method to decide the

logic if some part of the code has to be different.

The third code-block serves a GET url with a parameter, id. The param-

eter is sent back as a reply.

We will learn more about routes in Chapter 3.

1.4 Using plugins

Hapi is designed in a modularized manner. It has all the essential fea-

tures to build server applications. Everything else is modularized into

plugins.

Hapi has a plugin for templating, input validation, authentication, test-

ing and so on. We will learn of some of these plugins. You can view all

the available Hapi plugins in the Hapi website. Some of these plugins

are official plugins created by Hapi team. There are also plugins created

by the Hapi community.

You have to register a plugin before using it. You register a plugin as

https://hapijs.com/plugins

1.5. CONNECTING TO DB 7

below:

server.register(require("plugin"));

We will learn more about plugins in Chapter 5.

1.5 Connecting to DB

When it comes to databases, Nodejs is often associated with NoSQL

dbs like Mongo. Yet, SQL dbs like MySQL, Postgresql have been battle

tested in real world scenarios for years.

In this book, we’ll learn how to connect to db from Hapi using Type-

ORM, a data mapper based ORM, to connect to db. Specifically, we will

connect to Postgresql. The same concept can be used to connect to any

relational db.

In Chapter 4, we will see how to install TypeORM. In this section, let us

see how to use TypeORM to connect to db.

Using db involves, connecting to it, defining models (tables), writing

into it, and reading from it. Let us see each of these in this section.

Listing 1.5: Connection parameters to connect to postgres db

1 import { createConnection } from "typeorm";

2

3 createConnection({

4 driver: {

5 type: "postgres",

6 host: "localhost",

7 username: "pg_user",

8 password: "pg_password",

9 database: "pg_dbname",

https://typeorm.github.io/
https://typeorm.github.io/

8 CHAPTER 1. BASICS OF HAPI & TYPESCRIPT

10 port: 5432

11 }

12 }).then(connection => {

13 console.log("db connected");

14 })

1.5.1 Defining models

In TypeORM, Entity decorator defines a table, Column decorator de-

fines columns, and PrimaryGeneratedColumn defines a auto generated

primary column. Here is how you will define a blog post entity.

Listing 1.6: Defining models in TypeORM

1 import { Entity, PrimaryGeneratedColumn, Column } from "typeorm";

2

3 @Entity()

4 export class Entry {

5

6 @PrimaryGeneratedColumn()

7 id: number;

8

9 @Column()

10 title: string;

11

12 @Column()

13 content: string;

14 };

TypeORM has to create or modify these tables in the db. For that pur-

pose, the defined models have to be part of the connection parameters.

The additional lines to include the defined models are highlighted.

Listing 1.7: Including models in connection parameters

1 createConnection({

2 driver: {

1.5. CONNECTING TO DB 9

3 type: "postgres",

4 host: "pg",

5 username: "postgres",

6 password: "secret",

7 database: "postgres",

8 port: 5432

9 },

10 entities: [

11 Entry

12]

13 }).then(connection => {

14 console.log("db connected and models created");

15 })

1.5.2 Reading and writing entities

TypeORM provides entityManager and repository to deal with en-

tities. TypeORM documentation recommends using repositories to

connect to entities. So we will use repositories. The following snip-

pet will fetch the corresponding repository and fetch all entries in the

table.

Listing 1.8: Fetching all entries

1 let entryRepo = connection.getRepository(Entry);

2 let allEntries = await entryRepo.find();

Now we can loop through allEntries and pick up individual entry

for processing. Similarly, entryRepo.persist(newEntry) persists a

new entity.

https://github.com/typeorm/typeorm#using-repositories

10 CHAPTER 1. BASICS OF HAPI & TYPESCRIPT

1.5.3 Putting it all together

Now let us put the entire program together. In the following snippet,

we define two routes: a GET route that fetches all entries, and a POST

route that creates a new entry. We are using async, await for cleaner

code.

