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Preface

This book is being written for students in my Preparation for Financial Mathe-
matics class at the University of Minnesota. It’s an idiosyncratic tour through
probability, calculus, and linear algebra, attempting to mix in financial appli-
cations throughout. Unlike many authors, I am making no attempt whatsoever
to write a “self-contained” exposition: I’m assuming you know some calculus
and linear algebra and are willing to look up a lot. Perhaps it is better to view
this as a workbook than a reference book.

My students next take a course, FM 5011, in which probability is presented
in terms of measure theory. You’ll deal with the sigma-algebra that consists of
sets of events and you’ll put a probability measure P on that σ-algebra. Then,
in the rest of the first day, you’ll proceed through probability distributions for
random variables, noting the binomial, Poisson, uniform, and normal distribu-
tions among others. You’ll review joint distributions and expectations. That’s
lecture one of 5011; by lecture two you’ll cover stochastic processes.

In this book, we will take a more non-technical approach and get our hands
dirty. The aim is that you will understand all those distributions, and have
a beginning familiarity with Brownian motion, so that you can assimilate the
technical notions presented in 5011.

This book has benefited from the feedback of my students through sev-
eral years: in essentially random order, I’d like to thank them here. In 2017-
2018, Yanqiu Tan, Tianzi Guo, Thara Ali Said, Jacob Gotto, David Rokhinson,
Ameya Phadke, and Alec Hamer all made suggestions for improvement. In
previous years, Joseph Ogega, Chong Wang, and Guining Zhang made sugges-
tions – and since they’re all graduated, you should hire them for great math
finance jobs. In 2018-2019, I need to thank Boris Alyurov and Michele Knud-
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Chapter 1

Introduction to probability
We’re plunging right into probability. Several generations of students have now
found that probability is subtle, confusing, and requires a different mindset than
calculus and linear algebra. You want a full year to absorb these subtleties!

Broadly, our goal for this semester is to gain a firm foundation in basic
probability so that we can proceed to understanding geometric Brownian mo-
tion, which is widely used as a basic model for stock prices. At the end of the
semester (end of chapter 7) I want you to understand the transition from random
walk to Brownian motion, and how these relate to the Black-Scholes differen-
tial equation and the binomial tree model for option pricing. The goal for this
first chapter is to get you acquainted with the basics of probability, grounding
you in the idea of looking at a sample space and finding the probability of an
event occuring in this sample space when you conduct a chance experiment.
You will get a lot of practice with such problems.

By the end of this chapter, I want you to understand the axioms of proba-
bility:

Definition 1.0.1. The probability measure on a sample space is denoted by
P . It assigns to each set A in the sample space Ω a probability, satisfying the
following axioms:

• P (A) ≥ 0 for each subset A.

• P (A) = 1 when A is equal to the sample space.

1



2 CHAPTER 1. INTRODUCTION TO PROBABILITY

• P

( ∞∪
i=0

Ai

)
=

∞∑
i=0

P (Ai) for every collection of pairwise disjoint subsets

A1, A2, . . ..

The set notation is explained in Section 1.1 and the probability terminology
is explained in Section 1.2.

I also want you to be able to solve problems like the following:
Eight teams are in the semifinals of an international badminton tournament.
The eight teams consist of two teams each from China, India, Denmark, and
Korea. What is the probability that the two teams from each country end up
playing against each other in each of the semifinal matches? That is, China 1
plays China 2, Denmark 1 plays Denmark 2, etc.

For these, you’ll need the counting techniques outlined in Sections 1.3 and
1.4.

1.1 Brief introduction to sets

1.1.1 Sizes of sets via bijections
A finite set is one that has a positive integer number of elements. These are the
sets we got comfortable with in kindergarten and first grade: five apples, seven
chairs, a million dollars. (Well...) Another way to say that a set A is finite is
to say that its elements are in bijection with a set {1, . . . , n} for n a positive
integer. A “bijection” is a matching that pairs each element in A with one and
exactly one element in {1, . . . , n}. Then we use the notation | · | for cardinality
of a set to write that the size of A is |A| = n. (Note that this is the same
notation as absolute value and magnitude, so you must understand the context
of the statement to correctly interpret |A|.)

More generally, a bijection between two sets A and B is a matching (func-
tion, map) that is injective and surjective. A map f : A → B is injective, or
“one-to-one,” if f(a1) = f(a2) in B means that a1 = a2 in A. This means
no two distinct elements in A can map to the same element in B. A map
f : A → B is surjective, or “onto,” if for every b ∈ B there’s an a ∈ A such
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that f(a) = b. This means every element in B is “hit” by the map f from the
set A.

Why make things so complicated? The concept of bijection is useful in talk-
ing about sizes of infinity. For instance, the set N = {0, 1, 2, 3, . . .} of natural
numbers is a certain “size” of infinity. We call this size of infinity countable,
because we can count through it. Any other set we can put in bijection with the
counting numbers N will also be called countably infinite.

Put the integers Z in bijection with N. You can do it! Can you reconcile
your bijection with your intuition that there should be somehow twice as many
integers as natural numbers? Infinity is mysterious.

Another “size” of infinity comes up when looking at uncountable sets. How
many real number R are there? Can you put the real numbers R in bijection
with the natural numbers N?

Prove to yourself that you can’t put R and N in bijection.

The set of real numbers R is an uncountable set, and so is the set of irra-
tional numbers – let’s call that I for now. (Irrational numbers are numbers that
can’t be expressed as a ratio of two integers. Examples include π and e. The
set of rational numbers is denoted by Q.)

With uncountable sets like the real numbers we can construct very weird
subsets that can’t be assigned a probability measure consistent with how prob-
ability should work. Basically, we can break the intuitive notion we have of
the size or “measure” of a set: if we proceed naively, we could have a set that
looks like it’s of size 1 and size 0 at the same time, in which case 1 = 0 and all
is lost. That’s why σ-algebras are introduced in later classes: using σ-algebras
and more sophisticated ideas we can formalize the notion of measure and make
sure probability works over uncountable sets. Our approach in this book: ig-
nore this problem. Let’s stick with “nice” subsets of uncountable spaces like
intervals and their complements. But before we stop considering complicated
sets forever, I’ll throw out a few situations that seem paradoxical, to show you
why you’ll need another year of math to truly understand measure theory.
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1.1.2 “Paradoxes” of set theory
Above, I asked you to put Z in bijection with N. Hopefully you did that! Now,
think about the rational numbers, Q. This is a countable set, as you can see
from the picture below:

In particular, that means that the set of rational numbers between zero and
one is countable. Let’s consider the cardinality of the set of all real numbers
between zero and one. It’s uncountable, and here’s how to prove it. I use what’s
called Cantor’s diagonalization argument. Assume you can list all the numbers
between zero and one, writing them out as decimals. Put that list together:

A clever friend comes along and says, “I can give you a number between zero
and one that is not on that list!” You say, “Impossible – I listed them all!”
She says, “No: I’ll give you a number whose ith digit after the decimal is one
different than the ith digit of the ith number on your list, for every digit.” You
are flabbergasted... but she is right! The number she gives you is between zero
and one and is not on your list, no matter what was on your list.

This proves that [0, 1] is an uncountable set of numbers. Moreover, it proves
R is uncountable. But we know that the length of the interval [0, 1] is one.
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Somehow we have a countable set [0, 1]Q of rational numbers between zero
and one and an uncountable set [0, 1]I of irrational numbers between zero and
one and their “sizes” add to one. It turns out that the measure of [0, 1]I is one
and the measure of [0, 1]Q is zero.

From this example you might get the idea that countable sets are always
of measure zero or that uncountable sets have positive measure. Nope. Here’s
another puzzle, again involving the mathematician Georg Cantor:

We can define a set C called the Cantor middle-thirds set. Take the interval
[0, 1] and remove the middle interval

(
1
3 ,

2
3

)
. Then from the two remaining

intervals, remove the middle third. Keep removing the middle third of each
remaining interval (forever). You’re left with a dusting of points. How big is
it? Well, what do you mean by “how big”?

The “length” of the interval (its measure) can be found by using a geometric
series. You start with an interval of length 1, take out 1/3, take out 2/9, take out
4/27....

∞∑
n=0

2n

3n+1
=

1

3

(
1

1− 2/3

)
= 1.

So this is a set of measure zero (again, we have no rigorous definition here).
But how many elements does it have?

Take a look at the picture below to see a way to label each point in the set:

This gives a ternary representation of each point x ∈ [0, 1] ⊂ R – ternary
means “base three,” as opposed to binary or decimal. For each step of the
middle-interval-subtraction, write 0 if the point is in the left interval, 1 if it is
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in the middle, and 2 if the point is in the right interval. (These numbers are
in green in the picture.) The points in the Cantor set C then consist of every
number that has an expression only in 0s and 2s. For example, 1/3 = .02̄ and
2/9 = .020̄, while 1/2 starts with .1 and so is not in the Cantor set. Now you
can use Cantor’s diagonalization argument to prove C is uncountable: try to
make a list of every number in the Cantor set and have your clever friend come
by and give you a number that is in the Cantor set but not on your list!

The Cantor middle-thirds set, then, is uncountable but of measure zero.
What’s the probability of choosing a point in the Cantor set if you choose a
number randomly between zero and one? That’s for next year!

The bottom line, for us: we will only consider sets that are discrete and
of measure zero, or sets that are made from intervals in R. An interval [a, b]
or (a, b) or [a, b) for b > a has measure b − a and an uncountable number of
points, and we don’t have to deal with any paradoxes.

1.1.3 Notation for set theory

We express that a is an element of the set A by writing a ∈ A. As you may have
noticed above, we often use curly brackets { , } to indicate we are discussing
a set: {1, 2, . . . , n} is the set of integers one through n, while {z|z/3 ∈ Z}
would be the set z of numbers that satisfy the condition that z/3 is an integer.
Read the | sign (or, in some books, the : sign) as “such that.” There are often
many ways to write the same set: {z|z/3 ∈ Z}, {z|z mod 3 = 0}, or {3x} for
x ∈ Z.

You will need to be comfortable with the interactions of sets as well as
finding the cardinality of a given set or the measure of an “easy” set (one con-
sisting of intervals). Unions and intersections of sets are the two big concepts.
The union of two sets is the set of all elements in either set: A ∪ B = {c|c ∈
A or c ∈ B}. The intersection of sets is what you think it is: A ∩ B = {c|c ∈
A and c ∈ B}. Visually, this is
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If you have a countably infinite number of sets, like Ai = {A1, A2, . . .},
you can write

∪∞i=1Ai = A1 ∪ A2 ∪ A3 ∪ . . .

∩∞i=1Ai = A1 ∩ A2 ∩ A3 ∩ . . .

Two sets are disjoint if they don’t overlap – if their intersection is empty.
We can write A ∩B = ∅, using ∅ to represent the empty set.

We also write Ac for the complement of a set A. This is the set of all
elements that are not in A. For instance, if A ⊂ Z and A = {z ≥ 0}, then Ac

contains the elements in Z that are less than zero: Ac = {z < 0}. Notice that
A ∩ AC = ∅.

Last, we have notation for set “subtraction.” We can pick out all elements
of a set B that are not also in A by writing B\A.

Many of these concepts will be revisited in section 3.1. This should be
enough to get us started, though, and as you work with probability problems
you will start to see why set theory is so useful.
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1.2 Axioms of probability

1.2.1 Definitions
When you conduct a probability experiment or a chance experiment, you toss
the die or flip the coin or throw the dart – whatever it may be. Then an event
occurs: the outcome of your experiment. The set of all possible outcomes of
your experiment is called the sample space, Ω, and an outcome in the sample
space will be denoted ω ∈ Ω.

A sample space with a collection of events and an assignment of probabil-
ities to the events is called a probability space. The probability measure on a
sample space is denoted by P . It assigns to each set A in the sample space Ω a
probability, satisfying the following axioms:

• P (A) ≥ 0 for each subset A.

• P (A) = 1 when A is equal to the sample space.

• P (
∪∞

i=0Ai) =
∑∞

i=0 P (Ai) for every collection of pairwise disjoint sub-
sets A1, A2, . . ..

Notice that the set A can be a single event or a more. For instance, you can
consider the event of rolling a six when you roll a die (set of size one) or the
event of rolling an odd number (set of size three).

A probability measure P on Ω is defined by assigning a probability to ev-
ery event ω in a finite or countably infinite Ω, so that P (ω) ≥ 0 and 1 =∑

ω∈Ω P (ω), and letting

P (A) =
∑
ω∈A

P (ω).

Some specific examples and terminology: Two events are mutually exclu-
sive if they can’t both happen. For instance, you can’t roll a two and a five on
the same roll of a die. You can’t flip both heads and tails when you flip a coin.

A lot of the problems you’ll encounter in the next few pages will feature
finitely many outcomes ω1, . . . , ωN which are all equally likely. Then by the
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axioms of probability you can deduce that P (ωi) = 1/N for i = 1, . . . , N and
each event A has probability

P (A) =
N(A)

N
,

where N(A) is the number of outcomes in set A.

1.3 Counting
Let’s go back to the questions asked at the beginning of the section:
Eight teams are in the semifinals of an international badminton tournament.
The eight teams consist of two teams each from China, India, Denmark, and
Korea. What is the probability that the two teams from each country end up
playing against each other in each of the semifinal matches? That is, China 1
plays China 2, Denmark 1 plays Denmark 2, etc.

In one throw, you roll two dice. You win if the sum of the numbers on the two
dice is 8 or more. What’s the probability that you win?

How can you solve these problems? You probably have an intuitive ap-
proach, but I am going to push you to try a systematic and algorithmic ap-
proach. Learning this systematic approach will help you solve many probabil-
ity problems, I promise. Here it is:

If each individual event ω in a finite sample space Ω is equally likely,

1. Identify the sample space Ω precisely and mathematically.

2. Write out the event or set of events A ⊂ Ω whose probability you want.
Use the same notation and setup as you used when identifying the sample
space Ω.

3. Calculate the size of Ω and the size of A.

4. Divide: P (A) = |A|/|Ω|.

To do this, you need to know how to count.
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1.3.1 Triangular numbers
We’ll start with the dice problem and work through the problem-solving algo-
rithm I suggested.

Step one: the sample space, the set of all possible outcomes of the experi-
ment, is the set of combinations of numbers on the two dice. To be careful, I’ll
make one a red die and one a blue die – I want to keep track of them. Why? If
the outcomes are written (number on red die, number on blue die), then (2, 1)
and (1, 2) are both possible outcomes. If you don’t keep track of the dice, you
may think that the combination of 1 and 2 is as likely as the combination of 3
and 3, instead of being twice as likely.

So, Ω = (r, b), where r is the number on the red die and b is the number on
the blue die.

Step two: identify the events that give us a “win.” We can write this as
A = {(r, b) ∈ Ω|r + b ≥ 8}, and draw both Ω and A:

The elements of the set A are highlighted with yellow.
Step three: How big is Ω? See our previous drawing. Ω has 36 elements,

all equally likely, so |Ω| = 36.
How do we find |A|? You see the triangle of size

∑5
i=1 i highlighted with

yellow in the sketch of Ω. You can count by hand, or you can use the wonder
of triangular numbers. The triangular numbers are



1.3. COUNTING 11

I want a formula for these numbers so that I don’t need to count by hand.
Look at

∑n
i=1 i and do a demonstration that can be made into a proof:

This picture proof is easily made rigorous to give

n∑
i=1

i =
n(n+ 1)

2
.

Step four: P (A) = |A|/|Ω| = 15/36.

1.3.2 Factorials
For many counting problems we need to know the number of possible orderings
of a set of objects. Factorials are the building blocks of ordered counting. Say
you need to know how many distinct five-letter strings can be made from the
set of letters {a, b, c, d, e}, using each letter once. (In computer science a string
is a sequence of characters.) It’s clear that you have five choices for the first
letter of the string, four choices remaining for the second letter, three for the
third, and so on. Counting in this way you could make

5 · 4 · 3 · 2 · 1 = 5!



12 CHAPTER 1. INTRODUCTION TO PROBABILITY

different strings from {a, b, c, d, e} without repeating any letters. We read this
as “five factorial.” For a positive integer n,

n · (n− 1) · . . . · 2 · 1 = n!

and by convention we say 0! = 1. On the vocabulary side, we have just com-
puted the number of permutations of the set {a, b, c, d, e}. Notice I didn’t say
“ordered permutations” – permutations are by definition ordered.

Now let’s try the badminton problem:

Eight teams are in the semifinals of an international badminton tournament.
The eight teams consist of two teams each from China, India, Denmark, and
Korea. What is the probability that the two teams from each country end up
playing against each other in each of the semifinal matches? That is, China 1
plays China 2, Denmark 1 plays Denmark 2, etc.

Step 1: Identify the sample space Ω precisely and mathematically. First,
come up with your own sample space.
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There are several possibilities for the sample space, but I will use all 8-
tuples of teams – that is, all strings that can be created from

T = {C1, C2, I1, I2, D1, D2, K1, K2}.

Order matters because in this set-up I am assuming that the first team named
plays the second, the third plays the fourth, and so on. I will write this as an
8-tuple, (X1, X2, X3, . . . , X8) where the Xi are all distinct teams.

Ω = {(X1, X2, X3, . . . , X8)|Xi ∈ T,Xi ̸= Xj.}

(Compare this to the choice you made. What do you think?)
Step 2: Write out the event or set of events A ⊂ Ω whose probability

you want. Use the same notation and setup as you used when identifying the
sample space Ω. We’re looking for the probability that each country plays
itself in the semifinals, and we are looking for 8-tuples that satisfy this out-
come condition. Examples of this include (I1, I2, K2, K1, D2, D1, C1, C2)
and (K2, K1, I1, I2, D2, D1, C1, C2). Thus A is the set of 8-tuples in Ω with
X1 and X2 from the same country, X3 and X4 from the same country, X5
and X6 from the same country, and X7 and X8 from the same country.

Step 3: Calculate the size of Ω and the size of A. The size of Ω is easy:

|Ω| = 8!

The size of A is more subtle: you have 8 choices for the first team and 1 choice
for the second (if the first team is K1, the second must be K2 and vice versa).
Then 6 choices for the third team and 1 for the fourth. Continue on to get

|A| = 8 · 1 · 6 · 1 · 4 · 1 · 2 · 1 = 24 · 4!.

Another way to think about the size of A: there are 4! orders for the coun-
tries within the 8-tuple and given every country order (KIDC or CDIK) there
are 24 ways of ordering the teams (K1 then K2 versus K2 then K1). This gives
24 · 4! immediately.

