

2

Coder’s Quest

Create your *own* adventure

Emily Davis and Kaisa Taipale

ii

Contents

Preface v

1 What is a text adventure? 1

2 Level 0: Setting up 3
2.1 Download Visual Studio . 3
2.2 Set up your first file . 4
2.3 Play Emily’s game . 4
2.4 Play with Emily’s code . 5

3 Level 1: Map your world: planning a game 7

4 Level 2: Variables and text 11
4.1 Three variables to start with 11
4.2 Console output . 12
4.3 Taking user input . 12
4.4 Equals: the ultimate battle! 13

5 Level 3: If you go east. . . 15
5.1 If statements . 15
5.2 Pesky semicolons . 16

6 Level 4: While loops 19
6.1 One big while . 19
6.2 Troubleshooting . 20

iii

iv CONTENTS

7 ASCII art 21
7.1 More coming soon. 21

8 Arrays: carrying more game items 23
8.1 More coming soon. 23

9 DRYing up your code 25
9.1 More coming soon. 25

Preface
Emily started teaching about coding through text adventures at That Confer-
ence, where she gave a presentation to an audience of kids, parents, and other
adults. At Startup Weekend Twin Cities 7, she pitched the idea of taking this
public, and here’s the result! Emily’s team included Cynthia Qualey on busi-
ness, Doug Thorpe on computers, and Kaisa Taipale writing and coding. Joey
Vazquez did our fabulous logo (check him out at at his site). Learn to code
through writing your own adventure, and have fun!

v

https://www.thatconference.com/
https://www.thatconference.com/
https://www.facebook.com/TheArtOfJoeyVazquez

vi PREFACE

Chapter 1

What is a text adventure?
You want to build your own text adventure. . . but what is that? A text adventure
game is a game that takes you through an imaginary world, step by step. You
can only navigate by typing your commands in as text. Here’s an example of
what the beginning of the most classic text adventure ever:

This game is called Zork and it’s more than 35 years old – but you can still
play it today online. It’s fun to explore other peoples’ words, but even better to
create your own.

1

http://textadventures.co.uk/games/view/5zyoqrsugeopel3ffhz_vq/zork

2 CHAPTER 1. WHAT IS A TEXT ADVENTURE?

Our starting point is a basic text adventure written by Emily Davis.
Here we will show you a process for creating your own world and your own

text adventure using C#. You’ll

• play with Emily’s code

• make a simple map for your first world

• learn about how to write the code to move around your simple world

• put together your game

• and then level up!

Good luck on your Coder’s Quest!

Chapter 2

Level 0: Setting up
If you want to do fun stuff with text adventures you need to set up your environ-
ment! Emily works with C# in Microsoft Visual Studio, Community Edition.
Downloading will be in section 2.1 and setup will be in section 2.2.

2.1 Download Visual Studio
You will need to be using a Windows computer to code in C#. Download Visual
Studio Community Edition from this site.

When you click on “Visual Studio Community,” you’ll download an in-
staller program file called vs_community.exe. After it is downloaded, run
vs_community.exe and follow the prompts to install Visual Studio on your Win-
dows computer. After it is installed, start the Visual Studio program by clicking

3

https://www.visualstudio.com/en-us/products/vs-2015-product-editions.aspx

4 CHAPTER 2. LEVEL 0: SETTING UP

on the Visual Studio icon in the Start Menu (or search for Visual Studio under
All apps). You may wish to pin it to the start menu or the task bar for ease of
access.

2.2 Set up your first file
When you open Visual Studio Community, you’ll get something that looks like
this:

Download Emily’s game here. Use the “Download ZIP” link on the right-
hand side of the page. Open it using Visual Studio by clicking the CodersQuestChp1.sln
file that appears.

2.3 Play Emily’s game
Give the game a try. Run the program by hitting the green “play” near the top
of the screen.

See what commands you can use and which ones don’t work: you enter
commands by typing your instruction and then pressing enter. (Type commands

https://github.com/emilyprograms/CodersQuestBookCSharp

2.4. PLAY WITH EMILY’S CODE 5

like this: “n” for north, or “open door” to open a door, but without the quotation
marks.)

How do you want to change the game?