Listing 1.9: Using TypeORM to connect to db

1 "use strict";

2

3 import * as hapi from "hapi";

4 import "reflect-metadata";

5 import {createConnection, Entity, PrimaryGeneratedColumn, Column} from "typeorm";

6

7 const server: hapi.Server = new hapi.Server()

8 server.connection({ port: 3000 });

9

10 @Entity("Entries")

11 export class Entry {

12

13 @PrimaryGeneratedColumn()

14 id: number;

15

16 @Column()

17 title: string;

18

19 @Column()

20 slug: string;

21

22 @Column()

23 content: string;

24 };

25

26 server.route({

27 method: "GET",

28 path: "/",

29 handler: async (request: hapi.Request, reply: hapi.IReply) => {

30 const entryRepo = server.app.dbConnection.getRepository(Entry);

31 const entries = await entryRepo.find();

32 reply(entries);

33 }

34 });

35

1.5. CONNECTING TO DB 11

36 server.route({

37 method: "POST",

38 path: "/",

39 handler: async (request: hapi.Request, reply: hapi.IReply) => {

40

41 let {title,slug,content} = request.payload;

42

43 let newEntry = new Entry();

44 newEntry.title = title;

45 newEntry.slug = slug;

46 newEntry.content= content;

47

48 let entryRepo = server.app.dbConnection.getRepository(Entry);

49 await entryRepo.persist(newEntry);

50

51 reply("New post created");

52 }

53 });

54

55 createConnection({

56 driver: {

57 type: "postgres",

58 host: "pg",

59 username: "postgres",

60 password: "secret",

61 database: "postgres",

62 port: 5432

63 },

64 entities: [

65 Entry

66]

67 }).then(async connection => {

68 server.start(err => {

69 if (err) {

70 throw err;

71 }

72 // set the connection to server.app so it can be used in methods

73 server.app.dbConnection = connection;

74 console.log("server running in " + server.info.uri);

75 })

76 })

77 .catch(err => console.log(err));

Here all activities, defining models, connecting to db, defining routes,

and bringing up the server, all happens within the same file. This is not

12 CHAPTER 1. BASICS OF HAPI & TYPESCRIPT

a recommended practice. In the coming chapters, we will modularize

them.

1.6 Summary

• Hapi is a nodejs framework to build web applications and back-

end servers;

• Hapi is a modularized framework with rich set of plugins;

• TypeScript brings static type checking to JavaScript;

• Create a Hapi server with server.connection and server.start;

• Use server.route to map incoming urls to handling functions;

• server.route has three components: method, path, and handler;

• vision is the plugin to connect templates to Hapi

• We can use TypeORM to connect to SQL db;

Chapter 2

Introducing TypeScript

In this chapter you will learn about TypeScript, a Javascript compiler

from Microsoft. After reading this chapter, you will know:

• the problems TypeScript solves

• how to use TypeScript

• basics of TypeScript

• compiling TypeScript automatically using npm scripts

2.1 Why TypeScript?

Real world applications take months, if not years, to build. As we build,

we add new blocks of code, refactor existing code, and add and remove

3rd party libraries. As we change our application, we need early feed-

back about the impact of these changes. One such feedback is about the

type of the variables we use. When we develop in a typed language like

13

14 CHAPTER 2. INTRODUCING TYPESCRIPT

C, Swift, or Java, the compiler (and the code editor) provides these early

feedback. Javascript lacks this feature.

Let us take an example. Say we are developing an address-book appli-

cation and we want to define a contact. Our definition might look like

this, in JavaScript.

var name, age, city;

If another developer were to use these variables, they won’t know if age

is an integer or a string. You might have intended it to be a string, while

the other developer might use it as an integer. Now the application

breaks at the run time. Too late!

This is where TypeScript helps. In TypeScript, the same definition will

look like this:

let name: string,

age: number,

city: string;

Here type of the variable is defined after :. Now it is clear for both

the compiler and for anyone reading the code. If another member of

the team were to make the same mistake as assigning string value to

age, the code editor and the compiler would identify and display the

error. They can change the code at the compile time instead of wasting

hours debugging later. Think of all the 3rd party libraries we use in our

applications. Wouldn’t such type system make a huge difference in our

productivity?

This is not the only benefit TypeScript brings.

TypeScript supports the evolving JavaScript features, like async and

decorators. TypeScript also brings object-oriented programming (OOP)

2.2. COMPONENTS OF TYPESCRIPT 15

features like classes and interfaces to JavaScript. All of these are tran-

spiled into classical JavaScript.

2.2 Components of TypeScript

TypeScript is both a type checker and a transpiler. As a type checker,

TypeScript, verifies your code against the defined type annotations. If

it finds any mismatch, it shows an error. As a transpiler, it compiles

TypeScript code into JavaScript code. As a transpiler, it strips all type

definitions and generates classical JavaScript. If you use any evolving

features, then again TypeScript transpiles them into classical JavaScript

version.

2.3 Installing and using TypeScript

You can install TypeScript using npm (assuming you have already in-

stalled node and npm).