Step 4: Divide: P (A) = |A|/|Ω|. Thus

P (A) =
24 · 4!
8!

=
24

8 · 7 · 6 · 5
=

1

105
.
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A problem-solving note: you might argue that there are just four games, so
counting (C1, K1, C2, K2, I1, I2, D1, D2) as a different event than (C2, K2, C1, K1, I1, I2, D1, D2)
is redundant. On a physical level this is true, but it turns out that “overcount-
ing” in our sample space helps us organize events nicely and we cancel out the
“overcount” in our characterization of A. Sometimes it’s much easier to use
some seeming “overcount” rather than the most parsimonious presentation of
the events.

1.3.3 Combinations and permutations
What if we wanted instead ordered subsets of n items? For instance, all the
possible 4-tuples (Y 1, Y 2, Y 3, Y 4) of badminton teams that would go to the
quarterfinals, or all the distinct two-letter strings we could make by picking two
elements from {a, b, c, d, e} without repetition? This second example involves
picking two elements in order: for the first character in the string we have five
choices, for the second we have four choices. We write this number

5 · 4 =5 P2 =
5 P2 = P (5, 2),

of which I prefer P (5, 2), or in China we call it an arrangement instead and
write

5 · 4 = A5
2.

Generalize this to creating a k-letter string from n distinct elements: count
down from n choices for the first letter to n− k + 1 choices for the last of the
k letters. We get

n!

(n− k)!
=n Pk =

n Pk = P (n, k) = An
k .

Combinations instead refer to selections of k items from n for which order
does not matter. Imagine that you grab two socks from a drawer full of n socks
and you want to see if they are a pair. Or you could choose three letters from
{a, b, c, d, e} and not care about their order. We know how to count the distinct
strings we get by choosing three letters in order (it’s P (5, 3)) and now just need
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to divide by orderings of the three letters (a factorial, 3!). Thus the number of
ways to grab three letters from {a, b, c, d, e} is

P (5, 3)

3!
=

5!

2!3!
=

(
5

3

)
= C(5, 3).

Here I point out a warning: I’ve also seen C3
5 , C5

3 , C5,3, 5C3, and 5C3. This is
horrible, as it seems that any combination of C, 5, and 3 is used somewhere.
DON’T USE THESE! Simply use the binomial notation

(
5
3

)
. It is unambiguous

and best. We set notation for the number of ways to pick k items (unordered)
from n items to be (

n

k

)
=

n!

(n− k)!k!
.

Take this as your definition, and check out Section 1.4 to see why I called this
binomial notation.

1.4 Binomial theorem

The coefficients of the expansion of the innocent little expression (x+ y)n, for
n an integer, will appear so many times in the rest of your life that you will be
astounded. These numbers are truly essential in doing probability or financial
mathematics.

Expand a few instances of (x + y)n where n is a positive integer: you’ll
start to notice a pattern. In school you may have learned that you can cleverly
get these coefficients via Pascal’s triangle. First, Pascal’s triangle alone:
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You may remember that (x+ y)n expands nicely as

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk

as long as n is a positive integer. Since we defined 0! = 1, we have
(
n
0

)
=(

n
n

)
= 1. Here is how this compares with Pascal’s triangle:

Pause here to ponder more deeply, and experiment with these problems:
Specialize (x + y)n to the situation x = 1, y = 1: what does this imply about
the relationship between binomial coefficients and 2n?

How is
(
n
k

)
related to

(
n

n−k
)
?
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Consider flipping a fair coin n times. What is the probability that you get k
heads and n− k tails?

If you evaluate (x + y)n at x = 1, y = 1 (that’s what I mean when I say
“specialize” – it means “look at the special case”), you get 2n. Looking at that
with the binomial expansion, you see that

(1 + 1)n =
n∑

k=0

(
n

k

)
1n−k1k =

n∑
k=0

(
n

k

)
.

Knowing that the sum of binomial coefficients
(
n
k

)
from k = 0 to k = n is

2n actually comes in quite handy when you’re looking at random walks and
coin-flipping problems.

Grabbing k items out of n items is the same as leaving n− k items behind,
so
(
n
k

)
=
(

n
n−k
)
. Thinking about what you want and what you don’t want is a

great problem-solving tool – it sometimes lets you flip a problem into a more
tractable problem.

It’s easy to compute how many ways you can get k heads out of n tosses
– that’s our binomial coefficient! So there are

(
n
k

)
ways to get k heads and

n − k tails from n total tosses. That’s not a probability, though. How many
total patterns of heads and tails are there? The sum over all j of

(
n
j

)
is 2n as we

just saw above, so the size of the sample space of all coin flip sequences is 2n

and thus the probability of exactly k heads is(
n
k

)
2n

.

1.5 Geometric and arithmetic series
You may remember arithmetic and geometric series from algebra class some-
time in the past. First we’ll review their definitions and some terminology and
then I’ll justify why we are talking about them in a probability and finance
context.

An arithmetic sequence is a sequence a0, . . . , an, . . . with a constant differ-
ence d between each two consecutive terms (so ai − ai−1 = d for all i > 0).
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An arithmetic series then is the sum of such terms,

n∑
i=0

ai =
n∑

i=0

(a0 + id).

The triangular numbers discussed earlier are one of the most basic arithmetic
sequences, since you’re looking at sums of 1, 1 + 2, 1 + 2 + 3, . . . (so d = 1).

Arithmetic sequences and series mainly come up as a tool in probability
problems – you find you need to add up a bunch of numbers all separated by
37, and then you do it. In finance, true arithmetic sequences come up mainly
when considering constant payouts (if you’re not considering the time value
of money). Many financial instruments give a constant payout or demand a
recurring constant fee, and if you’re ignoring the time value of money you
might consider using an arithmetic sequence to model this. In this era of near-
zero interest rates, using an arithmetic sequence to model my monthly Crossfit
gym payments is reasonable in the short term.

A geometric sequence is a sequence a0, . . . , an, . . . with a constant ratio
r between each two consecutive terms (so ai/ai−1 = r for all i > 0). The
geometric sum is then

n∑
i=0

ai =
n∑

i=0

a0r
i.

You’ve probably encountered this when looking at compound interest – classic
problems you might remember doing would involve compounding monthly,
daily, etc. In each of those situations, you are multiplying your current principal
by (1 + r) for the appropriate interest rate r. If you need an infinite number of
terms in your sum, you get

∞∑
i=0

a0r
i =

a0
1− r

.

Geometric sequences also come up a lot in probability problems, and in fact
there’s a probability distribution called a “geometric distribution”. What’s the
probability that you need exactly k rolls of a die until you roll the number 6 for
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the first time? It’s (
5

6

)k
1

6
.

What’s the probability that it will take less than five rolls to get that 6 for the
first time? You’ll sum up these probabilities (since they correspond to mutually
exclusive events) and that’ll be a geometric series.

There are nice formulas for sums of these sequences. Derive them:
You know that

n∑
i=0

ai =
n∑

i=0

(a0 + id).

Now use what you know about triangular numbers and sums of constants to
come up with a closed formula for this sum, depending on a0, n, and d.

You know that

Sn =
n∑

i=1

ai =
n∑

i=1

a1r
i−1.

I’m calling this sum Sn for a reason. Do something clever here: compare Sn

and rSn. In fact, look at Sn−rSn. Write out the terms of Sn−rSn = (1−r)Sn,
then solve for Sn. This will give you a nice closed form presentation for Sn.

Terminology break: “closed form” and “closed formula” mean a function
where you can just plug in a few numbers and directly compute an answer,
as opposed to something recursive, or a formula with a limit in it, or where
you have to do an infinite number of operations. Example: you could get an
expression like

f(x) =
∞∑
i=0

x

2i

which as written implies you’ve got to sum up an infinite number of terms. On
the other hand, you could use geometric series to work out that

f(x) =
∞∑
i=0

x

2i
= x

∞∑
i=0

(
1

2

)i

= x · 1

1− 1/2
= x · 2.

The expression f(x) = 2x is something you can do in one “move”.
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1.6 Binomial trees
Now let’s put into financial action a bit of what you’ve learned. We’ll talk about
stock movements here, foreshadowing random walks and Brownian motion.
Make sure you understand every detail here, as these foundational ideas do
need to be foundational if you want to do financial math!
Consider a stock that either goes up in price or down in price with equal prob-
ability. What is the probability that it goes up k times and down n− k times?

A few ingredients to consider: the probability the stock goes up is 1/2; the
probability the stock goes down is 1/2; the number of paths with k up-steps
and n− k down-steps is

(
n
k

)
=
(

n
n−k
)
. So the probability of going up exactly k

times (or down exactly k times) is (
n

k

)
1

2n
.

Consider a stock whose price goes up by ten dollars or goes down by ten dol-
lars, with equal probability, on any given day. Its initial price is S0. If in n days
it has gone up k times and gone down n−k times, what is its final price? Since
a stock price can’t be negative, what is the probability that the stock price is
zero?

Write Sn for the price in dollars on day n:

Sn = S0 + 10k − 10(n− k) = S0 + 20k − 10n.

What’s the probability of this price? If we don’t care about negative prices, the
probability of price Sn on day n is just(

n

k

)
1

2n

from the previous problem. However, stock prices can’t go negative (although
you can short stocks).

The real-life probability of a stock price of zero is basically zero, as you
can’t buy and sell stocks with share price zero. Even if a company goes
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bankrupt and stock is still bought and sold, it’s not at a price of zero – Block-
buster Video’s stock traded at prices from 4 to 23 cents a share for a while after
it went into bankruptcy. When stock prices fall to near zero they’re commonly
delisted from stock markets, and then move to over-the-counter pink sheets (a
very weird market).

This is a situation in which our model and reality conflict. An additive
model of stock prices gives plenty of situations in which stock prices go to
zero or negative numbers. If you use such a model, you’ll need to decide if you
want to take max(0, Sn) for your price on day n, and whether the probability
of the stock price going to zero really reflects the probability that the company
will go bankrupt.
Consider a stock whose price goes up by ten percent or goes down by ten
percent, with equal probability, on any given day. Its initial price is S0. If in n
days it has gone up k times and gone down n− k times, what is its final price?
What is the probability that the stock’s price is zero after n days?

In this multiplicative model, the price on day n is

Sn = S0(1 + 0.1)k(1− 0.1)n−k = S0 · 1.1k · 0.9n−k.

Since we’re multiplying a positive number S0 by more positive numbers (per-
cent increase/decrease), Sn will never be zero in this model!

1.7 Continuity property
“Probability is a continuous set function.” What does that mean? Why do we
care?

Our short discussion here will be a foreshadowing of measure theory, a
topic not covered in this book! On a first reading, you might choose to skip this
section – but you may find it useful to ponder the complexities of this topic.

Let
{En} = E1 ⊂ E2 ⊂ E3 ⊂ · · ·

be a nondecreasing sequence of sets. For the union E = ∪∞i=1Ei, use the
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notation E = limn→∞En. Then the continuity property is

lim
n→∞

P (En) = P ( lim
n→∞

En).

Essentially, the theorem is that you can interchange the probability function
and the limit. Limits characterize continuity, which is why this is called the
continuity property of probability. You can also translate this result to a non-
increasing sequence, in which case limn→∞E = ∩∞i=1Ei.

What is an example of a set of sets like this? Here’s an example made up
for this situation – you probably won’t encounter it in real life. Say you’ve got
a game of darts that keeps getting tougher, and you’re terrible at darts. The
dart board is a disk of radius one foot; we’ll assume you can hit the board
with a dart every time but your aim is random on the dart board (every point is
equally likely). Here are my made-up rules: On the first round, you need to hit
the center of the disk, a region with radius 1/2 foot, to score. To score on the
second round, you need to hit the disk in the middle with radius 1/4. To score
on the third round, you need to hit the disk with radius 1/8. To score on the
nth round, you need to hit the disk with radius 1/2n−1. Since you are so bad at
darts, the probability of hitting the circular region A with radius r feet, r < 1,
is

P (A) =
πr2

π12
=

r2

.

What’s the probability you score as the radius goes to zero? This probability is
zero: the probability of scoring on round n, P (En), is 1/4n−1. Since

lim
n→∞

P (En) = 0,

we know
P ( lim

n→∞
En) = 0.

A related question is this: what’s the probability that you score infinitely
many times? That’s also zero. The Borel-Cantelli Lemma gives this extension:
Let A1, A2, . . . be an infinite sequence of subsets of the sample space Ω. Define
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the set C as the set of events ω that occur in infinitely many Ak. Then if

∞∑
n=1

P (An) <∞,

we have
P (C) = 0.

So what’s the probability that you score infinitely many times in my made-
up dart game? Zero.

You can also get from this a corollary about things that always happen
instead of never happening.

Let A1, A2, . . . be an infinite sequence of subsets of the sample space Ω, all of
which are independent. Define the set D as the set of events ω that occur in all
Ak for k ≥ m, for some m, and such that ω doesn’t occur in only finitely many
Ai. Then if

∞∑
n=1

P (An) =∞,

we have
P (D) = 1.

For an example of this type of situation, consider some poor student doomed
to toss a coin forever. Let’s say the event An occurs if in the nth block of 100
coin tosses, you get 100 heads in a row. Each block of 100 coin tosses is inde-
pendent of every other block of 100 coin tosses, and P (An) = 1/2100. We can
see that

∞∑
n=1

P (An) =
∞∑
n=1

1

2100
=∞,

so by the lemma P (D) = 1. That means that with probability one you’ll get a
run of 100 heads in an infinite series of coin tosses.

Don’t ignore this topic even though this section seems very small. Turns out
the Borel-Cantelli lemma comes up again when we look at Brownian motion.
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1.8 Compound experiments
A compound experiment consists of several elementary experiments that are
independent of each other. For instance, if you toss three coins that are physi-
cally independent from each other, you’re conducting a compound probability
experiment.

We’ll revisit the concept of independence when we discuss random vari-
ables. For now, use your intuitive understanding of the idea: two events are
independent if they don’t influence each other.

The probability of A and B is

P (A ∩B) = P (AB) = P (A)P (B)

as long as the events in A are physically independent of the events in B. Notice
that some sources use the notation AB to mean the intersection of events A and
B, and we will use this notation too.

Notice that the formula itself has no reference to a sample space here. Why
not? We may mix and match sample spaces when discussing independent ex-
periments. For instance, if we want to know the probability of rolling a three
on a six-sided die and getting heads on a coin toss, we could look at the sample
space Ω = {1, 2, 3, 4, 5, 6}×{H,T} and do a counting-based argument, or we
could use the rule above to find

P (3 on die ∩H) = P (3 on die)P (H) =
1

6
· 1
2
=

1

12
,

using independent calculations from the sample space of possible die rolls and
coin tosses.

Another version of a compound experiment involves repeated independent
probability experiments. Here are three different examples:
(A) Toss a coin seven times in a row. What is the probability that you get the
sequence HHHTTTH?

(B) You take turns tossing a coin with a friend. The first person to toss tails
owes the other one dollar and when tails appears, the game ends. What is the
probability that you toss tails first and owe your friend a dollar?
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(C) You hire an undergraduate to toss a fair coin for you an infinite number of
times. If the undergraduate gets heads p times in a row, or tails p times in a row,
we call it a run of length p. Prove that with probability one the undergraduate
will get a run of length p at some point in this experiment.

(D) You are gambling on coin tosses: on each turn, you flip a single fair coin.
Every time you gets heads, you pay her a dollar, and every time you get tails,
she gives you a dollar. You have $500. What is the probability that you have
$1000 before you run out of money?

Problem (A) is well within your reach. The probability that you get the
sequence HHHTTTH can be found using counting techniques or by multi-
plying the probabilities of independent outcomes. Make sure you can do this
both ways.

Problem (B) has an infinite sample space

Ω = {T,HHT,HHHHT,HHHHHHT, . . .}∪{HHHHHHHHHHHHHH....}.

Questions for you: Is this countable or uncountable? What is the probability
that tails is never tossed at all? Hints: notice that all the events in the first subset
of Ω are mutually exclusive, so you can sum up their probabilities. See if you
can calculate the probability of each event and then sum them.

Problem (C) can be done using the Borel-Cantelli theorem discussed earlier
– see if you can use this for a proof!

Problem (D) is an example of a stopping time problem. These types of
problems were incredibly important in the beginnings of probability: in some
sense, modern probability theory was born out of gambling, and when you
are out of money you can’t gamble any more. Figuring out the probability of
reaching net worth W before net worth zero is pretty important, even in modern
capitalism. The start-up concept of “runway,” for instance, is how much time
you have before your start-up goes bankrupt, and depends on how much money
you have and how fast you are spending it (your “burn rate”). Figuring out your
runway is in essence a stopping time calculation.
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Chapter 2

Geometry problems in
probability

All the questions we addressed in the last chapter happened to be discrete prob-
ability problems. However, a lot of probability problems are geometric prob-
lems, with calculations taking place on a space with an uncountable number of
points: throwing darts at a dartboard or dropping needles on a lined page, for
instance. The probability of hitting a particular point is zero, for reasons we’ll
discuss, but the tools of geometry and calculus can help us.

Why are these problems of interest to someone who cares about finance?
First, many problems in finance can be fruitfully considered by looking at con-
tinuous analogs. While stocks are priced in fractions of a cent on the New York
Stock Exchange, the Black-Scholes equation for option pricing takes a contin-
uous analogue and works rather well. Brownian motion relies on a continuous
limit of discrete processes. Being able to use both continuous and discrete
techniques as appropriate is an important tool in mathematical finance.

To solve geometric probability problems, you need to dredge up your knowl-
edge of area and volumes. Calculating the size of a set with an uncountably
infinite number of points is the calculation of an area or volume. Sometimes
it’s enough to know that the area of a disk of radius r is πr2, and sometimes
you will need to integrate. By the end of this chapter I want you to be practiced
in solving probability problems that require geometric techniques, like this:

27
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Consider the square with corners at (0, 0), (0, 1), (1, 0), and (1, 1). Pick a point
(x, y) in this square at random. What is the probability that the product of the
coordinates, xy, is greater than one half?

This will require some review of calculus which will be done in the sections
on function families (Section 2.1) and derivatives and integrals (Section 2.2).
We’ll also do a tiny bit of linear algebra in talking about affine linear trans-
formations (Section 5.5). You may find that you need extra resources to shore
up your memory of these topics or you may find them almost easy enough to
skip – do the right thing. At the end of the chapter we’ll examine some famous
problems that use geometric techniques.