2.4 Play with Emily’s code
Go back to the code Emily wrote and think about what you wanted to change.
Do you want to change the screen output, or the map? How are you going to
do this?

It’s easy to change the landmarks along the way by just carefully changing
the text in the file. Try changing the “dirty window” to a “brick wall” and then
save. Run the program again and see if your change works!

Next step: start writing your own.

6 CHAPTER 2. LEVEL 0: SETTING UP

Chapter 3

Level 1: Map your world:
planning a game
The first step for your first game is planning your world. Let’s start simple this
time: take a look at Emily’s map for the game you ran in the previous chapter.

When you played the game, every time you got to a corner or an intersection
on the map you arrived at a numbered position. We’ll keep track of these
positions in a variable in the next chapter, so that when you play the computer
can tell you what options you have for movement and actions. Of course, these
options are up to you when you code your game!

7

8 CHAPTER 3. LEVEL 1: MAP YOUR WORLD: PLANNING A GAME

Draw a map for yourself with five numbered positions. Remember, you
need a position number at every intersection, every corner, and every place you
want to have an action. Also decide where you want to pick up the key and
where you want to open the door. Don’t worry: as you level up your skills you
can make monsters and more elaborate games, but we want you to get the hang
of the basics first.

Another nice thing to include on your map is a drawing of the compass
directions. It will help you keep track when you are coding. (Quick question:
if you go a step east and then a step west, where do you end up? Where you
started!)

In the end your map should look something like one of these:

9

10 CHAPTER 3. LEVEL 1: MAP YOUR WORLD: PLANNING A GAME

Chapter 4

Level 2: Variables and text

4.1 Three variables to start with
A variable is like a suitcase: you store values in it to keep track of them. You
can change the value of your variable by putting a new value in the suitcase.

Variables store different types of things. For our text adventure we want to
keep track of our position (the positions you wrote on your map) and whether
we are alive. These are different types of variables, because the positions are
integers (whole numbers) and whether you are still alive is a boolean – it is
either True or False. There is one last kind of variable we need: a string. We
need to be able to store words and sentences, so that when you type “open
door” the computer can deal with your choice.

Try to find these in Emily’s code:

• Integers for position look like

int pos = 1; //tells us where we will be in the maze.

• Booleans for whether you’re still alive or not look like

bool KeepGoing = true; //Can we keep playing the game?
bool haskey = false; //Do we have the key for the locked door?

11

12 CHAPTER 4. LEVEL 2: VARIABLES AND TEXT

• Strings are sneaky – we start with an empty one at the beginning by
writing

string input = null; //What has the user typed?

These are the settings we start the game with: you start at position one, you
start being alive (you can KeepGoing) with no key (haskey is false), and you
start with no commands yet entered for movement. When you are playing the
game and type your commands to go north or east or open a door, that’s when
the string changes: you change the value in the suitcase named “input”. Can
you see where this happens in Emily’s code?

4.2 Console output
When you played the game, each step gave you instructions. They are printed
in C# using the Console.WriteLine command:

Console.WriteLine("You are trapped in a Maze.");
Console.WriteLine("You must find your way out without getting eaten by the monster.");
Console.WriteLine("You can go East. (e)");

You can change anything between (“ and)”; to change the text that the
player gets.

4.3 Taking user input
To use the variable input, we need to use this line of code:

input = Console.Readline();

Console.Readline is waiting for the user to hit the enter key. In our
program,the line input = Console.Readline(); takes whatever the user
types into the input suitcase/variable.

4.4. EQUALS: THE ULTIMATE BATTLE! 13

4.4 Equals: the ultimate battle!
One thing that Emily really struggled with when she started was = versus ==.
When you have one equals sign, like pos = 2, this is saying, “pos, you now
have a value of 2!” But == is saying, “Hey pos! Do you have a value of 2?”
Take a look at Emily’s game code to see where she says = and where she asks
==.

14 CHAPTER 4. LEVEL 2: VARIABLES AND TEXT

Chapter 5

Level 3: If you go east. . .

In this section you’ll learn about how to change the game to match your map.