Listing 2.1: Installing TypeScript

npm install -g typescript

Now you can invoke TypeScript from the command-line with

tsc <filename>.

Let us start with a simple program. Let us continue with the person

in an address-book example we started with. In TypeScript it will be

coded as in Listing 2.2.

16 CHAPTER 2. INTRODUCING TYPESCRIPT

Listing 2.2: First TypeScript Program

1 class Person {

2 public Name: string;

3 public Age: number;

4 public City: string;

5

6 constructor(name: string, age: number, city: string) {

7 this.Name = name;

8 this.Age = age;

9 this.City = city;

10 }

11 }

12

13 let singer = new Person("Elvis Presley", 42, "Memphis");

14 console.log(singer.Name);

You can compile this with tsc person.ts. TypeScript will produce the

following JavaScript code.

Listing 2.3: Transpiled Javascript Program

1 var Person = (function () {

2 function Person(name, age, city) {

3 this.Name = name;

4 this.Age = age;

5 this.City = city;

6 }

7 return Person;

8 }());

9 var singer = new Person("Elvis Presley", 42, "Memphis");

10 console.log(singer.Name);

You can execute this transpiled code as like any other JavaScript code,

with node person.js. It will output Elvis Presley.

Now let us see how TypeScript helps as we code. I’m using Visual Stu-

dio Code to illustrate intellisense. But this works across other text edi-

tors that support TypeScript.

https://code.visualstudio.com/
https://code.visualstudio.com/

2.3. INSTALLING AND USING TYPESCRIPT 17

Figure 2.1: Intellisense in VS Code

As you can see from Figure 2.1, the code editor, in this case VS Code,

shows the definition of the class as you type. This aids not only helps

us to be productive, but also reduces errors.

What if you mistakenly assign a wrong type? Again the TypeScript type

checker comes to help. It will show the error with a squiggly line as in

Figure 2.2.

Figure 2.2: Type error shown in VS Code

18 CHAPTER 2. INTRODUCING TYPESCRIPT

If you ignore and continue, TypeScript compiler will show the error

when you compile the program. Say you go ahead and compile the

above program, with the error. You will see an error as shown in List-

ing 2.4.

Listing 2.4: TypeScript showing type error at compile time

$ tsc person.ts

person.ts(13,42): error TS2345: Argument of type '"42"' is not

assignable to parameter of type 'number'.

TypeScript provides all the help it can to avoid errors. It won’t force you

to modify though. It will still compile into JavaScript.

2.4 Types for existing modules

TypeScript is getting popular and developers are writing new Java-

Script modules in TypeScript. TypeORM, which we will learn in this

book, is one such example. But there are other modules which are not

written in TypeScript, like Node and Hapi. How to use TypeScript with

them?

To use TypeScript with existing JavaScript modules, we need their Type

definitions. Think of type definitions as bridge between TypeScript and

the module written in JavaScript.

Listing 2.5: Installing TypeScript dependencies

npm install @types/node @types/hapi --save-dev

This will install type definitions for node and hapi as a

https://github.com/typeorm/typeorm

2.5. TYPESCRIPT BASICS 19

devDependencies. Now you can use them within a TypeScript project,

as if they were written in TypeScript.

Box 2.1. Module Dependencies in Node.js

When you develop an application, you build upon other modules. Even

when you are building a simple hello world application in Hapi, you are

dependent on the hapi package. While developing your application, these

dependencies are installed using npm install. When you install these

modules an entry is marked in package.json.

This way npm knows the exact modules to install when you migrate to

other environments like test, staging, and production. When your team

memebrs install the application, they can install all the required modules.

Certain modules are required only during development, like type def-

initions and test related modules. These modules are stored under

devDependencies. The modules listed under devDependencies are not

installed in production mode, i.e, when the environment is set using

NODE_ENV or when you install via npm install -production.

2.5 TypeScript Basics

As a superset of JavaScript, TypeScript builds on existing JavaScript fea-

tures. It supports comments, data types, functions, and operators. Here

in this section, let us understand the elements TypeScript adds to Java-

Script.

20 CHAPTER 2. INTRODUCING TYPESCRIPT

2.5.1 Comments

As a superset of JavaScript, TypeScript supports both single line and

multiline comments.

Listing 2.6: Comments in TypeScript

1 // this is a single line comment

2 /* this is a multi line comment.

3 Multiline comments starts with slash-star and ends with star-slash */

2.5.2 Declaration

In TypeScript you use const to declare a constant and let to declare a

variable.