2.1 Function families
Here is a quick run-through of functions you’ll encounter in this book:

• Linear functions and affine linear functions

• Quadratic functions, also known as conics

• Polynomials of all degrees

• Rational functions

• Power functions

• Exponential functions

• Logarithmic functions

• Trigonometric functions and their inverses

• Compositions of all the above

If you need a refresher on any of these, check out Paul’s Online Calculus
(and pre-calculus) Notes. Another extraordinarily effective way to refresh your
memory is to volunteer for a few shifts of homework help for middle-school
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and high-school students: you can often find a local library or Boys & Girls
club that offers homework help to kids. Trying to explain algebra and pre-
calculus concepts to a twelve- or seventeen-year-old will force you to think
about these ideas as you never have before.

2.2 Derivatives and integrals

In this book, I’m assuming you took a calculus class in the past. You may
need a reference, though. Any calculus book should have differentiation and
integration covered, so find your favorite calculus book (or the cheapest).

Instead of rewriting a calculus textbook, I will concentrate on pointing out
connections – building a higher-level appreciation of calculus and how it re-
lates to probability and discrete mathematics. Calculus as we are taught it fun-
damentally takes place in the continuous world. We can’t take the derivative at
a discontinuous point of a function. This continuous point of view is always an
approximation for finance, but it’s very powerful!

2.2.1 Volume and area

Mathematicians don’t tend to differentiate (haha!) between area, volume, hy-
pervolume, and length: to a mathematician, they are all some sort of general-
ized “area.” Think about why you see the | · | notation for absolute value of a
number, length of an interval, size of a set, and determinant of a matrix. How
are these quantities related? How are they different? Realizing the underlying
unity of these ideas you were taught in different times and places will give you
a lot of mathematical power. In this section, I want to point out how calculus
relates to simple ideas of circumference or perimeter, area, and volume. Where
will you put this to work, you ask? In transformations of random variables, in
integration by parts, in deducing probability density functions from the struc-
ture of a probability problem, and in short-term and long-term approximation
of financial and other quantities.

Circles and spheres. You remember that the area of a circle with radius r
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is A(r) = πr2 and the circumference is C(r) = 2πr. Notice that

dA

dr
= C(r).

The derivative of area is circumference. For spheres, the volume of a sphere
with radius r is V (r) = 4

3πr
3, while surface area is A(r) = 4πr2. Again, dif-

ferentiating the higher-dimensional volume gives the volume in the dimension
one lower, if we expand what “volume” means to us:

dV

dr
= A(r).

Why does this work? A picture of the two-dimensional disk might help:

Notice that we use the notation ∆r for a very small change in the r variable.
Squares. Try the naive analogue for a square with side length x: area of

this square is x2 and perimeter is 4x – the relationship doesn’t seem to hold!
Can you see why?
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Now look carefully at what you are actually doing here:

It turns out the procedure is working just fine – we are simply solving a
different problem. The change in side length x gives us only half the perimeter
of the square.

A more accurate analogue comes when we realize that our thinking about
the square needs to be adjusted to match the reasoning for the circle. Let’s use
a new variable, r = x/2, and draw a new picture:
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Here, notice that the area of the square is A(r) = (2r)2 = 4r2 and the
perimeter is P (r) = 8r. Our change of viewpoint shows that the relationship
we’d conjectured earlier holds.

2.2.2 Differentiation as infinitesimal approximation

The previous discussion of area and volume and their relationship might prompt
you to look at how quickly a function f(x) changes as you increase or decreases
x. That’s a derivative. Translating the sentence into mathematics, you consid-
ered the change

f(x+∆x)− f(x)

as the quantity
∆x

changed. The ratio is
f(x+∆x)

∆x
,
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which might start ringing alarm bells in your brain. That’s right: a common
definition for the derivative is

d

dx
f(x) := lim

∆x→0

f(x+∆x)

∆x
.

(Here the notation “:=” can be read as “is defined as”.) Our drawings in the
previous discussions can be made into mathematically precise arguments using
this definition!

This can be turned around. We can predict the value of f(x) a “few mo-
ments” later, when the input is x + ∆x. We want to predict f(x + ∆x). Turn
our definition of the derivative inside-out to get the following:

If f(x) is our output, then we can write the approximation (not equation!)

f(x+∆x) ≈ f(x) + f ′(x)∆x (2.1)

Since we’re working with a single input, x, and often graph this on the x-y
plane, we can add y = f(x) and write

y +∆y = f(x+∆x) ≈ f(x) + f ′(x)∆x (2.2)

This allows us to figure out the change ∆y in output and relate it to the change
∆x in x:

∆y ≈ f ′(x)∆x. (2.3)

Relate this to our discussion of volume and area to cement your understanding.
To make this all more precise, we can characterize how “good” or “bad” the

approximation is. We introduce little-oh notation, o(·). Taking our definition
from the National Institute of Standards and Technology, we say

• In words, f(n) = o(g(n)) if f(n) becomes insignificant relative to g(n)
as n approaches infinity.

• With more symbols, “for all c > 0 there exists some k > 0 such that
0 ≤ f(n) < cg(n) for all n ≥ k. The value of k must not depend on n,
but may depend on c.”
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• With limits, this means limn→∞
o(g(n))
g(n) = 0.

This means we can write the equation

f(x+∆x) = f(x) + f ′(x)∆x+ o(∆x).

2.2.3 Average rate of change and Mean Value Theorem
For f(x) a differentiable function,

f(x+∆x)− f(x)

∆x
= f ′(c)

for some value of c between x and x + ∆x. This means that at some point
c, the derivative of f is equal to the average rate of change. A simple picture
illustrates this nicely:

Remember, this requires that f(x) is a differentiable function – in partic-
ular, f(x) has to be continuous (at least near x). This Mean Value Theorem
is very convenient for proofs and calculations in the continuous world, but it
won’t help you in the discrete world of stock prices. Just because the price of a
share of Microsoft (MSFT) was $50.05 at 12:55 pm on June 17, 2016 and was
$50.03 at 1:00 pm on the same day doesn’t mean that it had a derivative of 2
cents per five minutes at some point in the middle!
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You can derive many of the rules of differentiation using the short-term
approximation formula, and doing so is actually very good practice to prepare
for the world of stochastic calculus.

Example: to derive the power rule using this idea of short-term approxi-
mation, we need the binomial theorem:

(x+ y)p =

p∑
k=0

(
p

k

)
xp−kyk

Using f(x) = xp, look at

f(x+∆x) = (x+∆x)p =

p∑
k=0

(
p

k

)
xp−k(∆x)k.

Then short-term approximation tells us that
p∑

k=0

(
p

k

)
xp−k(∆x)k ≈ xp + f ′(x)∆x.

Since we’d like to solve for f ′(x), rearrange:

f ′(x) ≈
∑p

k=0

(
p
k

)
xp−k(∆x)k − xp

∆x
,

which simplifies nicely to

f ′(x) ≈
∑p

k=1

(
p
k

)
xp−k(∆x)k

∆x
.

I’ll rewrite it even more pointedly:

f ′(x) ≈
pxp−1∆x+

(
p
2

)
xp−2(∆x)2 + . . .+ (∆x)p

∆x
= pxp−1+∆x(

p∑
k=2

(
p

k

)
xp−k(∆x)k−1.

As ∆x→ 0, this gives us f ′(x) = pxp−1, the power rule we learned in calculus.
You can make this more precise by using limits throughout and using the o(x)
notation to keep track of the error!
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2.2.4 Integration and its disguises
Integration takes on many roles in the mathematical foundations of finance:

• Integration is a useful tool for calculation in solving probability prob-
lems.

• Riemann sums and their limits occur in problems and in proofs in prob-
ability.

• Probabilistic methods (Monte Carlo techniques) can be used for numer-
ical integration, including value-at-risk and expected shortfall calcula-
tions.

• Understanding the relationships between integrals (
∫
f(x)dx), Riemann

sums (
∑n

i=1 f
∗(i)), and probabilistic or statistical ideas like expected val-

ues and moments is crucial to your ability to progress in mathematical
finance.

Let’s begin with the first comment: integration is necessary to solve geo-
metric probability problems.
Consider the square with corners at (0, 0), (0, 1), (1, 0), and (1, 1). Pick a point
(x, y) in this square at random. What is the probability that the product of the
coordinates, xy, is greater than one half?

In the last chapter, we dealt with finite and countably infinite sample spaces.
There, we could assign a probability to each individual possible outcome ω ∈ Ω
and sum over these outcomes. Here, we could try this but we encounter a
problem. What’s the probability that I pick the point (0.5, 0.6) exactly? A
mathematical point has area zero, and the chance that I hit exactly that point
is zero. However, the chance that I pick a point in a continuous region A of
the unit square is the area of A (because the area of the unit square is one, and
when we say “pick a point at random” without specifying further, every point
is equally likely). How can this be? How can the sum of infinitely many zeroes
be a positive number?
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You actually encountered this in calculus. Recall that∫ b

a

3dx = 3(b− a),

for instance, and ∫ a

a

f(x)dx = 0

for any continuous function f(x). The integral over a point is always zero even
though the integral over an interval may not be. This is because R is uncount-
able as you proved in Chapter 1, and uncountable sets present dramatically
more subtle situations than finite or countable sets.

Back to our problem: Pick a point (x, y) in the unit square at random.
What is the probability that the product of the coordinates, xy, is greater than
one half?

Step 1: identify our sample space Ω. It’s all the points in the unit square.
Step 2: identify the set A of outcomes we’re interested in. Here

A = {(x, y) ∈ Ω|xy ≥ 1

2
}.

Step 3: Calculate the sizes of Ω and A ⊂ Ω. We know Ω has area 1. What
is the area of A? Draw a picture:

Find the shaded area using an integral. Notice that it’s the integral of 1− 1
2x:∫ 1

1/2

dx−
∫ 1

1/2

dx

2x
= (1− 1

2
)− lnx

2
|11/2 =

1

2
(1− (ln 1− ln

1

2
)) =

1

2
− ln 2

2
.
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We’re done! yay! WRONG. While trivial in this case, remember to divide
by the size of the original sample space.

Step 4: Calculate P (A) = |A|
|Ω| . Since |Ω| = 1, we have

P (A) =
1

2
− ln 2

2
.

More examples of probability problems that use integration will be given
in the last two sections of this chapter.

2.3 Buffon’s needle problem

Buffon’s needle problem is a classic probablistic problem. It was first written
down by Georges-Louis Leclerc, Comte de Buffon, a French intellectual who
lived in the 1700s. He asked the following question in 1733: Consider a floor
ruled with parallel lines. Drop a needle onto the floor. What is the probability
that the needle will cross one of the lines?

There are two situations to consider, one with a needle shorter than the dis-
tance between the lines and one with a needle longer than the distance between
the lines. We’ll start by considering a short needle.
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An illustration to set our notation is useful:
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The length of the needle is L, the distance between the lines on the floor
is D, and the angle that the needle makes with the lines is θ. We’ll measure θ
counterclockwise from the horizontal. In a given probability experiment (drop-
ping the needle once) we’ll label the distance from the middle of the needle to
the nearest line on the floor by x.

There are several ways to solve Buffon’s problem. For simplicity, I will
present a method that follows our format of specifying Ω, finding the event set
A that we desire, and comparing the sizes of these sets.

Using the notation of the illustration, we write

Ω = {(θ, x)|0 ≤ θ ≤ π, 0 ≤ x ≤ D

2
}.

For yourself, check the following: Why don’t we specify how far “over” the
needle falls (horizontal position)? Why don’t we use 0 ≤ θ < 2π?1

The event set A, then, is when

1. the needle is close enough to the line to possibly cross the line, and

2. the angle of the needle is such that it actually does cross the line.

1We don’t specify horizontal position because it’s not necessary. If we specify horizontal position in Σ and
A they’ll just cancel out, because horizontal translation doesn’t affect whether or not the needle crosses the line.
Similarly, we restrict θ so that each position for the needle is “counted” only once.
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Mathematically, write

A = {(θ, x) ∈ Ω|L
2
sin θ > x}.

The area of Ω is Dπ
2 , as it’s a rectangle in the θ − x plane with side lengths

D
2 and π. To find the area of A in Ω you must integrate either sin θ with respect
to θ or sin−1 x with respect to x. One choice is clearly easier than the other :

|A| =
∫ π

0

L

2
sin θdθ = L.

Then

P (A) =
|A|
|Ω|

=
2L

Dπ
.

The long-needle version of the problem (with L > D) can be solved in
a similar way, but since the needle can cross more than one line a little more
analysis is needed.
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For now, we will ignore the long needle version of Buffon’s problem. We’ll
come back to it in the section about joint probability density functions, a great
tool which will allow the solution to be given in just a line or two.
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2.4 Stick-breaking problems

Stick-breaking problems give students of probability all kinds of trouble. They’re
great! Deceptively simple, these stick-breaking problems illustrate how small
changes to a problem can dramatically change the techniques necessary to solve
it. They also show that these simple mathematical puzzles are actually struc-
tures that show up in all sorts of natural situations, like Dirichlet processes.
Bizarrely, the last version is apparently an interview question at Goldman-
Sachs. (See http://www.wallstreetoasis.com/blog/interview-questions-ib-analyst-
goldman-sachs for reference.)

Version one: A stick of length L is broken in two places. The break points
are independent of each other, and chosen at random (uniformly) on the stick.
What is the probability that a triangle can be formed using the three pieces of
the stick?

Version two: You and a friend are breaking the stick now: you each grasp
one end of the stick and, together, break it at one point. Then you take the piece
of the stick left in your hand and break it again. What is the probability that a
triangle can be formed using the three pieces of the stick?

Version three: You and a friend are breaking the stick now: you each grasp
one end of the stick and, together, break it at one point. Then you take the
longer of the two pieces and break it again. What is the probability that a
triangle can be formed using the three pieces of the stick?

So.... solutions? Try these problems first and then look at the solutions one
by one, as you might be able to clear up misunderstandings about the structure
of the problem by looking at solutions individually.

Before discussing solutions, I want to bring up a subtle but important point:
you can use variables in this problem to represent either lengths or locations.
That is, x might represent the length of a piece of the stick, or it might represent
a location along the stick. This makes a big difference in that locations are
given with respect to a single origin point.

Solution to version one: First, let L = 1. We can rescale and just say that L
inches (or meters) is 1 unit of our own measurement system. Call the distance
from one end of the stick to the nearest breakpoint x, and the distance from the
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other end of the stick to its nearest breakpoint y. The two breaks happen at the
exact same point of the stick with probability zero, so we don’t have to worry
about the contribution from breaking the stick into only two pieces. We’ll have
three pieces of the stick after breaking, of lengths x, y, and 1−x−y. The most
important thing to notice here is the domain for x and y: x and y can be any
values between 0 and 1 such that x + y ≤ 1, and on this triangular set, every
point (x, y) is as likely as any other!

To form a triangle, these lengths must satisfy the triangle inequality (the
sum of any two sides of a triangle must be larger than or equal to the third
side):

(1) x+ y ≥ 1− x− y,

(2) x+ 1− x− y ≥ y,

(3) y + 1− x− y ≥ x.

Simplify to get
(1′) x+ y ≥ 1/2,

(2′) 1/2 ≥ y,

(3′) 1/2 ≥ x.

Since we know 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, and also x + y ≤ 1, graph
the sample space Ω = {(x, y)|0 ≤ x, y ≤ 1, x + y ≤ 1} and the event space
A = {(x, y)|0 ≤ x, y ≤ 1/2, x+ y ≥ 1/2}. You can use symmetry to see that

P (A) =
1/8

1/2
=

1

4
.
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Solution to version three: You and a friend each grasp one end of the stick
and, together, break it at one point. Then you take the longer piece and break
it.

Here we will use locations rather than lengths. Again rescale the stick so
it’s length one, and label one end of the stick zero and the other end one. The
first breakpoint v ∈ [0, 1] occurs anywhere along the stick. If v < 1

2 , then the
second breakpoint w will be chosen at random somewhere in the interval [v, 1],
while if v > 1

2 the second breakpoint w is chosen at random on the interval
[0, v]. Now, the problem is that the possible values of w depend on v – these
are not independent quantities anymore, and w is not uniformly distributed on
[0, 1]! We only have the tools for uniform distributions at this point.

To solve the problem today, we need to turn it into a problem with uniform
distributions (every point as likely as every other point). The alternative is
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to learn about continuous random variables and probability density functions,
which won’t happen immediately. So.... Let’s use this rescaling trick again.

• If v < 1
2 , then let v = x and w = y · (1 − v), for y ∈ [0, 1]. In essence,

we’re letting v = x be whatever it is and then treating the stick of length
1 − v as its own new stick to rescale to length 1, and y tells us where
along this the next breakpoint is.

• if v > 1
2 , let v = x and w = y · v, y again in [0, 1]. Again, we now have

y representing the fraction of the longer stick at which the next break
happens.

• Putting these situations together, we have x chosen randomly (uniformly)
in the interval [0, 1], and we have y chosen uniformly in the interval [0, 1],
and we’ve transformed the variables so that each point (x, y) in the unit
square is as likely as any other.

Now we have to do some algebra and calculus, because we need to figure
out which points (x, y) in the unit square correspond to (v, w) which give a
triangle. Use the triangle inequalities for (v, w) and convert:

For v < 1
2 , we have three lengths: v, w − v, and 1 − w. The triangle

inequalities are
v + w − v > 1− w,

v + 1− w > w − v,

and
1− w + w − v > v.

Simplifying,
w > 1/2,

2v + 1 > 2w,

and
1/2 > v.

Convert to x and y:
y(1− x) > 1/2
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and
1 + 2x > 2y(1− x).

This gives us two inequalities,

y >
1

2(1− x)

and
y <

1 + 2x

2(1− x)
.

We must integrate between these two curves:∫ 1/2

0

1 + 2x

2(1− x)
− 1

2(1− x)
dx = ln 2− 0.5.

Now carry out the same process for v > 1/2 and add the answers to get the
total probability, which is

2[ln 2− 0.5].

The solution to the second stick problem is just ln 2− 0.5 – adapt the argu-
ment above to get this answer!
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Chapter 3

Probability rules

3.1 Basic rules of probability

3.1.1 Complements and inclusion-exclusion
Essentially every concept in basic set theory gives rise to an analogous rule in
probability.

If two sets of events A and B are not disjoint, there is an overlap A ∩ B =
AB ̸= ∅. This intersection of A and B is overcounted when we look at the
union of A and B, so we must remove it to find the size of A ∪B. In symbols,

|A ∪B| = |A|+ |B| − |A ∩B|.