5.1 If statements

At every intersection and in every battle, your player makes choices within
your world. “If I turn left. . . ” “If I pick up the key. . . ”

Take a look at Emily’s code for the first position on her map:

if (pos == 1)
{

Console.WriteLine("You are in a dungeon. You must find your way out.");
Console.WriteLine("You can go South. (s)");
input = Console.ReadLine();
if (input == "s") //You can only go south. The computer will ignore all other input.
{

pos = 2;
}

The console output from Console.WriteLine tell you that you only have
one choice for movement at the beginning (and Emily nicely mentions that in
the comments!). Since there is only one option, there is only one if statement,
and it moves you to position 2 if you go south.

15

16 CHAPTER 5. LEVEL 3: IF YOU GO EAST. . .

if (input == "s")
{

pos = 2;
}

At position 3, though, you’ve got some choices. Look at position 2. You
can go north, east, or west:

Console.WriteLine("There is a small pool of water here.");
Console.WriteLine("You can go North, East, or West. (n/e/w)");
input = Console.ReadLine();
if (input == "n")
{

pos = 4;
}
else if (input == "e")
{

pos = 5;
}
else if (input == "w")
{

pos = 2;
}

The program follows Emily’s map: if you go north from position 3, you
arrive at position 4; else if you go east from position 2, you arrive at position 5,
and so on. Since there are three options, there are three blocks of instructions.
If you have multiple options, the first check will be if and the rest will be else
if.

5.2 Pesky semicolons
Notice all the semicolons ; floating around. What are they for and where do
they have to go?

Semicolons end a statement – they act like a period at the end of a code
sentence. Every time you have an if or else if statement you need a semi-
colon, and you have to put the semicolon at the end of a statement like pos
= 2 rather than outside your curly brackets }. If your program isn’t running

5.2. PESKY SEMICOLONS 17

correctly check to see if you lost any semicolons. Visual Studio will show you
a wiggly red underline, as if you made a spelling error in Word, if you lost a
semicolon.

18 CHAPTER 5. LEVEL 3: IF YOU GO EAST. . .

Chapter 6

Level 4: While loops

While you are alive, you can play the game. . . until you win or die!

6.1 One big while
Take a look at Emily’s game code again. After all the lines that are automat-
ically included by Visual Studio, it starts with a while loop. The while loop
will end when we exit. Otherwise we will play the game forever. The loop will
keep going until keepGoing = false, which in this game happens when you
find the door and open it with the key.

namespace CS101Level1
{

class Program
{

static void Main(string[] args)
{

int pos = 1; //tells us where we will be in the maze.
bool keepGoing = true; //Can we keep playing the game?
bool haskey = false; //Do we have the key for the locked door?
string input = null; //What has the user typed?

while (keepGoing == true)
{
// all the game instructions in here!

}
}

19

20 CHAPTER 6. LEVEL 4: WHILE LOOPS

}
}

This is part of the game you probably don’t want to change right now. Once
you finish this game you could make a more complex one with more while
loops, but figure this one out first!

6.2 Troubleshooting
Inside your while statement, you might run into trouble. Check to make sure
you:

• you have an if statement for every direction

• dont repeat a position (pos 2 twice)

• and be careful with the last step: you are asking the program if the user
has the key, and then asking the user if they want to use it.

Chapter 7

ASCII art

7.1 More coming soon. . . .

21

22 CHAPTER 7. ASCII ART

Chapter 8

Arrays: carrying more game
items

8.1 More coming soon. . . .
You want to be able to carry more game items. Coming soon. . . .

23

24 CHAPTER 8. ARRAYS: CARRYING MORE GAME ITEMS

Chapter 9

DRYing up your code
You might have noticed a lot of repeating yourself, a lot of copy and paste.
DRY stands for “don’t repeat yourself”: it’s about ways to make your coding
simpler and faster.

9.1 More coming soon. . .

25

	Preface
	What is a text adventure?
	Level 0: Setting up
	Download Visual Studio
	Set up your first file
	Play Emily's game
	Play with Emily's code

	Level 1: Map your world: planning a game
	Level 2: Variables and text
	Three variables to start with
	Console output
	Taking user input
	Equals: the ultimate battle!

	Level 3: If you go east…
	If statements
	Pesky semicolons

	Level 4: While loops
	One big while
	Troubleshooting

	ASCII art
	More coming soon….

	Arrays: carrying more game items
	More coming soon….

	DRYing up your code
	More coming soon…