Listing 2.7: Variables declaration in TypeScript

1 let name = "TypeScript";

2 const pi = 3.141;

TypeScript infers type from declaration. In the above example, name is

a variable and pi is a constant. Once an identifier has a type, that type

can’t be changed.

You can also specify the type by writing it after the variable, separated

by a colon.

Listing 2.8: Explicit type declaration in TypeScript

1 let name: string = "TypeScript";

2.5. TYPESCRIPT BASICS 21

2.5.3 Basic Types

TypeScript supports all JavaScript types. Here are the basic types.

• Boolean: a true of false value.

• Number: floating point value, as in JavaScript.

• String: textual data, defined with single or double quotes. Multi-

line strings are defined with backtick(‘).

• Any: any type. Used when impossible to know the type.

• Void: absence of type. Used to indicate that a function does not

return a value.

Listing 2.9: TypeScript Basic Types

// boolean

let isDone: boolean = false;

// number

let loc: number = 600;

// string

let name = "typescript";

name = 'javascript'

// multi-line string

let subject = `TypeScript is awesome.

Google adapting a language developed by Microsoft, shows how awesome it is.

`

// any

let userInput: any;

userInput = "any user input";

userInput = 45.3;

userInput = false;

// void

22 CHAPTER 2. INTRODUCING TYPESCRIPT

function showWarning(): void {

alert("This is a warning");

}

2.5.4 Collections

Collections is grouping of multiple elements into a single unit. Here are

the collection types TypeScript supports.

• Array: Arrays could be typed or generic

• Tuple: Used to group fixed number of elements. Their type need

not be the same.

• Enum: Gives friendly names to sets of numeric values. By de-

fault, enums begin numbering their members starting at 0. You

can override this manually. You can set values for all elements

manually too.

• Union: Variable of multiple types.

Listing 2.10: TypeScript Collections

// array

let cities: string[] = ['delhi', 'chennai', 'mumbai'];

let cities: Array<string> = ['delhi', 'chennai', 'mumbai'];

// tuple

let yearBorn: [string, number];

yearBorn = ['julia roberts', 1967];

// enum

enum Day {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday};

let firstDay: Day = Day.Sunday;

2.5. TYPESCRIPT BASICS 23

// override or set values manually

enum Day {Sunday = 1, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday};

enum Direction {North = 2, South = 4, East = 6, West = 8};

enum Direction {North = 2, South = 4, East, West}; // East = 5; West = 6

// union

let path: string[] | string;

path = ['/home', '/home/dropbox'];

path = '/home';

2.5.5 Type Assertions

Sometimes you would want to override the inferred type. Then you

can use type assertions. There are two forms of type assertion. One

is using “angle-bracket”, and another is using “as”. Type assertions

are different from type casting found in other language. Casting is a

runtime operation, whereas assertion is a compile time operation.

Listing 2.11: Type Assertions

// using <>

let name: any = "Bruce Wills";

let nameLen: number = (<string>name).length;

// using as

let name: any = "Bruce Wills";

let nameLen: number = (name as string).length;

2.5.6 Control Flow

In this section, we will see decision-making and looping statements.

24 CHAPTER 2. INTRODUCING TYPESCRIPT

if . . . else

The if-else statement is a decision-making statement. The syntax of

the statement is:

Listing 2.12: If-Else

if (condition) {

statement1

}

else {

statement2

}

else part of the statement is optional. You can also check for multiple

conditions with if..else if...

Listing 2.13: If..Else..If

if (condition1) {

statement1

} else if (condition2) {

statement2

} else {

statement3;

}

ternary operator

This is a simplified, concise if-else statement. It takes the form:

boolean-expression ? statement1 : statement2.

Listing 2.14: Ternary Operator

let speed = 80;

let isFast = speed > 55 ? true : false

2.5. TYPESCRIPT BASICS 25

for loop

Use for loop when you know how many times a task has to be re-

peated.

Listing 2.15: For loop

let sum = 0;

for (let i = 0; i<= 1000; i++){

if (i % 3 == 0 || i % 5 == 0){

sum = sum + i;

}

}

console.log(sum);

for-of loop

TypeScript introduces a for-of loop (since TypeScript is a superset, you

can also use the existing For-in loop) to loop through collections.

Listing 2.16: For..of loop

let cities: string[] = ['delhi', 'chennai', 'mumbai'];

for (let city of cities) {

alert(city);

}

switch

The switch statement is an enhanced if-else statement, which is con-

venient to use if there are many options to choose.