Probabilistically, this implies

P (A ∪B) = P (A) + P (B)− P (AB).

We encountered disjoint sets earlier: A and B are disjoint if A ∩B = ∅. In
this case, the sizes of the sets add:

|A ∪B| = |A|+ |B|.

This is a special case of the previous observation because |∅| = 0. When A
and B are disjoint sets, then we call the events in A and B mutually exclusive

49
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events. The probability of either of two mutually exclusive events is the sum of
the probabilities:

P (A ∪B) = P (A) + P (B),

which is again a special case because the probability of nothing happening
(P (∅)) is zero.

Another set-theoretic idea is that of the complement Ac of a set A. We con-
sider A as a subset of some sample space Ω, so A ⊂ Ω. Then the complement
of A is everything in Ω except the elements of A:

Ac = {a ∈ Ω|a /∈ A}.

From the axioms of probability, we know that P (Ω) = 1 for Ω the entire sample
space. From the definition of Ac, we know that A and Ac are disjoint sets that
partition Ω. Since A ∪ Ac = Ω, we also have P (A) + P (Ac) = P (Ω) = 1.
This implies

P (Ac) = 1− P (A).

Take the preceding rules a little further to deduce the inclusion-exclusion
rule. Instead of two sets A and B, what if you’ve got multiple subsets A1, . . . , An

of Ω, and you want to compute P (A1∪ . . .∪An)? If all the Ai are pairwise dis-
joint you can simply sum the probabilities of the individual sets Ai. However,
if there are overlaps, you need to consider intersections, triple intersections,
quadruple intersections...

|∪ni=1Ai| =
n∑

i=1

|Ai|−
∑
i<j

|Ai∩Aj|+
∑
i<j<k

|Ai∩Aj∩Ak|−. . .+(−1)n−1|A1∩. . .∩An|.

Probabilistically,

P (∪ni=1Ai) =
n∑

i=1

P (Ai)−
∑
i<j

P (Ai∩Aj)+
∑
i<j<k

P (Ai∩Aj∩Ak)−. . .+(−1)n−1P (∩ni=1Ai).

All useful tools in your toolbox!!
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3.1.2 The hat check problem
A classic type of inclusion-exclusion problem has a form like the following:

• At a theater men leave their hats at the hat check counter. The irre-
sponsible clerk loses everyone’s ticket and so after the perfomance, he
randomly returns hats to men who come back to retrieve them. What
is the probability that no men get the correct hat returned? (Back when
men wore hats and left them at a hat check before a movie, women also
wore hats but kept them on as the hat was considered part of the woman’s
outfit.)

• You’re sending thank-you notes after your wedding. After writing them
all, you have a pile of notes and a pile of addressed envelopes. A “help-
ful” friend stuffs all the envelopes and sends the notes but doesn’t realize
the two piles are not in the same order – so random letters are put in ran-
dom envelopes. What is the probability that at least one person gets the
correct thank-you note?

• Rabbits are playing in a field outside their burrows. They are suddenly
surprised by an eagle, so each rabbit runs to a separate hole and escapes
into a burrow. What is the probability that no rabbit escapes down its
own hole?1

These are variations on what might be called the “derangement” problem.
Derangement does not refer to being a deranged person, despite what your
probability homework might lead you to believe or feel. Instead, a derangement
is a permutation with no fixed points – a rearrangement of objects so that no
object stays in the same place.

Let’s outline a general way of solving these problems. Say there are n
elements in the set of objects (hats, letters, rabbits). Let Ai be the event that
object i ends up in the correct place (hat with correct man, letter with correct
envelope, rabbit in own burrow). This is a key point: rather than looking at all
possible arrangements of hats, look instead at hat i only.

1Asked by Jarrad Smith on MathForum.org in 1999
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Set-theoretically, then, the event that any hat returns to its correct owner is
∪ni=1Ai. We can use inclusion-exclusion to find P (∪ni=1Ai). Here are the pieces:
P (Ai) = 1/n, P (AiAj) =

1
n

1
n−1 , P (AiAjAk) =

1
n

1
n−1

1
n−2 , etc. Combine them

to get:

P (∪ni=1Ai) =

(
n

1

)
1

n
−
(
n

2

)
1

n

1

n− 1
+

(
n

3

)
1

n

1

n− 1

1

n− 2
−. . .+(−1)nP (∩ni=1Ai).

Notice this simplifies:(
n

k

)
(n− k)!

n!
=

n!

(n− k)!k!

(n− k)!

n!
=

1

k!
,

so

P (∪ni=1Ai) =
n∑

k=1

(−1)k−1 1
k!
.

This is the probability that at least one object goes to the right place. To find
the probability that no objects go to the right place, subtract the above from 1.

3.1.3 The Secret Santa problem
Here’s a slightly different problem. What makes it different?

There are ten people in a family that wants to exchange gifts, and they have
agreed to have a “Secret Santa” gift exchange. This means that each person
randomly draws the name of a person not themselves and gives a gift only to
that person, rather than giving all nine others a gift. What is the probability that
(at least) two people are assigned to each other? That is, among the ten people,
what is the probability that Anna is to give a gift to Boyuan and Boyuan is to
give a gift to Anna – and possibly, Chimamanda and Danica are assigned to
each other as well?

One way to try to solve this is to number the people from one through ten
and look at all permutations of one through ten that do not contain two-cycles.
This is certainly doable. You can use the Online Encyclopedia of Integer se-
quences to look up this number if you can’t compute it yourself (check it out at
http://oeis.org/A000266).

http://oeis.org/A000266
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Another way to look at it, though, is to look at the events where two peo-
ple are assigned each other. Again, rather than looking at ten-tuples, instead
consider events Ak that correspond to two people being assigned to each other.
The probability we desire, then, is P (∪45k=1Ak. (Why 45? There are ten people,
from whom we draw a pair – that’s ten choose two pairs.)

The probability of any pair Ak being assigned to each other can be calcu-
lated easily. It’s 1

9·9 . Then we need to compute the probability of Ai ∩ Ak.
These events may be mutually exclusive, in which case the probability is zero,
but if the events are not mutually exclusive, then P (Ai∩Ak) =

1
94 . Any partic-

ular triple intersection is either impossible (probability zero) or has probability
P (Ai ∩Aj ∩Ak) =

1
96 , and you can follow the trend to compute the quadruple

and quintuple intersections. Then to complete the the calculation we need to
do some counting.

How many Ai? We know there are
(
10
2

)
events Ai. How many non-mutually-

exclusive Ai and Ak? To make sure they’re not mutually exclusive events, we
pick 2 from 10 and then 2 from the remaining 8, so

(
10
2

)(
8
2

)
. Continue with this

line of reasoning:

P (∪45i=1Ai) =

(
10

2

)
1

92
(3.1)

−
(
10

2

)(
8

2

)
1

94
(3.2)

+

(
10

2

)(
8

2

)(
6

2

)
1

96
(3.3)

−
(
10

2

)(
8

2

)(
6

2

)(
4

2

)
1

98
(3.4)

+

(
10

2

)(
8

2

)(
6

2

)(
4

2

)(
2

2

)
1

910
(3.5)
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3.2 Conditional probability
Define the probability of the event A given that event B happens as

P (A|B) =
P (A ∩B)

P (B)
.

Think about how to visualize this: I see it as

Notice that re-writing this gives

P (A|B)P (B) = P (A ∩B) = P (AB).

At times this is a useful way to compute the probability of two events happening
simultaneously.

As an example, let’s revisit a problem you did via counting in Chapter 1.
Eight teams are in the semifinals of an international badminton tournament.
The eight teams consist of two teams each from China, India, Denmark, and
Korea. What is the probability that the two teams from each country end up
playing against each other in each of the semifinal matches? That is, China 1
plays China 2, Denmark 1 plays Denmark 2, etc.

You can nicely do this with conditional probabilities instead of counting
techniques:

Some team is picked to play in match 1 with probability 1. This team
is from country A. Given that country A is picked to play in the first match,
the probability that their opponent will be from the same country is 1

7 . Given
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these events, any remaining team can be picked to play in the second semifinal
match – say it’s from country B. Given all these, the probability that country
B’s opponent is also from country B is 1

5 . Given...
Maybe you see a pattern here! In the end, we get that the desired probability

is

1 · 1
7
· 1 · 1

5
· 1 · 1

3
=

1

105
.

Much less counting needed!

3.2.1 Law of Total Probability

One of the most useful ways to use conditional probability – even if you don’t
think you need it – is to partition a sample space or event space over mutually
exclusive events. Say you’re interested in the probability of A. Then partition
Ω into mutually exclusive events Bi for i = 1, . . . , n, so that Ω = ∪ni=1Bi. In
this situation,

P (A) =
n∑

i=1

P (A|Bi)P (Bi).

This is called the law of total probability.
This has some very straightforward applications and can also be useful in

more subtle ways. First, a straightforward application. You are playing a game
where a friend you trust not to cheat will give you a die or a coin, chosen
randomly from a bag, and if you either roll a 6 or flip heads you’ll win. What’s
the probability you’ll win?

Partition the sample space into B1, the event that you’re given the die, and
B2, the event that you’re given the coin. One of the two must happen, and they
encompass the whole sample space! Each is equally likely (probability 1/2).
Then if A is the event that you win, P (A|B1) = 1/6 and P (A|B2) = 1/2. So
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the final calculation is

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) (3.6)

=
1

6

1

2
+

1

2

1

2
(3.7)

=
7

12
. (3.8)

3.2.2 Recursive games
A more subtle application of this law of total probability is when one can con-
dition over previous events in a sequence. Let’s take a look at an example.

Roll a standard die until you “win” or “lose.” You win if you roll a 2; you
lose if you roll two odd numbers (they need not be consecutive). So if you roll
1 and then 3 you’ve lost. If you roll 4,4,6,6,4,4,4... you need to keep playing
as you’ve neither won nor lost. If you roll 1 then 2, you won. What’s the
probability of winning, P (A)?

While there are several ways of doing this, let’s look at conditioning on the
result of the first roll.

• If you roll a 2 right away, you won. This happens with probability 1/6.

• If you roll a 4 or a 6, you don’t care about the roll. It does not affect the
outcome.

• If you roll an odd number (1, 3, or 5) you have one strike against you.
Start at the top of this list and go through the decision tree again, and if
you end up here, you lose.

Alright. Let B1 be the event that you roll a 2 on the first roll. Let B2 be the
event that you roll a 4 or 6. Let B3 be the event that you roll a 1, 3, or 5 on the
first roll. These partition the set of first rolls into mutually exclusive sets. Write
P (A) = p. The law of total probability says

P (A) = p = P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3) (3.9)

= 1 · 1
6
+ p · 2

6
+

1

4

3

6
. (3.10)
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P (A|B3) =
1
4 because we want the probability we roll a 2 before a single

odd number (3 odds, 1 two).
Solve for p. You get p = 7

16 .
This is just one example – you can get much more complex recurrence re-

lations, for which more advanced mathematical techniques are needed. For
instance, use these methods to consider the probability of getting two consecu-
tive heads in n coin flips.

3.3 Bayes’ theorem
Bayes’ theorem is an extraordinarily useful tool, allowing its user to adjust
estimates of probabilities when new evidence is made available. The theorem
uses conditional probability to find the probability of a hypothesis H given
evidence E. Start with the definition of conditional probability, which tells us:

P (E|H) =
P (EH)

P (H)
, P (H|E) =

P (EH)

P (E)
.

Do a bit of algebra to notice the following:

P (H|E)P (E) = P (EH) = P (E|H)P (H).

From here, since we want to find P (H|E), we can proceed in two ways: we can
find the “odds form” of Bayes’ theorem or we can find a formula for P (H|E)
directly. In either case, we will need to consider the probability that our hy-
pothesis event H did not occur: we will write H , for the complement of H in
a set-theoretic sense or the negation of H in the context of logic.

The direct formula for Bayes’ theorem is often used: use algebra to get
from

P (H|E)P (E) = P (E|H)P (H)

to

P (H|E) =
P (E|H)P (H)

P (E)
.
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For the final step, use the law of total probability to write P (E) as a sum by
splitting the event E over mutually exclusive H and H:

P (E) = P (E|H)P (H) + P (E|H)P (H).

This gives

P (H|E) =
P (E|H)P (H)

P (E|H)P (H) + P (E|H)P (H)
,

a formula memorized by probability and statistics students around the world.
The method can also be generalized to multiple hypotheses H1, . . . , Hn as long
as they’re mutually exclusive.

The odds form is also easily derived: simply take the ratio of

P (H|E)P (E) = P (E|H)P (H)

and
P (H|E)P (E) = P (E|H)P (H).

The final result is
P (H|E)

P (H|E)
=

P (H)

P (H)

P (E|H)

P (E|H)
.

Why bother with this slightly less direct formulation? Because it presents the
information with a nice structure.

• First, it states Bayes’ result as “prior odds” times a “likelihood ratio”,
giving the “posterior odds” in which the evidence has been taken into
account.

• Second, the odds format often allows you to use natural frequencies and
avoid calculating probabilities. Natural frequencies provide information
like, “It rains on average once every ten days,” or, “An estimated 1 out of
133 Americans has celiac disease.”

The only danger is that odds really are ratios of occurrences of dissimilar
events – days with rain versus days without rain, for instance – rather than the
fractions we’re most familiar with, like days with rain as a proportion of all
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days. Check what sets you’re dealing with if you get confused about whether
you have an odds ratio or fraction: odds compare the sizes of two sets that par-
tition a larger set, while fractions and probabilities deal with the size of a subset
in the numerator compared to the size of the whole set in the denominator.

Back to the statement of the theorem: The prior odds of the hypothesis
event occurring are

P (H)

P (H)
.

In the examples above, the prior odds of rain are 1 : 9 or 1
9 , and the a priori odds

of an American having celiac disease are 1 : 132 or 1
132 . Taking evidence into

account involves multiplying by the likelihood ratio, which gives information
about how likely the evidence is if the hypothesis does or doesn’t hold true.
If P (E|H) > P (E|H), the posterior odds describing the likelihood of H in
the face of E are increased – the evidence has added to the probability that the
hypothesis is true. Many of the most surprising results from Bayes’ theorem,
though, come because the likelihood ratio is not what people expect.

First let’s consider a somewhat famous example that illustrates both the
difficulties many people have with probablistic reasoning and a good use of
Bayes’ theorem.
(Gigerenzer, “Calculated Risks,” 2004) Doctors were told the following: you’ve
got a patient with a positive mammogram (E). She is between 40 and 50 years
old, with no symptoms or family history of breast cancer. The a priori prob-
ability that such a woman has breast cancer (H) is 0.8 percent. If she’s got
breast cancer, the mammogram will be positive 90% of the time, and if she
does not have breast cancer, there’s still a 7% chance that she has a positive
mammogram. Given all this information, what’s the probability that your pa-
tient actually has breast cancer?

What do you estimate, reader? Gerd Gigerenzer, a cognitive psychologist,
asked doctors to do this experiment. Their estimates ranges from 1 percent to
90 percent. As a patient, how would you feel if you were told that there is 90%
chance you have this cancer – especially when the true answer is around 9%?!

Using the probabilities as stated, we know that the prior odds that this pa-
tient has breast cancer are 0.8

99.2 . (Small odds!) The likelihood ratio is 90
7 . This is



60 CHAPTER 3. PROBABILITY RULES

big, but only about a factor of 13. The posterior odds, then, are 72
694.4 . When we

solve for the probability P (H|E), we find

P (H|E) =
72

72 + 694.4
≈ 0.09.

See Girgerenzer’s book for more examples of how bad we are at estimat-
ing probabilities. These cognitive psychology experiments are very useful in
showing us where we fall into cognitive traps, overestimating the probability
of rare events, underestimating the probability of common events, and show-
ing “anchoring” tendencies, in which we estimate that quantities are close to
numbers coming from preconceived notions. While much of finance involves
careful calculations in spreadsheets using approved models, we in numerical
fields must still make quick estimates to check the validity of our work. Avoid-
ing these cognitive traps will make you more effective in many ways!



Chapter 4

First applications in finance

It is amazing to me that a simple model – the binomial tree model for stock
prices – is so effective in pricing various types of financial derivatives. In this
chapter, we’ll consider financial ideas (arbitrage and stock pricing) and addi-
tional tools useful for finance (approximation, including Taylor series). We’ll
also see why we need to step up our sophistication and introduce concepts like
random variables and their expected values in the next chapter.

4.1 Binomial stock pricing

At 2:05 pm on a Tuesday, a stock has a given price listed on the New York
Stock Exchange. As orders come in, that price will go up, go down, or stay the
same. A first approximation – the binomial tree model for stock prices – is to
pick a unit of time and to model the stock price at each unit step.

4.1.1 Additive model

The first idea you might have would be to start with an initial stock price, S0,
and then add u dollars or subtract d dollars on each step. At time one, then, the
price would be S1 = S0+u or S1 = S0− d. Here, let u, d > 0. In constructing
the model, you’d want to find the appropriate probability p of the stock price

61
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increasing and the probability 1− p of the price decreasing. Continue this over
subsequent time steps.

Notice that the price at any time step t is the sum of two arithmetic series.
As always, you should evaluate the benefits and drawbacks of such a model.

A benefit is that the model is quite simple, and easy to extend to any number
of time steps desired. A huge drawback is that the model allows negative stock
prices. This is unrealistic: while we can short a stock, the price of the stock
itself can never be negative. In addition, consider the sizes of u and d: if S0 is
$ 400, a change of $ 1.00 in the stock price is not that significant, while if S0 is
$4, a change of $ 1.00 is an enormous change in value.

A last factor to consider is that this is a discrete model of a market that
trades in continuous time. Whether this is a benefit or drawback is to be ar-
gued – what do you think? We will keep discussing the relationship between
continuous and discrete models: remember that a theme of our initial proba-
bility discussion was the back-and-forth between combinatorial and geometric
probability problems.

This additive tree model is really not very good for stock prices, but we
shouldn’t dismiss it entirely. It will lead us on a random walk through the cen-
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tral limit theorem, normal distributions as a limit of repeated Bernoulli trials,
and finally arithmetic Brownian motion.

4.1.2 Multiplicative model
To fix at least one problem with the additive binomial tree model, we can
change to a multiplicative pricing model. The initial price S0 changes by a
percentage: with probability p the stock price increases by a factor of u and
with probability 1− p the stock price decreases by a factor of d. In general, we
set 0 < d < 1 < u. You will see why when we discuss arbitrage.