26 CHAPTER 2. INTRODUCING TYPESCRIPT

Listing 2.17: Switch statement

let animal = 'dog';

switch (animal){

case 'dog':

alert('dog');

break;

case 'cat':

alert('cat');

break;

default:

alert('none?')

}

while

Use while to execute a task until a given condition is true.

Listing 2.18: While loop

let sum = 0;

while (sum <= 5) {

sum = sum + 1;

}

do. . . while

do...while is similar to while loop, except that the statement is guar-

anteed to run at least once.

Listing 2.19: Do..while
let sum = 0;

do {

sum = sum + 1;

} while (sum <= 4)

2.5. TYPESCRIPT BASICS 27

2.5.7 Functions

In TypeScript you declare functions similar to JavaScript, with type in-

formation about the input parameters and return type.

Listing 2.20: Functions

function squareOf(i: number): number {

return i * i;

};

Return types can be interfered, so we can declare a function like this:

Listing 2.21: Infer return type

function squareOf(i: number) { return i * i };

In TypeScript, as in JavaScript, functions are first-class citizens. This

means we can assign functions to variables, and pass functions as pa-

rameters. We can also write anonymous functions. All of these will

generate the same JavaScript.

Listing 2.22: Anonymous Functions

// function as a variable

let sqr1 = function sqr (i: number) : number {

return i * i;

}

// anonymous function

let sqr2 = function (i: number) : number {

return i * i;

}

// alternate syntax for anonymous function using =>

let sqr3 = (i: number) : number => { return i * i;}

28 CHAPTER 2. INTRODUCING TYPESCRIPT

// return type can be inferred

let sqr4 = (i: number) => { return i * i;}

// return is optional in one line functions

let sqr5 = (i: number) => i * i

Optional and default values

Functions can take optional values. You mention the optional values by

using ?: syntax.

Listing 2.23: Optional values for function parameters

function getFullName(firstName: string, lastName?: string) : string {

if (lastName) {

return firstName + " " + lastName;

} else {

return firstName

}

}

You can also mention default values for parameters.

Listing 2.24: Default values for function parameters

function getFullName(firstName: string, lastName: string = "") : string {

return (firstName + " " + lastName).trim();

}

2.5.8 Classes

TypeScript brings object-oriented approach to JavaScript. Let us con-

sider an example.

2.5. TYPESCRIPT BASICS 29

Say you are developing a digital library of books. Then you can define

a Book class like this:

Listing 2.25: Defining class

class Book {

name: string;

purchasedYear: number;

constructor (name: string, purchasedYear: number){

this.name = name;

this.purchasedYear = purchasedYear;

}

}

let Book1 = new Book('7 habits', 2005);

TypeScript also supports sub-classing or inheritance. If you want to

extend the digital library to include all assets like CDs, PDFs and so on,

you can modify the above class into a super-class and many sub-classes.

Listing 2.26: Class Inheritance

class Asset {

name: string;

purchasedYear: number;

constructor (name: string, purchasedYear: number){

this.name = name;

this.purchasedYear = purchasedYear;

}

}

class Book extends Asset {

constructor (name: string, purchasedYear: number) {

super(name, purchasedYear);

}

}

let book1 = new Book('7-habits', 2013);

30 CHAPTER 2. INTRODUCING TYPESCRIPT

2.5.9 Interfaces

Interfaces allow multiple objects to expose common functionality. By

using interface, you can enforce that all these assets implement a com-

mon functionality, say name, purchased year, and age. Interface is only

a contract, implementation is carried out at the classes level.

Listing 2.27: Interfaces

interface iAsset {

name: string;

purchasedYear: number;

age: () => number;

}

class Book implements iAsset{

name: string;

purchasedYear: number;

constructor (name: string, purchasedYear: number){

this.name = name;

this.purchasedYear = purchasedYear;

}

age() {

return (2016 - this.purchasedYear);

}

}

let Book1 = new Book('7 habits', 2005);

console.log(Book1.age());

2.5.10 Decorators

Decorators is one of the experimental features that TypeScript is bring-

ing to Javascript tool-chain. We will not create decorators in this book,

but will use it while using ORM in Chapter 4. So, this section explains

only about using decorators.

2.5. TYPESCRIPT BASICS 31

Decorators modify a class, property, method, or method parameter. They

provide metadata and specify extra behaviour. The syntax for using

decorator is with “@”. Let us take an example to understand this.