Construct the binomial tree as follows, then:

The stock price will never fall below zero in this model, and changes in
price are proportional to the original price. This is still a discrete-time model,
but financial mathematicians have found it quite useful. Here, notice that the
maximum price at each time makes up a geometric sequence with common
ratio u and the minimum price at each time makes up a geometric sequence
with common ratio d.

From this model, you can do two things given u, d, and p: you can find the
probability that the stock has a certain price at a given time step, and you can
find all the possible prices at a given time step.
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What are all the possible prices for this stock at time step n?

Use the binomial theorem to get all prices at time n. Sn must take on a
value that looks like S0u

kdn−k for some k between zero and n. Ask yourself:
does k refer to steps “up” or steps “down” in price?

Is this model realistic? Can we simply say any numbers for u, d, and p?
Are these quantities related? What are the pros and cons?

4.2 Arbitrage

The no-arbitrage principle in finance and economics answers one of these ques-
tions. The no-arbitrage principle claims that “there is no free lunch” – you can’t
make guaranteed money. If the no-arbitrage principle holds, then p is uniquely
determined by u and d. We can show this rigorously later.

To make this discussion easier, we need to introduce the concepts of ran-
dom variable and then expected value. Notice that in each of the binomial tree
illustrations above there are notations along the bottom: S0, S1, S2, S3. The no-
tation Si means essentially “the outcome of the probability experiment at step
i.” It is a random variable, which is a confusing name for the following reasons:
in much of math, a variable is a letter that we use in expressing a mathematical
condition like x+3 = 7 or x2+1 = y, and the variables can take on any values
that satisfy the condition, but in statistics, the random variable can only take
on values in Ω, and the random variable comes with a certain probability dis-
tribution. In the next chapter we will talk about such distributions and in later
study you’ll encounter the definition of a random variable X as a measurable
function X : Ω→ E for E a measure space. For now, it’s enough to know that
S3 is a random variable that can take on each outcome that appears in step 3
of a binomial tree. A random variable has to take on a numerical value, not a
value like H or T .

The next big idea is expected value. The expected value of a random vari-
able is the weighted average of all the possible outcomes. Let’s consider only
discrete random variables Sn with outcomes s0, . . . , sn. Each outcome has a
particular probability, P (Sn = si), and the sum of these probabilities is 1. The
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expected value of Sn, then, is

E(Sn) =
n∑

i=0

siP (Sn = si),

which weights each outcome according to its probability. For example, let’s
say you flip a fair coin and you let the random variable X be 0 if the coin
comes up heads, 1 if it comes up tails. The expected value of the outcome of
X is 1/2, from 0 · 1/2+1 · 1/2. Again, a funny name, as you’d never expect to
get the value 1/2 from flipping a coin! But 1/2 is the weighted average of the
outcomes we allowed for X .

Back to no arbitrage: the “no free lunch” principle. One of the crazy para-
doxes of finance is that people participate in modern finance because they want
to make money, but the no-arbitrage principle states that everything is fairly
priced by the market and so there is no guaranteed risk-free money to be made.
One way to think about this is as follows: on a very small time scale, there may
be inaccuracies in pricing in the market, but these inaccuracies will be found
and exploited by so-called arbitrageurs, and thus supply and demand will push
the inaccuracies to be corrected. Thus, in the long term, financial instruments
are priced fairly. This philosophy has had enormous success because it seems
to work pretty well over larger timescales, and because it has allowed us to get
a unique “correct” price for many common financial instruments. A price that
everyone agrees on makes trade much easier!

More concretely, the no-arbitrage principle would tell us that if the stock
under consideration is fairly priced initially (at time zero) then the expected
value of the stock at time one would be the same as its initial price. Why is
this? Say the expected value of the stock at time one was definitely bigger than
at time zero. You’d buy a lot of stock at time zero! (So would other people...)
Similarly, if the expected value of the stock at time one was less than the value
at time zero, you wouldn’t buy it at all: you’d say it was overpriced and you’d
put your money elsewhere.

Mathematically, this implies that

S0 = E[S1].



66 CHAPTER 4. FIRST APPLICATIONS IN FINANCE

Since this expected value is just a weighted average, let’s see what this means
for one step of the multiplicative binomial tree:

S0 = pS0u+ (1− p)S0d,

which simplifies to
1 = p(u− d) + d,

finally giving

p =
1− d

u− d
.

This gives us the promised relatinoship between p, u, and d – and astoundingly
requires no price information at all.

In this era of historically low interest rates, what we’ve done is even al-
most right. For most of financial history, though, we have needed to consider
whether we should just put our money in the bank rather than investing in
stocks. The interest you can earn on cash is referred to as the “time value of
money.”

4.3 Short- and long-term approximation
We discussed the idea of short-term approximation in Chapter 2, in Section 2.2.
As we alluded to, the idea of predicting value of f(x) a “few moments” later,
when the input is x + ∆x, is quite powerful. How does this apply to finance?
Take a moment to ponder this question and brainstorm some answers.

If y = f(x) is the output of a function, then we can write the approximation
(not equation!)

y +∆y = f(x+∆x) ≈ f(x) + f ′(x)∆x (4.1)

We can rewrite this in many ways, including:

f(x+∆x)− f(x) ≈ f ′(x)∆x (4.2)

and
f(x+∆x)− f(x)

∆x
≈ f ′(x). (4.3)
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What are our assumptions in making these short-term predictions?
This approximation is really only valid if f(x) is a continuous and differ-

entiable function. If f is not continuous in the area of our apprximation, the
approximation is total nonsense – f(x) and f(x + ∆x) may be nowhere near
each other. If f is not differentiable at a point where we’d like to look at this
approximation, then f ′(x) won’t exist or make sense.

Financially, the idea of short-term approximation comes about because
we’d like to know the price of a stock tomorrow, for instance. At the begin-
ning of this chapter we discussed binomial tree models for stock prices, which
are necessarily discrete. Even though it’s not “true”, we can invent a continous
function C(t) for the price of a stock depending on time, and we can approx-
imate the discrete situation by using calculus and the continuous model. The
Black-Scholes model, for instance, is a continuous (or stochastic) model of the
price of an option on a stock. The partial differential equation

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0

is called the Black-Scholes equation, implicitly describing the price C of a
European call option in terms of S, the price of the underlying stock; time t;
standard deviation of stock returns σ; and a risk-free interest rate r (that time
value of money!). All of these derivatives can be discretized using the idea of
short-term approximation.

The short-term approximation is a linear approximation. Let’s interpret the
equation

C(t+∆t) ≈ C(t) + C ′(t)∆t

as a linear approximation for the price of a stock at time t+∆t given the starting
price C(t) at time t. Say t is 11 am on a Monday, and we want to guess where
the price will be after lunch (at 1 pm) if the stock behaves in a predictable way.
Then we could consider approximating C ′(t) from the morning’s data, or from
last week’s data, or some other data set. This number would give us how fast
the stock price is sinking or rising. The linear approximation is easy then.
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4.3.1 Long-term approximation
We want to combine short-term predictions to make long-term predictions.
How do we do this? What do we mean?

Our most important tool is the fundamental theorem of calculus. The funda-
mental theorem of calculus relates integrals and derivatives. One version of the
FTC in words is, “net change is the sum of rates of change over the interval.”
We can write this in symbols below.

Example 4.3.1. Explore

f(b)− f(a) =

∫ b

a

f ′(x)dx.

An example: you want to look at total change in a stock price from time a
to time b. That’s C(b) − C(a). One way to look at the change in price is to
look at how it stepped up and stepped down at every moment between time a
and time b. If you sum up all the changes, ∆C ≈ C ′(t)∆t for each moment t,
you get a version of the fundamental theorem of calculus.
Can you convince yourself that the fundamental theorem of calculus is a rein-
terpretation of the short-term approximation discussed above?

How do you relate the discrete and continuous versions of each of these con-
cepts? What is each useful for?

4.3.2 First differential equation
A differential equation is an equation that relates quantities and their derivatives
– for instance, the quantity f(x) and its derivative with respect to x, f ′(x).

I want you to learn how to read these differential equations, and identify
the assumptions implicit in the mathematics.

For example, what does this differential equation say?

f ′(x) = af(x).
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It says, “the rate of change of f with respect to x is proportional to the value of
f at every value of x.” Think through the implications. Let’s say a is positive,
for simplicity. Then if f(x) is negative, f ′(x) must also be negative. If f(x) is
positive, f ′(x) must also be positive. If f(x) = 0, then the rate of change of
f(x) is also zero.

What is the solution to a differential equation? It’s a function that makes the
differential equation true. For instance, f(x) = 0 makes the equation f ′(x) =
af(x) true: 0 = 0 is always true. On the other hand, f(x) = 3 is not a solution
to this differential equation if a ̸= 0, as f ′(x) = 0 but a · 3 ̸= 0.

How can we solve this differential equation? I’ll group the methods as nu-
merical methods, analytic methods, and graphical methods. Numerical meth-
ods find approximate numerical solutions and are great if you’ve got some com-
putational power at your disposal. Analytic methods find you exactly-accurate
formulas. In this class, many differential equations will have analytic solutions
(closed formulas) but in real life many differential equations don’t have an-
alytics solutions at all. Last, graphical methods like slope fields can help you
understand the behavior of solutions and might give guidance as to what further
techniques you’d like to pursue.

Let’s look at our first differential equation in a financial context. The most
basic finance calculation many people do is the calculation of accrual of interest
on principal. Using P for principal and t for time in days, we can write

dP

dt
= rP (t),

for r the daily interest rate. Note that P could be positive (money in the bank)
or negative (you owe the bank money).

Say P (0) = 100 (you start with $100) and the daily interest rate is r = 0.01.
Then if interest is accrued daily, you end up with 100 · (1 + 0.01) = 101 at the
end of the day. But if interest is compounding continuously, this is only an
approximation – a linear, short-term approximation. What’s the exact amount
of interest you end up with?

Here’s where an analytic solution comes in handy. We’ll have to integrate
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here. Do a bit of manipulation to convert

dP

dt
= 0.01P (t)

to ∫
dP

P
=

∫
0.01dt.

Use your calculus knowledge to solve:

ln |P | = 0.01t+ c,

where c is a constant. Exponentiate to get

|P (t)| = e0.01tec.

If we know that P (0) = 100, then we should have ec = 100 – ah, ec is the
initial amount of principal. (For the general solution of the differential equation
we can drop the absolute value on the left-hand side as if we’re starting with
positive amounts of money, all future values will be positive, and if we start
with and compound debt, we’ll just get more debt.) To find the exact value of
P (1), then, we just evaluate:

P (1) = 100e0.01 ≈ 101.005.

Last, let’s look at a graphical exploration of the differential equation. This
is a slope field: at points (t, P (t)), we draw little lines of slope P ′(t).
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This allows us to quickly understand the qualitative behavior of solutions
to

dP

dt
= 0.01P (t).

These solutions must always “follow the arrows,” so it’s easy to sketch solu-
tions to the differential equation as well!

Later we’ll consider numerical methods for solving differential equations,
and we’ll see that Euler’s method, for instance, is really just a version of long-
term approximation applied to differential equations.
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Chapter 5

Discrete random variables
and transformations of
variables
This chapter will combine a number of concepts that aren’t usually discussed in
conjunction. First, we’ll talk about discrete random variables, expected values,
and variance. Second, we’ll notice that series keep coming up. We’ll talk about
series in general, power series, and Taylor series. I’ll throw in some simple but
important finance applications. Last, we’ll talk about linear and affine linear
transformations of variables. This will be our first step toward incorporating
linear algebra and multivariable calculus.

5.1 Discrete random variables

It’s finally time to look seriously at random variables. A random variable is
a function from Ω to R: it always takes on numerical values. Remember that
Ω is the set of possible outcomes of a probability experiment, so writing out a
random variable as a function X : Ω → R is a way of assigning a numerical
value to each outcome of the probability experiment. In general, we don’t know
what the outcome of a probability experiment is until the experiment is carried

73
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out – that’s why we use X or another variable name to represent this outcome
before knowing what it is!

Here are some examples of random variables. When you flip a coin, you
get heads H or tails T , but the random variable associated to your coin flip
might be X , with

X(H) = 0

X(T ) = 1,

or
Y (H) = 1

Y (T ) = −1,
or Z taking its value in any other two-element set in R. The numerical values
depend on the problem you’re trying to solve. For instance, we could play a
game where you flip a coin and if it’s heads I give you five dollars and if it’s tails
you give me eight dollars. You could decide then to represent the outcomes of
the probability experiment (heads and tails) as taking values in the profit-loss
space represented by {−8, 5}, and using the tools we’ll build you can easily
and rigorously decide whether this is a game you want to play or not. You
might write W for the random variable representing your winnings, with

W : {H,T} → {5,−8}.

A discrete random variable is one that takes values in a finite or countably
infinite subset of R. The values that the random variable can take make up the
range of the random variable, often denoted I . (Convince yourself that any
random variable taking values on a continuous interval of R can’t be a discrete
random variable, using this definition.) The best way to get a feel for discrete
random variables is to do examples.

(Aside: As you do problems, I highly recommend writing out what random
variable you want to consider, very explicitly. A major cause of mistakes is
mixing up the random variable you really want to consider and some other
related quantity – for instance, doing a calculation with the outcomes {0, 1}
rather than the outcomes {5,−8} in our coin-tossing game above, or mixing
up “number of winning coin flips it takes to win a game” with “total number of
coin flips it takes to win a game”.)
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Example 5.1.1. Flip a coin three times. Let X be the random variable repre-
senting how many times heads appears in your three flips. Then X : Ω →
{0, 1, 2, 3} ⊂ R, and we call I = {0, 1, 2, 3} the range of X .

Example 5.1.2. Roll two dice simultaneously. Consider the random variable
given by taking the maximum roll.

Here, I would say X is the value on the first die and Y is the outcome of
the second die, and I’d say Z = max(X,Y ) is the random variable we’d like
to consider. The range of Z is I = {1, 2, 3, 4, 5, 6}.

Alone, the concept of the discrete random variable doesn’t seem very subtle
or important. However, it’s going to facilitate the discussion of

• the probability mass function,

• the expected value of a random variable, and

• the variance of a random variable.

These are basic probabilistic concepts which are very important in finance:
once we consider portfolio optimization, you’ll look to maximize your ex-
pected return (the expected value of the portfolio in the future) and minimize
the volatility of the portfolio (the standard deviation of the value of the portfo-
lio).

Let’s define these concepts.
First, for a discrete random variable we can find the probability mass func-

tion, f(k) = P (X = k) for k ∈ I .
Second, we can define the expected value (expectation, mean) using the

probability mass function:

µ = E(X) =
∑
k∈I

kP (X = k).

Each outcome is weighted by its probability. The expected value function is
written using the E[·] or E(·) notation, and when everyone reading knows
which random variable we’re talking about, then we can use the notation µ
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(mu) for mean. Notice that E[c] = c for c a constant, and convince yourself
that E[cx] = cE[X] as well. Figure out what E[aX + b] is for a, b constants.

Third, we can define variance:

σ2 = var(X) = E[(X − µ)2].

Meditate on this definition for a while: it’s the expected value of the square
of the difference of X from the mean µ. Hmmmm.... how to understand this?
Notice that again we have the var(·) function which we can apply to any random
variable, and we have the notation σ2 when it is clear which random variable is
under discussion. Also, we can define the standard deviation σ here:

stdev(X) = σ =
√

var(X).

Example 5.1.3. Again toss a coin three times and let X be the number of heads
appearing.

Following the definitions above, we first compute the probability mass
function (pmf).

P (X = 0) =

(
3

0

)(
1

2

)3

(5.1)

P (X = 1) =

(
3

1

)(
1

2

)3

(5.2)

P (X = 2) =

(
3

2

)(
1

2

)3

(5.3)

P (X = 3) =

(
3

3

)(
1

2

)3

(5.4)

(5.5)

We’re counting the number of ways k heads can appear in three tosses,
then multiplying by the probability of any combination. It’s better to just write
P (X = k) =

(
3
k

) (
1
2

)3, you’ll see.
Second comes expected value: it is

E[X] =
3∑

k=0

k

(
3

k

)(
1

2

)3

,
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which evaluates to

E[X] =
1

8
[0 + 3 + 6 + 3] =

3

2
.

Third, variance. If we use our formula above for variance, we need to
compute the expected value of a new random variable, (X − 3

2)
2. The variance

is

var(X) =
3∑

k=0

(k − 3

2
)2P (X = k) (5.6)

=
1

8
[
9

4
+ 3 · 1

4
+ 3 · 1

4
+

9

4
] (5.7)

=
3

4
. (5.8)

Frankly, that last calculation was mildly annoying. There’s got to be a better
way. Many advances in mathematics have been made through rigorous laziness
– can we simplify this calculation?

5.1.1 Linearity of expectation – best thing ever

Fortunately, we can simplify our calculations of variance. The expected value
function E(·) is linear! That is,

E[X + Y ] = E[X] + E[Y ]

as long as E[X], E[Y ] are finite numbers.

Sketch a proof of this fact: consider two discrete random variables X and Y
and call their sum Z = X + Y . You’ll have to look at the probability of the
joint event “X = k and Y = j,” which you can write as P (X = k, Y = j).
Figure out the pmf for P (Z = ℓ) and go from there.

In particular, this has the following lovely consequence: if we let µ =
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E(X),

var(X) = E[(X − µ)2] (5.9)
= E[X2 − 2µX + µ2] (5.10)
= E[X2]− E[2µX] + E[µ2] (5.11)
= E[X2]− 2µE[X] + µ2 (5.12)
= E[X2]− 2µ2 + µ2 (5.13)
= E[X2]− µ2 (5.14)

This is lovely: let’s do another example calculation using this new formula
for variance.

Example 5.1.4. Consider those two dice that you rolled earlier. Remember
one die had a value X and the other a value of Y , and we want to examine
Z = max(X, Y ). The range of Z is I = {1, 2, 3, 4, 5, 6}.

The pmf for Z is P (Z = k) = 2k−1
36 . I got this by writing down the first few

probabilities, noticing a pattern, and then mathematically formalizing it.
The expected value of Z is easier to compute using the formula for the pmf

than it is to compute by force.

E[Z] =
6∑

k=1

k
2k − 1

36
(5.15)

=
1

36

6∑
k=1

(2k2 − k) (5.16)

=
1

36
[2

6∑
k=1

k2 −
6∑

k=1

k] (5.17)

=
1

36

[
2 · 6 · 7 · 13

6
− 6 · 7

2

]
(5.18)

=
161

36
(5.19)

Some magic happened in there: I used my knowledge of sums of consecu-
tive integers and sums of consecutive squares. You’ll remember the triangular
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numbers
∑n

i=1 i =
n(n+1)

2 from a previous chapter, but you may not know the
sum of squares formula. Here it is:

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

This is something I re-memorize when working through this section, and then
forget when it’s not important. Do what you like, but it is helpful to know by
rote.