We started with a Person class in Listing 2.2. Say someone else created

a decorator (remember we are not dealing with creation of a decorator

in this book), that prints a message every time a new instance is created.

Then we would decorate the class as in Listing 2.28

Listing 2.28: Decorated Person class

1 @logClass

2 class Person {

3 public Name: string;

4 public Age: number;

5 public City: string;

6

7 constructor(name: string, age: number, city: string) {

8 this.Name = name;

9 this.Age = age;

10 this.City = city;

11 }

12 }

Now every time there is a new Person created, it will print a message.

The same can be extended to properties and methods. We will see more

in Chapter 4 as we define models and columns.

2.5.11 Async, await

Javascript, and nodejs, is single-threaded. This works fine until you

have to call asynchronous tasks like writing to a db or calling a web-

service. We handle these async functions using callbacks and promises.

TypeScript introduces async..await to write these async functions, much

the same way as you write a sync function.

32 CHAPTER 2. INTRODUCING TYPESCRIPT

Listing 2.29 is a long-running, time-consuming process like a web-service

or writing to a db Listing 2.30 invokes this long-running process using

the new async-await syntax.

Listing 2.29: A time-consuming function

function delay(ms: number) {

return new Promise<void>(resolve => {

setTimeout(resolve, ms);

});

}

Listing 2.30: Calling with async..await

async function asyncLog(){

console.log("starting");

await delay(500);

console.log("after 500ms");

await delay(1000);

console.log("after 1000ms");

}

If you invoke this function, asyncLog, the output will be like this:

starting

// after 500 ms

after 500 ms

//after 1000 ms

after 1000 ms

The code becomes lot less verbose by using async..await. We don’t have

to have lot of callbacks or then functions.

2.6. AUTOMATING YOUR WORKFLOW WITH NPM SCRIPTS 33

2.6 Automating your workflow with npm scripts

Even though TypeScript brings ton of benefits, you can’t execute Type-

Script files directly. You need to compile it into Javascript file, which

then has to be executed. You compile with the command tsc <filename>.

This compilation has to be repeated every time the file is changed. This

is a boring task, that could be automated.

Many people use task runners like gulp. There is no harm in using an

additional module. But in this section, we are going to use npm scripts

to automate compiling TypeScript files.

Why use npm instead of a task runner?

• we’re already using npm while using node

• it reduces number of dependencies. This reduces both total project

size (as no more gulp modules are needed), and number of things

that can go wrong.

Let me start with package.json. This is the default package.json

when you start with npm init.

Listing 2.31: Default package.json

{

"name": "new project",

"version": "1.0.0",

"description": "",

"main": "index.js",

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"

},

"keywords": [],

"author": "",

"license": "ISC"

}

34 CHAPTER 2. INTRODUCING TYPESCRIPT

With npm run you can execute scripts in the scripts block. If you run

it now, you’ll get an error:

Lifecycle scripts included in new:

test

echo "Error: no test specified" && exit 1

This is expected. Why? There is only one script mentioned, and that

echos that there is no test. We will learn about testing in Chapter ??. For

now, let us add scripts specific to TypeScript.

First is a script to compile TypeScript files. This script below invokes

typescript compiler.

Listing 2.32: npm script to compile TypeScript

"scripts": {

"compile": "tsc --outDir ./build --module commonjs ./src/*.ts"

}

Now if you invoke, npm compile, typescript files in ./src folder will

be compiled into ./build folder.

Can you start the node server automatically when the compilation suc-

ceeds? Yes, you can. The compile command becomes:

Listing 2.33: Starting node server after compilation

"compile": "tsc --outDir ./build --module commonjs ./src/*.ts && \

node ./build/server.js"

This is fine. But whenever you change the file, you need to run npm

compile. Can it watch for changes to files and invoke this command

automatically?

2.7. SUMMARY 35

Yes it can.

Nodemon provides the watching facility. Nodemon can watch for changes

for certain file extensions and execute a command. So let us add another

script to the scripts block.

Listing 2.34: Watching files for change

"scripts": {

"start": "./node_modules/nodemon/bin/nodemon.js -e ts --exec \"npm run compile\"",

"compile": "tsc --outDir ./build --module commonjs ./src/*.ts && node ./build/server.js"

}

If any ts files changes, then nodemon will invoke npm compile, which

in turn compiles and (re-)starts the node server.

Now you can start the server with npm start and go on with your de-

velopment. Whenever you change a TypeScript file, it will be automat-

ically compiled and restart the server.

2.7 Summary

• TypeScript adds type checker and intellisense to nodejs develop-

ment tool chain.