Variance is an even worse calculation, but at least we can simplify it by
using our nice new formula.

var(X) = E[Z2]− µ2 (5.20)

=
6∑

k=1

k2
2k − 1

36
−
(
161

36

)2

(5.21)

Here you’ll need the sum of cubes. You know what’s really cool?

n∑
i=1

i3 =

(
n∑

i=1

i

)2

.

The sum of the first n cubes is the square of the nth triangular number. So

n∑
i=1

i3 =
n2(n+ 1)2

4
.

This is called Nicomachus’ theorem sometimes – Nicomachus lived in what’s
now Jordan, in the Middle East, in the first century BCE. The theorem was also
discovered by Al-Karaji, an Arab mathematician, and Aryabhata, an Indian
mathematician, all at or before the year 1000. (See https://www.math.nmsu.edu/ davidp/bridge.pdf
for more information.) Then it was discovered in France in the 1300s. Thinking
about the history of mathematical achievement and financial thought is hum-
bling and instructive. What drove these three mathematicians in different areas
to figure out this number-theoretic theorem that also pops up in probability?



80CHAPTER 5. DISCRETE RANDOM VARIABLES AND TRANSFORMATIONS OF VARIABLES

How did Thales of Miletus have the idea to become the first options or futures
guy? Why did the prophet Mohammed think so much about the ethics of fu-
tures contracts? While synthetic CDOs are pretty new, the basics of hedging
and portfolio management have been thought about for thousands of years.

Back to variance: Using the identity, we can simplify the variance calcula-
tion to

var(X) =
1

36

[
2(

6∑
k=1

k)2 −
6∑

k=1

k2

]
−
(
161

36

)2

,

or

var(X) =
1

36

[
(
62 · 72

2
)2 − 6 · 7 · 13

6

]
−
(
161

36

)2

=
791

36
− 1612

362
=

2555

362
.

This is about 1.97. Does this make sense? Always do a quick “gut check” to
catch errors – the variance is not bigger than all possible outcome values, the
variance is not negative... looks good!

Notice all this use of series. Calculations of variance and expected value
for discrete random variables often require a lot of series, and in addition, we
can package expectation and variance as the first two moments in a moment
generating function. If you’d like to start reviewing series, skip to Section 5.3.
We’ll first discuss properties of expectation and variance just a bit more.

5.1.2 Multiplicativity of expectation?

It is so cool that expectation is linear. Really. If we were very lucky, expectation
would also factor nicely: E(XY ) and E(X)E(Y ) would be equal. Is this true?

To see whether this would be true in general or not, go back to probability
itself: does probability factor? That is, do we have P (X = x, Y = y) =
P (X = x)P (Y = y) for discrete random variables X and Y taking values in
the appropriate ranges?

Remember the discussion in Section 1.8 of compound experiments. Before
having the language of random variables, we argued that if two events A and
B are independent, then P (AB) = P (A)P (B). Now we can translate this into
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the language of random variables and define independence of discrete random
variables as follows:

Definition 5.1.1. Two discrete random variables X and Y are independent if
for all x in the range of X and all y in the range of Y , we have

P (X = x, Y = y) = P (X = x)P (Y = y).

If X and Y are not independent, this won’t be true for all combinations of
x and y – there will be some event (X = x, Y = y) for which this equation is
false.

A very simple example: flip a coin once. Let X be the number of heads,
and Y be the number of tails. The probability of getting heads and tails on the
same flip is zero (the events are mutually exclusive), while P (X = 1)P (Y =
1) = 0.25. It’s easy to see that X and Y are related just by thinking about it:
X = 1− Y relates the two nicely.

Another way of looking at this is to say that the joint probability mass
function of independent random variables X and Y factors into the probability
mass functions for X and Y .
Look at the definition of expected value and see if you can prove the follow-
ing fact for discrete random variables: If X and Y are independent random
variables, then

E(XY ) = E(X)E(Y )

as long as both E(X) and E(Y ) exist and are finite.

This fact is also true for continuous random variables, using the following
defintion of independence:

Definition 5.1.2. Two random variables X and Y are independent if for all x
in the range of X and all y in the range of Y , we have

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y).

You’ll see why we needed to change the equalities to inequalities when we
discuss continuous random variables.
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5.2 Variance: average of squared deviations
Variance is a subtle quantity, initially hard to grasp. It might help to contrast
it with other measures of variability in a set of data. We want to look at how a
data set is scattered, and there are many ways to do that:

• the range of the data is useful (max-min) but not very stable with respect
to outliers;

• quartiles can give you a sense of the data but don’t give one statistic by
which to compare different data sets;

• the average of absolute values of differences from the mean gives a fine
statistic of variability.

However, in the end one method has come to rule them all: average of squared
deviation.

Let’s explore measures of “scatter” through an example. We’ll look at three
random variables, X , Y , and Z, with probability mass functions given in the
figure:

I’ve engineered each random variable so that they all have the same mean,
µ = 0.8. The deviation of each outcome X = x from the mean would be x−µ,
and similarly for Y and Z. Try taking a weighted average of these deviations
to give some measure of “scatter.” Why is it zero each time? Because linearity
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of expectation means that E(X − µ) = E(X) − µ = 0. Fine, use absolute
deviation instead: take the expected value of |X − µ| to get the absolute mean
deviation. Calculations for X , Y , and Z:

This seems fine, but for better or worse it doesn’t give much weight to
outliers. It’s a statistic used in some time series calculations where you don’t
want to give too much weight to outliers, but maybe in some situations where
you want to measure “scatter” weighting the outliers is part of the point!

Variance is instead the mean of squared deviations. Squaring the deviations
results in positive numbers, so there’s no cancellation of deviations to worry
about. Take a look: the calculations of E[(X − µ)2] etc. are below.
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Outcomes further from the mean have a big effect on variance! Look at that
σ2(Z) = 90.96! Take the square root to get the standard deviation, which has
the same units as the original random variable. This is the standard measure
of “scatter” for data sets and probability distributions. The name “standard
deviation” comes about because of this historical community decision, even
though for some applications you might decide to use an alternative statistic.

5.3 Series
A power series is a function that is an endless sum of monomials – like a
polynomial, but of infinite degree:

P (z) =
∞∑
k=0

ckz
k.

A power series can take in a real number or a complex number. Here we will
consider only power series whose input is real; further on we’ll look at func-
tions of complex numbers. However, throughout the book we will only con-
sider real coefficients ck.

Why consider these power series? Two reasons: to set a good framework
for approximations (Taylor series), and to understand moment generating func-
tions. We’ll concentrate on the first reason in this subsection.

Power series are a natural generalization of the “short-term approximation”
or linear approximation of the last chapter. Often a more accurate short-term
approximation can be gained by taking a higher-degree polynomial as the ap-
proximating function. We’ll talk about quadratic approximation, for instance,
and some of you may have encountered cubic splines for numerical interpola-
tion. These are polynomials, rather than power series, but you’ll find that it’s
really powerful to have the power series framework in which to consider all
these approximations.

Example 5.3.1. Let f(x) be a function that can be differentiated as many times
as we need. Determine a third degree polynomial P (x) = ax3 + bx2 + cx+ d
so that f(0) = P (0), f ′(0) = P ′(0), f ′′(0) = P ′′(0), and f ′′′(0) = P ′′′(0).
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The example above brings us directly to Taylor series, power series repre-
sentations of a function at x = a. If we want to write a power series represen-
tation of a function f(x) at x = 0 using a Taylor series, each coefficient cyk is
given by the following formula:

ck =
f (k)(0)

k!
.

Here, f (k)(0) is the kth derivative of f(x) at x = 0, for k ≥ 1, and k! =
k · (k − 1) · · · 2 · 1. Basically, we are trying to make the slope, convexity, and
higher derivatives of our approximation match the original function as well as
possible around the point x = 0. Then if all the derivatives exist and this
infinite series converges, we have

f(x) =
∞∑
k=0

f (k)(0)

k!
xk.

In the following example, each series converges for all x ∈ R.

Example 5.3.2. Find the Taylor series at x = 0 for ex, cosx, sinx.

By contrast, the next two series converge only for |x| < 1.

Example 5.3.3. Find the Taylor series at x = 0 for 1
1−x (geometric series)

and ln(1 + x) (a harmonic series). What goes wrong at the edges x = 1 and
x = −1 of the interval |x| < 1? Why am I not asking for the Taylor series for
lnx centered at x = 0?

5.3.1 Convergence, divergence, well-defined
Three big concepts come up in working with series: convergence, divergence,
and well-definedness. I just threw you into finding Taylor series and used the
word “convergence” without defining it, because I expect the reader (you) to
have some experience of these concepts. But let’s look carefully at them:

The Taylor series for f(x) = 1
1−x at x = 0 is T (x) =

∑∞
k=0 x

k.
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• For x = 1/2, for instance, this series works beautifully and sums to 2.
(Use a geometric argument to justify if you like). The series converges,
as it sums to a unique, finite, real number.

• What happens at x = 1, though? T (1) = 1 + 1 + 1 + . . . does not
sum to any finite number – it goes to infinity. We say that this series
diverges. This reflects the behavior of the original function; f(1) isn’t
defined because it prompts you to divide by zero.

• What about the series at x = −1? It’s no problem to compute f(−1) =
1

1−(−1) . However, T (−1) = 1 − 1 + 1 − 1 + 1 − . . .. Now, is this
1 + (−1 + 1) + (−1 + 1) + . . . or (1 − 1) + (1 − 1) + (1 − 1) +
. . .? or something else? This sum is not well-defined: it doesn’t have a
unique, unambiguous answer. It is also divergent, then, because it’s not
convergent!

These concepts can be defined a bit more rigorously using limits. First I’ll
remind you of convergence and divergence of sequences:

Definition 5.3.1. A sequence of real numbers {aj} converges to a limit L if for
any ϵ > 0, there is some integer N so that |aj − L| < ϵ for all j > N . If a
sequence {aj} doesn’t converge, it diverges.

Recall that there are several types of behavior for a divergent sequence: it
could blow up or blow down to infinity or negative infinity (like {2j} or {−j}),
or it could bounce around forever despite being bounded (like {sin(πj)} or
{sin j}), or it could do truly chaotic things. Sometimes it’s easy to prove that
a sequence converges or diverges. Sometimes it’s really hard. Witness the
Collatz conjecture: start with any positive number j. If j is even, divide it by
2 and make that the next term. If it’s odd, make 3j + 1 the next term. There’s
a conjecture that this sequence will always reach 1, no matter what you start
with, but this is not proven yet and is remarkably hard. Try it!

Ok, back to series.
*********
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5.4 Moment generating functions
Remember that f(x) = ex is a pretty remarkable function. It is the only func-
tion that is it’s own derivative. You can phrase that as a differential equation if
you like:

d

dx
ex = ex,

or
dy

dx
= y.

What does this differential equation mean for the Taylor series at x = 0? Well,
since the equation gives

∞∑
k=0

akx
k == T (x) = T ′(x) =

∞∑
k=0

kakx
k−1,

we can deduce ak = (k + 1)ak+1 for all k. Since a0 = 1 as e0 = 1, we know
a1 = 1, a2 = 1/2, a3 = 1/(3 · 2), and ak = 1/k!. Hence the Taylor series for
ex is

T (x) =
∞∑
k=0

xk

k!
.

Why do we care about this? Because this series provides a great package
for expectation, variance, etc. Let’s define the moment generating function for
the random variable X by

MX(t) = E[etX ].

Generating functions are used in combinatorics and all sorts of other fields to
package numerical information in a series. The variable t is called a formal
variable, and basically it is a placeholder that is there simply to give you its
degree n (from tn). This degree is part of the packaging that the generating
function does. For the moment generating function, the coefficient of tn is the
nth moment. The nth moment of X is the expectation of Xn, E[Xn].
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Check it out:

etX = 1 +
tX

1!
+

(tX)2

2!
+

(tX)3

3!
+ . . .

So the moment generating function of X is defined to be

MX(t) := E[etX ] = E

[ ∞∑
k=0

Xktk

k!

]
=

∞∑
k=0

E[xk]
tk

k!
.

Let’s consider a discrete random variable X that takes only positive integer
values. It has a probability mass function that takes the range I ⊂ Z≥0 and
gives an output P (X = j) for each j ∈ I . We can combine this with the
generating function calculation above to calculate each E[Xk], using E[Xk] =∑

j∈I j
kP (X = j), carefully regrouping terms:

MX(t) =
∑
j∈I

etjP (X = j).

You can see that the first moment, the coefficient of t when etj is expanded,
gives you E[X] = µ. The second moment gives you E[X2] which you can
use to get var(X) = E[X2] − E[X]2 = E[X2] − µ2. Higher moments won’t
be discussed now, but I will say that as we study different special discrete and
continuous random variables, you’ll see that we can classify their distributions
using moment generating functions.

5.5 Linear and affine linear transformations
Above, we discussed the linearity of expectation. You can prove that

E[aX + bY + c] = aE[X] + bE[Y ] + c

for a, b, c constants. This means that expectation is a linear operator: it satisfies

E[X + Y ] = E[X] + E[Y ]
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and
E[aX] = aE[X],

the two conditions for linearity. You are familiar with several other linear op-
erators, too:

d

dx
[f(x) + g(x)] =

d

dx
f(x) +

d

dx
g(x)

and
d

dx
[af(x)] = a

d

dx
f(x),

so differentiation is a linear operator, and integration is as well (convince your-
self!).
Quick quiz Is the function ln(x) linear? Is squaring linear? What about the
functions sine and cosine? What about variance of a random variable?

You’ll notice that none of the above mentioned functions or operators are
linear! For instance, because squaring (taking x to x2) is not linear, variance is
not linear either. Check for yourself to see

var(aX + b) = a2var(X).

What happened to the b? Do the math to check it out.
A linear function is not exactly what you might think, though. Quick quiz:

which of these is linear?

3x− 4y = 0 3x− 4y = 2.

Right: although both equations have a line as the graph, only one is linear
in the technical sense. (We abuse this language all the time.) We say that
3x − 4y = 0 is a linear equation and f(x, y) = 3x + 4y is linear because
3x− 4y = 0 describes a linear vector space in R2.

Definition 5.5.1. A vector space, or linear space, is a set of vectors that is
closed under addition and scalar multiplication.

In particular, the set {(x, y) ∈ R2|3x − 4y = 0} is linear because if a
point (a, b) and a point (c, d) both satisfy the equation, then you can check that
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(a + c, b + d) also satisfies the equation. Also, if (a, b) satisfies the equation,
you can check that (ka, kb) also satisfies the equation for any k ∈ R. Dead
giveaway: the graph of 3x− 4y = 0 is a line that goes through the origin.

By contrast, if you look at the equation 3x− 4y = 2, you can see that these
properties – closed under addition, closed under multiplication – are not true of
the points that satisfy the equation. But the graph is a line! Yes: this equation
is an affine linear equation. It’s a shift of a linear equation, and its graph is a
shift of a linear space. We call these shifts affine transformations.

Comfort with transformations of functions translates very well to probabil-
ity applications. By transformations, we mean stretching, scaling, and trans-
lating functions. We can accomplish these tasks and more using vectors and
matrices. Let’s bravely step into the two-dimensional world and consider vec-
tors in R2.
Rewrite (x− 2)2 + (y3 − 1)2 = 4 as u2 + v2 = 4.

Notice that the above equation involves shifting x and shifting and scaling
y. We can write this using two equations, one for u and one for v, or using
matrices and vectors.
Set of equations: u = x−2 and v = y

3−1 gives the desired shift in the previous
example. Using matrices and vectors, we can write this as[

u
v

]
=

[
1 0
0 1

3

] [
x
y

]
+

[
−2
−1

]
.

This is scaling (matrix multiplication) and shift (affine transformation).

You need to get comfortable alternating between viewing (a, b) ∈ R2 as a
vector and as a point in the plane.

Quiz: In general, if we scale in the x-direction by a and the y-direction by b,
and shift by (b1, b2), we can write: what?

To ponder: We could do these computations before without matrices; why
bother? To be discussed... How can you “go backwards” and undo a scaling
and translation?
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5.6 Specific discrete random distributions

5.6.1 Bernoulli
The Bernoulli random variable and Bernoulli distribution are a building block
for other discrete random variables and their distributions. The Bernoulli ran-
dom variable X takes on the value of 1 with probability p or 0 with probability
1− p, with 0 ≤ p ≤ 1. Here we identify Ω, the set of possible outcomes, with
the range {0, 1} of the random variable X . Notice this distribution obeys the
axioms of probability: with our identification of Ω and {0, 1}, we have

P (Ω) = 1,

we have
P (X = 0) = 1− p ≥ 0

and
P (X = 1) = p ≥ 0,

and we have

P (X = 0 or X = 1) = P (X = 0) + P (X = 1)

because the outcomes 0 and 1 are disjoint.
Bernoulli random variables are useful for the endless variety of coin-flipping

problems, but you’ll also find them useful as indicator random variables for
solving more complicated problems. As you’ll see you can use sums and prod-
ucts of Bernoulli random variables to come up with many of the following
discrete random variables.

The expectation of X is

E(X) = p · 1 + (1− p) · 0 = p

and the variance is

var(X) = E(X2)− (E(X))2 = p− p2 = p(1− p).
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5.6.2 Binomial
The name comes from the binomial expansion, of course, which we’ve seen so
many times:

(p+ q)n =
n∑

k=0

(
n

k

)
pkqn−k.

The binomial distribution asks, “In n coin flips, what is the probability of k
heads?” Use the Bernoulli trials just discussed to rephrase this: in n Bernoulli
trials, what is the probability of k successes?

Very explicitly, a random variable distributed binomially is a random vari-
able X depending on the parameter n, taking on values in {0, . . . , n}. This can
be interpreted as the number of successes k in n trials, where each trial is in-
dependent and success has probability p and failure has probability q = 1− p.
The probability of succeeding exactly k times in n trials is then

P (X = k) =

(
n

k

)
pkqn−k.

This expression is the probability mass function for the binomial random vari-
able.