• TypeScript is a superset of JavaScript.

• TypeScript compiles into classical JavaScript code.

• Type definitions are available for existing JavaScript modules.

• TypeScript adds planned features of JavaScript, like decorators

and async, for today’s development.

36 CHAPTER 2. INTRODUCING TYPESCRIPT

• TypeScript brings OOPs concepts to JavaScript

• TypeScript can be compiled with npm scripts.

Chapter 3

Routes, request, and reply

The primary responsibility of a web-application server is to process the

incoming URL and send back a response. Hapi uses a concept called

routing to map the incoming url to a processing function. In this chapter,

you will learn:

• how Hapi maps incoming URLs to a processing function;

• elements of this routing mechanism;

• how to process parameters in the URL;

• how to code a catch-all routing function;

• how to organize routes;

3.1 Basics of routing

Typical workflow of a web-application is depicted in Figure 3.1.

37

38 CHAPTER 3. ROUTES, REQUEST, AND REPLY

Figure 3.1: Request Response Cycle of a Web-Application

• User types an URL in the browser;

• The web-application server gets that URL and according to a pre-

defined algorithm, finds a function to forward the URL;

• That function then processes the URL and sends back a response

to the browser.

In Hapi, server.route does this job of routing the incoming request to

a processing function.

Let us start with the basic hello world program we wrote in Chapter 1.

Pay attention to the highlighted lines of code.

3.2. ROUTE METHODS 39

Listing 3.1: Hello World in Hapi

1 "use strict";

2

3 import * as hapi from "hapi";

4

5 const server: hapi.Server = new hapi.Server()

6 server.connection({ port: 3000 });

7

8 server.route({

9 method: "GET",

10 path: "/",

11 handler: (request: hapi.Request, reply: hapi.IReply) => {

12 reply("Hello World")

13 }

14 });

15

16 server.start((err) => {

17 if (err) {

18 throw err;

19 }

20 console.log("server running at 3000");

21)

Here, server.route maps the handler function to a GET request at the

path /. The handler function replies with “Hello World”. It could be a

json or a html response.

There are three elements we see in server.route: method, path, and

handler. In this section, we will understand these three elements in

detail.

3.2 Route Methods

Every http request contains a method. It will be one of GET, POST, PUT,

or DELETE. There are other methods too, but for our discussion, we will

limit to these methods. The methods are:

40 CHAPTER 3. ROUTES, REQUEST, AND REPLY

• GET: retrieves a resource or a collection of resources. Ex: GET

/users or GET /users/1;

• POST: create a new resource. Ex: POST /users;

• PUT: update a resource. Ex: PUT /users/1;

• DELETE: delete a resource. Ex: DELETE /users/1;

Let us see how we can handle these methods in Hapi.

Listing 3.2: One route function per method

1 server.route({

2 method: "GET",

3 path: "/",

4 handler: (request: hapi.Request, reply: hapi.IReply) => {

5 reply("This is a GET method");

6 }

7

8 server.route({

9 method: "POST",

10 path: "/",

11 handler: (request: hapi.Request, reply: hapi.IReply) => {

12 reply("This is a POST method");

13 }

Here, we are handling each http method in its own server.routemethod.

This is easy to read and understand.

We can also handle multiple http methods in a single route.

Listing 3.3: Multiple methods in a single route funtion

1 server.route({

2 method: ["GET","POST"],

3 path: "/",

4 handler: (request: hapi.Request, reply: hapi.IReply) => {

5 reply("Got " + request.method + " method");

6 }

3.3. PATH PARAMETERS 41

This is handy to handle a forms on the front-end. We can display the

form with GET and handle the input with POST using the same handler.

3.3 Path Parameters

Have you noticed the URLs when you access Stackoverflow site? Let us

consider some of the URLs from Stackoverflow.

• http://stackoverflow.com/questions/tagged/hapijs lists the ques-

tions tagged Hapijs

• http://stackoverflow.com/q/26243489/ is a specific question on

Hapijs

• http://stackoverflow.com/a/26261428 is the first answer to that

question

What do we find from these URLs?

1. Tagged questions can be accessed through URLs of the pattern:

http://stackoverflow.com/questions/tagged/<tag>. Here

<tag> will vary. It could be hapijs, nodejs, python and so on. This

is the variable parameter in this URL.

2. Questions are accessed through the urls of the pattern:

http://stackoverflow.com/q/<questionId>. q indicates a que-

tions, and an id indicates the question id to display. Here the vari-

able parameter is questionId.