To figure out the expected value of X , let’s use the idea of indicator random
variables. Let Xi be the result of the ith trial, with Xi = 1 if you succeed and
Xi = 0 if you fail. We already know P (Xi = 1) = p and P (Xi = 0) = 1− p.
Then

∑
iXi = X counts the number of successes you have. Using linearity of

expectation, we know that

E(X) = E(
n∑

i=0

Xi) =
n∑

i=0

E(Xi).

This is an easy computation, since E(Xi) = p · 1 + (1− p) · 0 = p. We have

E(X) = np.

Likewise, the variance computation for X is easy if we use the property of
variance var(aX+c) = a2var(X) and the fact that each trial is independent, so
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var(Xi +Xj) = var(Xi) + var(Xj) for i ̸= j. (Independence is crucial here!!)
We can just sum the variances of the indicator random variables to get

var(X) =
n∑

i=0

var(Xi) = np(1− p).

At points in this math finance journey you may wonder, where is the fi-
nance? Here I refer you to the pioneering paper of Cox, Ross, and Rubinstein,
in which they use a binomial distribution to provide a discrete model for deriva-
tives prices that is easily implemented on a computer and in the continuous
limit produces the Black-Scholes-Merton model for pricing European options.
Go read it right now and be amazed that you can read some foundational liter-
ature!

Notice that one reason the Cox-Ross-Rubinstein and Black-Scholes-Merton
basic models converge is that for large values of n, it’s possible to approximate
the (discrete) binomial distribution using the (continuous) normal distribution.
We’ll discuss this when we talk about the Central Limit Theorem.

5.6.3 Geometric
Say you’re doing a series of Bernoulli trials again, but now you’re considering
how many trials X you must carry out until you reach your first success. An-
other way to think about this is how many failures Y = X − 1 occur before the
first success. The probability mass function for either of these is built on ideas
of conditional probability:

• you assume for P (X = k) that you fail k − 1 times and then succeed on
the kth trial, for k in {1, 2, . . .}, or

• you assume for P (Y = k) that you fail k times and then succeed on the
next trial, for k in {0, 1, 2, . . .}.

As before, let the probability of success on a given trial be p and the prob-
ability of failure be q = 1 − p. Writing out the first few probabilites in the
probability mass function, verify that

P (X = 1) = p, P (X = 2) = qp, P (X = 3) = q2p, . . .
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It’s easy to package this into one function:

P (X = k) = qk−1p, k = 1, 2, 3, . . .

Follow the same process for Y :

P (Y = k) = qkp, k = 0, 1, 2, . . .

Instead of using indicator random variables to calculate expectation and
variance, we’ll use what we know about series. For 0 < p < 1, we can do
the following calculation (and if p = 0 or p = 1, we don’t need to calculate
anything!):

E(X) =
∞∑
i=1

iP (X = i) =
∞∑
i=1

i·p·(1−p)i−1 = p

∞∑
i=1

i·qi−1 = p(1−q)−2 = 1/p.

The identity we used here is that for 0 < p < 1,
∑∞

i=1 i(1 − p)i−1 is the
derivative of 1

(1−p)2 .

5.6.4 Hypergeometric
Now say you’ve got R red balls and W white balls in an urn (N = R+W total
items) and you’re picking out n items all at once. What’s the probability of k
red balls in the n you pick out? This is the hypergeometric random variable X .

While I haven’t seen hypergeometric used a ton in financial mathematics,
Henriksson and Merton used the distribution in their 1981 paper, “On Market
Timing and Investment Performance. II.” It also comes up in various exams you
may need to pass on your career path. Very briefly, Henriksson and Merton
look at what kind of results you’d get by choosing n investments at random
from W losing investments and R winning investments. If forecasters do no
better (or do worse!) than the hypergeometric distribution, then their methods
are not useful. Of course there is much more to the paper; check it out to see
for yourself.

What’s the probability mass function for X , the number of red balls among
n balls picked out of an urn of R red balls and W white balls? The probability



5.6. SPECIFIC DISCRETE RANDOM DISTRIBUTIONS 95

that X = k is the ways to choose k red balls times the number of ways to
choose n − k white balls, over the total number of ways to pick n balls from
N . That’s

P (X = k) =

(
R
k

)(
W
n−k
)(

R+W
n

) .

To find the expected value of the number of red balls picked out of the urn of
N total balls, use indicator variables again. Let Xi be 1 if the ith ball is red and
0 if the ith ball is white. Then the total number of red balls is X =

∑n
i=1Xi. We

can use linearity of expectation (best thing ever!) to break this into computing
the E(Xi) and summing. The probability that Xi is one is

P (Xi = 1) =
R

R +W

and so
E(Xi) = 1 · R

R +W
+ 0 · W

R +W
.

Thus

E(X) =
n∑

i=1

R

R +W
=

nR

R +W
.

Use indicator variables to find the variance, too – you find that

var(X) =
n∑

i=1

var(Xi) +
n∑

i,j=1,j ̸=i

cov(Xi, Xj).

Work through that and check your work:

var(X) =
RWn(R +W − n)

(R +W )2(R +W − 1)
.

5.6.5 Poisson
The Poisson process is a bit different than the others discussed so far. It’s
not simply a combinatorial extension of Bernoulli trials. Instead, the Poisson
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random variable is often used for events happening in time. How many earth-
quakes happen in a given time period? How many times does volatility spike
over a certain time interval?

The Poisson distribution has been used to model market shocks via jump
processes (adding jumps into a model of the market, with frequency described
by a Poisson distribution).

Define a Poisson random variable X as one that takes on the values k =
0, 1, 2, . . . with the probability mass function

P (X = k) =

{
λke−λ

k! k = 0, 1, 2, . . .
0 else

Here λ is a parameter often called the event rate or rate parameter. It gives the
average number of events per time interval.

5.6.6 Negative binomial
How many MBAs must a financial firm interview before finding exactly n good
candidates? This is an example using the negative binomial distribution from
Analysis of Financial Time Series by Tsay. If each candidate is independent
and each applicant has probability p of being a good fit, and the total number of
interviews necessary is the random variable Y , then in the literature both X =
Y − n and Y may be described as having the negative binomial distribution.
I’ll delve into this a bit because it’s good practice with discrete probability, not
because of any particular use for financial math.

First let’s look at the probability mass function for Y , the total number of
interviews necessary to get exactly n good candidates. Each interview is a
Bernoulli trial with probability of success p and probability of failure 1 − p.
The number of good candidates n desired is a fixed positive integer! With
the set-up given, where Y is the total number of interviews/Bernoulli trials
necessary, the last interview or trial must be a success (if it were a failure,
either it was not a necessary interview because n good candidates had already
been identified, or not enough good candidates were yet identified and so the
trials should continue). Call this last interview the kth interview. In the last
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k − 1 interviews, there must have been n − 1 successes. How many ways can
those be arranged? Use a binomial coefficient to count this:

(
k−1
n−1
)

ways. There
are n total successful trials, each with probability p, and k − n unsuccessful
trials, each with probability 1− p. Thus

P (Y = k) =

(
k − 1

n− 1

)
pn(1− p)k−n

for k = n, n + 1, n + 2, . . . . (You should check for yourself that for k smaller
than n the probability must be zero.)

We can split this random variable Y up as the sum of geometric random
variables Yi, where each Yi is the number of interviews necessary to get from
success i−1 to success i. Use linearity of expectation and the fact that E(Yi) =
1/p to see that

E(Y ) = E(
n∑

i=0

Yi) =
n∑

i=0

E(Yi) =
n

p
.

Note that these Yi are independent, as well, so we can find variance this way
too:

var(Y ) = var(
n∑

i=0

Yi) =
n∑

i=0

var(Yi) =
n(1− p)

p2
.

If you’re reading a variety of sources on your probability journey, you might
notice that Tijms, Tsay, and Grinestead and Snell define the negative binomial
distribution as I have above. On the other hand, Wikipedia defines the negative
binomial distribution as the number of successes you see until a predetermined
number of failures has occurred – so if you flip “failure” and “success”, the
definition in Wikipedia is looking at the random variable X = Y −n instead of
Y . (To repeat the set-up at the start of the section, X is the number of failures
occurring before n successes, and Y is the total number of trials necessary for n
successes.) This gives a slightly different presentation of the probability mass
function because something else is being counted. I will not flip my successes
and failures to match Wikipedia, but let’s look at the probability mass function
for X , the number of failures until n successes.

Let’s think this through: if there are no failures, just n successes, then X =
0 and P (X = 0) = pn. If there is one failure and n successes, then X = 1
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and P (X = 1) =
(
n+1−1

1

)
pn(1 − p)1. If there are k failures and n successes,

P (X = k) =
(
n+k−1

k

)
pn(1− p)n−k.

5.6.7 Transformations of discrete random variables
One last thing that may help you grapple with discrete random variables is this
theorem:

Theorem 5.6.1. If X is a discrete random variable and Y = g(X), then Y has
the probability mass function

P (Y = k) =
∑

x∈{g(x)=k}

P (X = x)

and Y has expected value

E[Y ] =
∑
x∈IX

g(x)P (X = x)

for IX the range of values that X can take.

This is a very streamlined and useful theorem that applies to any type of
transformation of X!



Chapter 6

Continuous Random
Variables
In the previous chapter we considered Poisson random variables, for instance
the number of earthquakes that occur in two years. While the number of earth-
quakes is necessarily discrete – an integer value – the time between two earth-
quakes can take values on a continuous domain. Times and distances are natu-
ral settings for continuous random variables. We often see continuous random
variables coming up from geometry questions. In addition, continuous set-
tings are often a nice idealized environment in which to approximate solutions
to discrete financial problems. Stock prices technically don’t take values in a
continuous range, but using a continuous approximation for the distribution of
stock prices allows for very fast computations.

Continuous random variables X are defined by the existence of a proba-
bility density function, or pdf, that characterizes the behavior of the random
variable. This pdf f(x) must satisfy the following properties:

F (x) = P (X < x) =

∫ x

−∞
f(y)dy,

and ∫ ∞
−∞

f(x)dx = 1, f(x) > 0∀x ∈ R.

99
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Two of these equations come from the axioms of probability: if f(x) could
take on negative values, we could get negative probabilities (from the definition
of F (x) = P (X < x)), and if the integral of f(x) over R was not 1, we’d be
violating the axiom P (Ω) = 1.

The function F (x) = P (X < x) is called the cumulative distribution func-
tion or cdf for the random variable X . Notice a few things about F (x):

lim
x→∞

F (x) = 1

because of that axiom, and F ′(x) = f(x) by the Fundamental Theorem of
Calculus. These will both come in handy!

A few more technical notes: since we here make the decision to define F (x)
as an integral of a pdf, F (x) will be continuous for all x and differentiable at all
but a finite number of points (differentiable almost everywhere). You can take
a slightly different approach and define X to be a continuous random variable
if it has a cdf F (x) that is continuous for all x and differentiable at all but a
countable number of points, but to think through the ramifications you need
some measure-theoretic tools that I don’t want to develop in this course.

6.1 Geometry problems

Geometry is a great place to start an examination of continuous random vari-
ables. For a little while, we can work in the sanitized and idealized world of
pure geometric shapes – we’ll delve into messy data soon enough. In this sec-
tion, we’ll just do example after example to illustrate how to work with pdfs
and cdfs.

6.1.1 Max or min in unit square

Pick a point (x, y) at random in the unit square, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 in
R2. What is the probability that the maximum of x and y is less than any given
value z?
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To rephrase that, we can invent a new continuous random variable, Z =
max(x, y). Now we ask, what is the cumulative distribution function F (z) =
P (Z < z)?

This may be familiar from previous geometry problems, and there’s a good
chance you’ve already done this calculation. Draw a picture and notice that for
any given z, the set of points (x, y) with both x and y less than z is a square with
one vertex at the origin (0, 0) and side lengths z. The cumulative distribution
function is in fact

F (z) = P (Z < z) =

 0 z < 0
z2 0 ≤ z < 1
1 1 ≤ z

.

Check that when z = 0 we’ve got F (0) = 0, and that when z > 1 we’ve got
F (z) = 1.

Working backward from this cdf, we can find the corresponding probability
density function f(z). It’s just the derivative of F (z), by the Fundamental
Theorem of Calculus and the definition of F (z). Thus

f(z) =

 0 z < 0
2z 0 ≤ z < 1
0 1 ≤ z

.

Notice that this is not continuous, and we don’t care. Moreover, if you’re very
sharp you’ll say, hey, the function F (z) was not differentiable at z = 0 or z = 1
– how can you assign a value to f(z) there if you’re just taking the derivative
of F (z)? I would respond, you’re right that F (z) is not differentiable at zero
or 1. To make f(z) nicer, I’m just assigning values to f(0) and f(1) that are
consistent with the demands that F (z) =

∫ z

−∞ f(x)dx and f(z) ≥ 0. You can
assign other values to f(0) and f(1) if you like! Yes, this leads to the troubling
realization that “the” pdf of a random variable is not really unique, but measure
theory will (someday) assure us that it won’t change any probabilities. The
values of the integrals are not affected.
Your turn: find the pdf and cdf for the continuous random variable Z, where
Z = min(X,Y ) for a point chosen at random in the unit square.
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6.1.2 Absolute values
Another example problem is finding the cumulative distribution function and
probability density function for Z = |X − Y |, where (X, Y ) is a point chosen
at random in the unit square [0, 1] × [0, 1] ⊂ R2. The absolute value in this
definition of Z is a complicating factor, which makes this a good example!

Again, we’ll use basic geometry to figure out the cumulative distribution
function (cdf) for Z. First, start with what you want to know and substitute:

P (Z ≤ z) = P (|X − Y | ≤ z) (6.1)
= P (−z ≤ X − Y ≤ z). (6.2)

Draw a picture of the unit square with the lines −z = x − y and x − y =
z, remembering that z is a constant of your choice, then figure out what set
satisfies both desired inequalities. (A mental game you can play is this: imagine
an outsider gives you a series of constants to try for z, ranging from negative to
positive numbers. What scenarios occur?) In this case, we want all the points
that are within distance z from the line x = y. Call this set of points A. For a
value of z between 0 and 1, this A has area 1− (1− z)2. Thus

P (−z ≤ X − Y ≤ z) = 1− (1− z)2,

giving us our cdf:

F (z) =

 0 z < 0
1− (1− z)2 0 ≤ z ≤ 1

1 1 < z
.

Differentiating to get the pdf, we have

f(z) =

 0 0 < z
2− 2z 0 ≤ z ≤ 1

0 1 < z
.

Notice that this probability density function isn’t continuous, and it takes values
greater than one. Those are both fine! Probability density functions need not
be continuous, and since they are not actually probabilities, they can also take
values greater than one.
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6.1.3 Circles: you mean I need to remember trig substitu-
tion?

Here’s another example, inspired by a homework problem in Tijms’ “Under-
standing Probability” book: Imagine you’re on the High Roller Ferris wheel
in Las Vegas. It is 550 feet high. The power goes out and you are stopped at
a random point. What is the probability that you are stuck at a height greater
than 412. 5 feet?

Our strategy will go as follows:

1. Figure out what random variable X we want to know about.

2. Find a way to convert this X into a random variable Y about which we
have more information.

3. Use the information about the cdf of Y to find the cdf of X .

4. Use the cdf of X to find the desired probability.

We want the cdf of the height X in feet of our car on the Ferris wheel.
The difficulty is that X is not uniformly distributed – because of the shape of
the Ferris wheel, we move faster through heights near 275 feet than heights
near the top or bottom of the Ferris wheel. What related quantity is uniformly
distributed? The angle of the spoke supporting our car on the Ferris wheel! The
angle from the vertical of the spoke supporting our car moves smoothly from
zero radians from the vertical, at the bottom of the wheel, to π radians from
the bottom vertical, at the top of the wheel. We can use symmetry to consider
the random variable Y uniformly distributed on the interval [0, π], and then see
height as X = 275− 275 cos(Y ).

Since Y is uniformly distributed on [0, π], we have

P (Y ≤ y) =
y

π
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for y ∈ [0, π]. Thus

P (X ≤ 412.5) = P (275− 275 cos(Y ) ≤ 412.5) (6.3)
= P (−275 cos(Y ) ≤ 137.5) (6.4)
= P (cos(Y ) ≥ −0.5) (6.5)

= P (Y ≥ 2π

3
) (6.6)

=
2π

3
· 1
π
. (6.7)

6.2 Expected value and variance
The expected value of a continuous random variable X is very analogous to the
discrete case, just using an integral instead of the corresponding sum:

E(X) = µ =

∫ ∞
−∞

xf(x)dx.

Likewise, while the variance of a continuous random variable X is again de-
fined as var(X) = E[(X−µ)2], it can again by linearity be written as var(X) =
E(X2)− µ2:

var(X) =

∫ ∞
−∞

x2f(x)dx− µ2.

6.3 Transformations of continuous random vari-
ables

Above you’ve used the fact that the probability density function is the deriva-
tive of the cumulative distribution function several times, and we can use this
again to prove a general theorem for nice transformations of continuous ran-
dom variables. Here, “nice” means monotonic. A function is monotonically
increasing on an interval if its derivative is always positive on that interval,
and it’s monotonically decreasing if its derivative is always negative on that
interval. You’ll see where this is a useful condition.
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Let g(X) = Y be your transformation of the continuous random variable
X . Assume you know the probability density function fX(x) for X , and thus
the cumulative distribution function. What’s the probability density function of
Y ? Find it via calculus: first, P (Y < y) = P (g(X) < y). If only we could get
X alone, as we understand P (X < x)!

Aha – if we can invert the function g(x), this is possible. That’s where
“monotonic” comes in. If a function of x is monotonic on an interval, it
can be inverted on that interval. There’s a unique function g−1(y) such that
g−1(g(x)) = x and g(g−1(y)) = y. The graph of the function g(x) passes the
“horizontal line test” you may have learned at some point – a horizontal line
intersects with the graph of g(x) at only one point in the interval, which means
that the graph of the reflection over the line y = x is a function. That reflection
is the graph of the inverse.

Back to the proof: if g(x) is a strictly increasing function,

P (Y < y) = P (g(X) < y) (6.8)
= P (X < g−1(y)) (6.9)

=

∫ g−1(y)

−∞
fX(x)dx. (6.10)

Thus by the fundamental theorem of calculus and the chain rule,

hY (y) =
d

dy
P (Y < y) (6.11)

=
d

dy

∫ g−1(y)

−∞
fX(x)dx (6.12)

= fX(g
−1(y))

d

dy
g−1(y). (6.13)

(6.14)
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If g(x) is strictly decreasing,

P (Y < y) = P (g(X) < y) = P (X < g−1(y)) (6.15)

=

∫ ∞
g−1(y)

fX(x)dx (6.16)

and by the fundamental theorem of calculus and the chain rule

hY (y) =
d

dy
P (Y < y) (6.17)

=
d

dy

∫ ∞
g−1(y)

fX(x)dx (6.18)

= −fX(g−1(y))
d

dy
g−1(y). (6.19)

We can make the formula more compact by writing

hY (y) = fX(g
−1(y))| d

dy
g−1(y)|.