3. Answers are accessed through the URLs of the pattern:

http://stackoverflow/a/<answerId>. As above, a indicates it

http://stackoverflow.com
http://stackoverflow.com/questions/tagged/hapijs
http://stackoverflow.com/q/26243489/
http://stackoverflow.com/a/26261428

42 CHAPTER 3. ROUTES, REQUEST, AND REPLY

is an answer, and an id indicates the answer to display. Here the

variable paramers is answerId.

If we were developing Stackoverflow, we have to name these variable

parameters, so that we can identify the specific resource that we need

to send back. In Hapi, we name the variables between {}. So our vari-

ables could be {tag}, {questionId}, and {answerId}. These variables

are accessed within the handler function as part of request.params. So

these variables might be accessed as, request.params.tag, request.params.questionId

and request.params.answerId.

Listing 3.4: Accessing Path Parameters

1 server.route({

2 method: "GET",

3 path: "/questions/{id}",

4 handler: (request: hapi.Request, reply: hapi.IReply) => {

5 reply("Question requested is: " + request.params.id);

6 }

7 });

Hapi also supports multiple parameters in a path. Each parameter can

be accessed with its name. If you use twitter and their lists function-

ality, then you would’ve noticed multiple parameters in path. I have

many twitter lists and one of them is a “tech” list. The path to it is

https://twitter.com/jjude/lists/tech. Here jjude is username

parameter and tech is listname parameter. Listing 3.5 shows the code

snippet to access both parameters in the handler function.

Listing 3.5: Accessing multiple parameters

1 server.route({

2 method: "GET",

3 path: "/{userName}/lists/{listName}",

3.4. OPTIONAL PARAMETERS 43

4 handler: (request: hapi.Request, reply: hapi.IReply) => {

5 console.log("User Name: " + request.params.userName);

6 console.log("List Name: " + request.params.listName);

7 reply("success");

8 }

9 });

3.4 Optional parameters

Hapi supports optional parameters in the path. We can use optional

parameters to define a single route to fetch both a single resource and

its collection. Optional parameters are indicated by appending a ? to

its name.

Listing 3.6: Optional parameters

1 server.route({

2 method: "GET",

3 path: "/users/{userId?}",

4 handler: (request: hapi.Request, reply: hapi.IReply) => {

5 if (request.params.userId) {

6 return reply("user id is: " + request.params.userId)

7 } else {

8 return reply ("will show user collection");

9 }

10 }

11 });

Optional parameter can appear only as a last parameter.

44 CHAPTER 3. ROUTES, REQUEST, AND REPLY

3.5 Wildcard parameters

If we want to repeat a segment, we can use * followed by a number. Say,

we are running a blog and want to repeat the category twice. Then the

path will be,/{category*2}.

We can split the segment to get the individual segments. For exam-

ple, request.params.category.split(’/’) will get us the individ-

ual segment.

We can also omit the number to match unlimited segments. This is

called catch-all route since they handle routes that are not handled

by specific routes. They are useful in implementing 404 pages.

3.6 Route handlers

Handler function accepts two parameters: request and reply.

The request parameter contains headers, authentication information,

payloads and others. The reply parameter is used to respond to the

requests. Usually it only contains payload. But it can also have headers,

content types, content length and so on. It can be chained to indicate the

response code too. For example, reply(’not found’).code(404).

3.7 Query strings

Query strings are another mechanism to send information from client to

server. We saw that http://stackoverflow.com/questions/tagged/hapijs

lists all the questions tagged with hapijs. If you want to access the same

via Stackoverflow API, then the url is https://api.stackexchange.com/2.2/questions?tagged=hapijs&site=stackoverflow

http://stackoverflow.com/questions/tagged/hapijs

	Preface
	What this book covers
	How this book is written
	How this book is organized
	Conventions
	What you need to follow this book
	Your feedback
	Connect with me
	Other books by me
	Need help for your Hapi project?

	Basics of Hapi & TypeScript
	First Hapi app
	Converting to TypeScript
	Adding routes
	Using plugins
	Connecting to DB
	Summary

	Introducing TypeScript
	Why TypeScript?
	Components of TypeScript
	Installing and using TypeScript
	Types for existing modules
	TypeScript Basics
	Automating your workflow with npm scripts
	Summary

	Routes, request, and reply
	Basics of routing
	Route Methods
	Path Parameters
	Optional parameters
	Wildcard parameters
	Route handlers
	Query strings