6.4 Markov and Chebyshev
Here I’ll introduce two inequalities that do happen to hold for both discrete and
continuous random variables.

Markov’s inequality says that if X is a random variable taking only non-
negative values, then for any α > 0 we have

P (X ≥ α) ≤ E(X)

α
.

Notice the lack of conditions on the random variable X!
We can cleverly transform this into a related inequality, Chebyshev’s in-

equality, by letting X = Y − µ and using an absolute value. Chebyshev’s
inequality says that for Y with mean µ and variance σ2,

P (|Y − µ| ≥ α) ≤ σ2

α2
.
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Why bother with these inequalities? First, they give us rough but useful
bounds on probabilities. You can detect lies and mistakes with these bounds.
Second, they are very useful in various proofs. Neither inequality has a lot of
hypotheses that the random variable must satisfy, and so you can apply them in
many situations.

6.5 Important distributions
Here, since we’re focusing on applications to financial mathematics, the discus-
sion will first relate the exponential distribution to the Poisson distribution you
saw last chapter, and then discuss the normal and lognormal distributions and
their applications in financial math. Last, we’ll touch on a few other continuous
distributions that come up in data analysis and finance.

6.5.1 Exponential distribution and Poisson

A continuous random variable X has the exponential distribution with param-
eter λ > 0 if it has the probability density function

f(x) =

{
λe−λx x ≥ 0
0 else

One common use of the exponential distribution is in modeling the time until a
rare event occurs, or the time between rare events. Conceptually, this is why it’s
related to the discrete Poisson distribution – we’ll formalize this in a theorem
below.

The expected value of X is E(X) = 1/λ, and the variance of X is var(X) =
1/λ2. The cumulative distribution function is

P (X ≤ x) = F (x) =

{
1− e−λx x ≥ 0

0 else

Computing all of these is a good exercise (do it!).
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Unfortunately, there is notational ambiguity when people write about the
exponential distribution. Another way of expressing the probability density
function is

f(x) =

{
1
βe
− x

β x ≥ 0

0 else
,

where β = 1
λ > 0 is the mean and the standard deviation of the exponential

random variable. When this notation is used, β is called a survival parameter.
This comes from models in which the random variable X represents the time a
system or organism manages to survive. How do you know which notation an
author is using? Look at units: E(X) and X must have the same units. Say X
is the time before some event happens. Then β will have time units and λ will
have units “events per unit time”.

Example 6.5.1. Imagine that the time to failure of a type of hard drive widely
used by a large company is exponentially distributed, and on average the hard
drives break every eight years. What is the probability that a hard drive will
break this year?

First identify the parameter. We have “on average the hard drive breaks in
eight years”, so E(X) = 1/λ = 8 years. That means λ = 1

8 . Then P (X ≤
1) = 1− e−1/8, which is an approximately 11.75 percent chance the hard drive
will break in a year.

What’s the chance that a hard drive will break in eight years or less? Same
process: P (X ≤ 8) = 1 − 1

e , which is approximately 63.2 percent. Why isn’t
this fifty percent? Because the mean and the median are different quantities.
The exponential distribution has a long right tail, in this case pulling the mean
to 8 years while the median time to breakdown is about 5. 5 years. (Can you
find the exact median time to failure, using the definition of the median as t
such that P (X < t) = .5?)

A very important property of the exponential distribution is memoryless-
ness. This is an amazing property that roughly says that it doesn’t matter when
you start counting: the time to your rare event is always (probabilistically) the
same. More precisely,

P (X > t+ s|X > s) = P (X > t)
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for all s, t > 0. This is also easy to prove! Take a look:

P (X > t+ s|X > s) =
P (X > t+ s)

P (X > s)
(6.20)

=
e−λ(t+s)

e−λs
(6.21)

= e−λt (6.22)
= P (X > t). (6.23)

The exponential distribution is the only continuous distribution with this prop-
erty! (Which discrete distribution also has this property?)

Example 6.5.2. You’re considering the hard drive that fails on average every
eight years again. One of the hard drives has been working for three years.
What is the probability that it will fail in the next year if failure is truly modeled
exponentially?

Yep, memorylessness says that the previous three years of service don’t
matter. They don’t make failure any more or less likely, so again you have the
approximately 11.75 percent chance of failure in the next year.

In practice, failure rates are usually increasing or decreasing, rather than
constant (as in a pure exponential distribution). Many components are more
likely to fail as they age. Amazingly, spacecraft tend to be less likely to fail as
they get older (see “Impact of the space environment on spacecraft lifetimes”
by Baker and Baker). This happens when catastrophic events are likely to
reveal themselves early, and if they don’t occur the device is likely to work
a long time. In these cases, the memorylessness property does not hold, and
another distribution is more appropriate.

Last, let’s make formal the relationship between the exponential distribu-
tion and the Poisson distribution. Let X1, . . . , Xn be exponentially distributed
random variables, all independent and identically distributed with parameter λ.
Interpret each Xi as the time between event i and event i + 1 in a sequence of
events. For any > 0, define N(t) as the number of events occuring in the time
interval [0, t). Then we have the following theorem:
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Theorem 6.5.1. With Xi as above interpreted as waiting times between events,
and N(t) the number of events occurring in the interval [0, t), we have

P (N(t) = k) = e−λt
(λt)k

k!

for k = 0, 1, 2, . . .. Notice that this means N(t) is Poisson with E(N(t)) = λt.

Likewise, you can prove that if a sequence of events is Poisson-distributed,
then the waiting times between events are exponentially distributed.

It is very useful to be able to switch back and forth between consideration
of the Poisson and exponential distributions. You saw some examples above,
but I’ll give three examples to be very explicit about which distribution to use
when. Here let N(τ) be the number of events in time interval [0, τ) and let X1

be the waiting time until the first event.

• What’s the probability that no events occur in the time interval [0, τ)?
Use either: you’re looking for P (N(τ) = 0) (probability of no events)
or for P (X1 > τ) (probability that first event happens after this interval).

• What’s the probability that five or more events happen in the interval
[0, τ)? Poisson: it’s easy to take 1−

∑5
k=0 P (N(τ) = k). It is less easy

to figure out the sum of Xis, where Xi for i > 1 is the waiting time from
the i− 1th event to the ith event.

• What’s the probability that you wait more than j minutes for the event?
Exponential – it’s tailor-made for this question. Here, you really care
about the continuous random variable of time, rather than the number of
events that may occur before or after j minutes.

In the second situation, you might think you could just look at the sum of
five or more exponentially distributed random variables. The part I find annoy-
ing about this approach is that you need to figure out and discard the probabil-
ities that X1 > τ , X1 + X2 > τ , etc., and then look only at the probabilities
that

∑k
i=1Xi > τ for k = 5, 6, 7, . . .. It’s just awfully complicated. However,

it does bring up a question: what’s the distribution of a sum of independent
exponentially distributed random variables?
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Write Sn for the sum of n exponentially distributed random variables. The
sum Sn has the Erlang distribution. We can use convolution for continuous
random variables to find the distribution for S2 (although we’ll call it Z for
the next two paragraphs to cut down on the subscripts needed). Convolving the
probability density functions for X and Y gives the probability density function
for Z = X + Y . Define the convolution of probability density functions fX(x)
and gY (y) to be

(fX ⋆ gY )(z) =

∫ ∞
−∞

fX(z − y)gY (y)dy (6.24)

=

∫ ∞
−∞

fX(x)gY (z − x)dx. (6.25)

The ⋆ is the symbol for the convolution operation on two functions, just as +
denotes addition and × and · denote multiplication in R. We’ll put convolution
to use right away by finding the distribution for the sum of two exponentially
distributed random variables that have the same parameter λ. Just to keep our
calculation cleaner, call the exponentially distributed random variables X and
Y and their sum Z = X + Y .

Let fX(x) = λe−λx and gY (y) = λe−λy be the probability density functions
for the exponentially distributed random variables. Then:

hZ(z) = (fX ⋆ gY )(z) =

∫ ∞
−∞

fX(z − y)gY (y)dy (6.26)

=

∫ z

0

λe−λ(z−y)λe−λydy (6.27)

=

∫ z

0

λ2e−λz+λy−λydy (6.28)

=

∫ z

0

λ2e−λzdy. (6.29)

Wait, what? How do you get to change the limits of integration from −∞
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and∞ to 0 and z? The secret is that

fX(x) =

{
λe−λx x > 0

0 x ≤ 0

and likewise for gY (x). The part of the function that is zero is really important:
fX(z − y) = 0 whenever z − y ≤ 0, so whenever y ≥ z. Similarly, gY (y) = 0
whenever y ≤ 0. Put those together: the integrand is zero if y ≤ 0 or if y ≥ z,
so the integrand is only non-zero if 0 < y < z. Having cleared that up, finish
the calculation:

hZ(z) =

{
λ2e−λz z > 0

0 z ≤ 0.

You can extend this to the sum of n independent exponentially distributed
random variables by induction.

6.5.2 Normal distribution and lognormal distribution
Here we’ll talk about three things: the standard normal distribution, the normal
distribution in general, and then the lognormal distribution. This discussion
may motivate you to understand why transformations of random variables are
important to understand more abstractly.

A continuous random variable Z has the standard normal distribution if it
has the probability density function

ϕ(z) =
1√
2π

e−
1
2z

2

for z ∈ R. Here we are using Z for the random variable and ϕ(z) for the pdf
very consciously – these are traditional notations that indicate we’re dealing
with the standard normal rather than a more general normal distribution. The
standard normal distribution is the only normal distribution with mean 0 and
variance 1. The cumulative distribution function for Z is

Φ(z) =
1√
2π

∫ z

−∞
e−

1
2y

2

dy.
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There is no nicer formula for this cdf; in particular, there is no closed form.
Today we often use technology to compute values of Φ(z), but we also make
use of the traditional z-table for looking up values of Φ(z) given values of z.

A continuous random variable X that is normally distributed with mean µ
and variance σ2 can be obtained as an affine linear transformation of Z. Let’s
introduce a nice notation for indicating that a random variable X is normally
distributed with mean µ and variance σ: write

X ∼ N(µ, σ2).

It’s a property of normal distributions that if X ∼ N(µ, σ2), then aX + b ∼
N(aµ+ b, a2σ2). In particular, we can see that X ∼ N(µ, σ2) is a transforma-
tion σZ + µ of a standard normal random variable Z, as by the above property
X ∼ N(σ ·0+µ, σ2 ·1). This also tells us how to standardize a normal random
variable X:

X − µ

σ
= Z

brings us back to the standard normal.
Why do we care? The probability density function f(x) for X ∼ N(µ, σ2)

has a lot of symbols:

f(x) =
1

σ
√
2π

e−
1
2 (x−µ)

2/σ2

for −∞ < x <∞. (Note σ > 0.) The cumulative distribution function, again,
has no closed form:

F (x) =
1

σ
√
2π

∫ x

−∞
e−

1
2 (y−µ)

2/σ2

dy.

There aren’t tables to look up these values except when µ = 0 and σ = 1.
Before the availability of computers, using the affine linear transformation to
get back to a standard normal cumulative distribution function was the only
way to calculate values for F (x), and even now, it’s often still the easiest way
as algorithms for computing Φ(z) are optimized in computational software.

Another really nice property of normally distributed random variables is
that if X1 and X2 are independent and normally distributed with X1 ∼ N(µ1, σ

2
1)
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and X2 ∼ N(µ2, σ
2
2), then X1 + X2 is also normally distributed. Because X1

and X2 are independent, both their means and variances add, and X1 + X2 ∼
N(µ1 + µ2, σ

2
1 + σ2

2).
Now let’s look at the lognormal distribution. A continuous random variable

Y is lognormally distributed if ln(Y ) ∼ N(µ, σ2). Another way to look at this
is that Y = eX for some X that is normally distributed. This relationship tells
us that the cumulative distribution function for a lognormally distributed Y is

F (y) = P (Y ≤ y) = Φ

(
lny − µ

σ

)
for y > 0. As a consequence, we get the probability density function

f(y) =

{
1

σy
√
2π
e−

1
2 (ln y−µ)

2/σ2

y > 0

0 else

From this you can deduce that E(Y ) = eµ+
σ2

2 and var(Y ) = e2µ+σ2

(eσ
2−1).

Self-quiz: since Y = eX , why don’t we have E(Y ) equal to eµ? This is actually
quite important to understand in the context of finance.

6.6 Central Limit Theorem
The Central Limit Theorem has been called “the queen of theorems” in proba-
bility, and indeed it is amazing – and one of the primary reasons we care about
the normal distribution. In essence, the Central Limit Theorem says that under
certain conditions any large enough number of independent and identically dis-
tributed random variables sum to a random variable that has an approximately
normal probability density function.

Let’s be more precise. Let X1, X2, . . . , Xi, . . . be a sequence of indepen-
dent, identically distributed, real-valued random variables with mean µ and
standard deviation σ > 0. Consider

Sn =
n∑

i=1

Xi
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for any natural number n; it’s a partial sum of the Xis.
You, personally, can prove using linearity of expectation and properties of

variance that E(Sn) = nµ and var(Sn) = nσ2. It’s worth pointing out that as
n → ∞ these quantities also approach infinity (if µ ̸= 0). So it’s not correct
to talk about the limiting distribution for Sn, despite the temptation. Instead,
consider the standardization Zn of Sn:

Zn =
Sn − nµ√

nσ
.

Theorem 6.6.1. The Central Limit Theorem: as n → ∞, the distribution of
the standardization Zn of Sn converges to the standard normal distribution.

Another way to state this is to say:

Theorem 6.6.2. For X1, . . . independent and identically distributed random
variables with mean µ and variance σ > 0, and Sn =

∑n
i=1Xi,

lim
n→∞

P

(
Sn − nµ√

nσ
≤ x

)
= Φ(x) ∀x ∈ R.

How big must n be for the normal approximation to be “good”? In many
situations, an n of at least 30 will be big enough, but truly it depends on the
original distribution of the Xi. In addition, there is another technical problem
when the Xi have a discrete distribution. Approximating the resulting discrete
distribution of Sn or Zn by a continuous distribution means that the event Sn =
k should correspond to {k −∆ ≤ Sn ≤ k +∆} for ∆ ∈ [0, 1) – but different
values of ∆ give different approximations. The tradition is to use ∆ = 1/2 and
not worry too much.
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Chapter 7

Random walks
Random walks bring us from discrete probability to continuous motion. We
know how to look at the results of sequential coin flips. We now know about the
normal distribution, as well. Last, we know about the Central Limit Theorem,
which gives us some results about sums of independent identically distributed
random variables. However, in finance we care about the final distributions of
stock prices and returns and we often care about the path taken as well. And
we know that this financial info inhabits a netherworld between discrete and
continuous

7.1 Simple symmetric random walk
A simple symmetric walk has a name that makes sense. Consider a walk along
a line of integers. You start at zero and move right or left one integer unit with
equal probability. Mathematically, we can say that for the ith step Xi, we have
pmf

P (Xi = 1) = 1/2 (7.1)
P (X1 = −1) = 1/2. (7.2)

The simple symmetric random walk W (1)(t) is an integer-time stochastic
process {W (1)(1),W (1)(2),W (1)(3), . . .} where each W (1)(n) = Sn is the sum

117
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of the steps Xi that occurred before time j:

Sn =
n∑

i=1

Xi.

We set W (1)(0) = S0 = 0. Then notice that each W (1)(n) = Sn gives the
position at time n (or after n steps, since we’re taking unit-time steps). If you
want to know the distance from the origin at time n, you look at |Sn|, while the
total number of steps taken is just n.

The simple symmetric walk is a great setting in which to ask a lot of ques-
tions:

• What’s E(W (1)(n))?

• What’s var(W (1)(n))?

• What’s the probability that W (1)(n) falls below a certain value or hits a
certain higher value?

• How long would it take on average to reach a certain value?

We won’t answer all of these questions yet, but you can imagine why
they’re important and why they came up: if I bet $20 on each round of black-
jack on the Strip in Las Vegas, how long do I expect to play until I go broke?
(Tip: you can find lower-priced tables if you go to old Las Vegas and get off the
Strip). If I switch to $5 tables, how long could I expect to play? I do need to
throw in the caveat that these questions more properly belong in the asymmetric
random walk section due to the house advantage.

7.1.1 Expectation and variance
The expectation and variance of the simple symmetric random walk W (1)(n)
are easy calculations that show off the power of the linearity of expectation and
the delight of independent random variables. Remember that each step is of
size one. Since this walk is symmetric and starts at zero, notice that E(Xi) = 0
for all i. (Check!) Thus
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E(W (1)(n) = E(
n∑

i=1

Xi) (7.3)

=
n∑

i=1

E(Xi) (7.4)

=
∑

0 (7.5)

= 0. (7.6)

Variance is another easy calculation: you should check that var(Xi) = 1
(check the signs!), and remember that the steps Xi are independent from each
other.

var(W (1)(n)) = var(
n∑

i=1

Xi) (7.7)

=
n∑

i=1

var(Xi) (7.8)

=
n∑

i=1

1 (7.9)

= n. (7.10)

Thus the standard deviation of the position W (1)(n) after n independent steps
is
√
n, which may or may not be surprising to you. While simple, this property

of the simple symmetric random walk will play a large role below.
For finite n, we can approximate the distribution of W (1)(n) using the Cen-

tral Limit Theorem. We can say that for large n,

W (1)(n) ≈ N (0, n).

It’s useful to look at a picture of this set of random walks. Here I generate
180 simple symmetric random walks in Python:
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Notice that there’s a cone of possible paths, with the position Sn bounded
above by n and below by −n every step of the way. If we plot a histogram of
the S100 values of these 180 paths, we see that the validity of approximating
position Sn using the normal distribution begins to emerge:
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As we consider asymmetrical random walks, we want to see how the cone
of possible paths and the histogram of endpoints change, and as we transition to
smaller and smaller steps in the walk, we want to maintain this cone of possible
paths.

7.2 Asymmetric random walks

The first generalization of the simple symmetric random walk is the random
walk with asymmetric probabilities. All we do is consider

P (Xi = 1) = p, P (X1 = −1) = q,

where p+ q = 1. How does this look?
Here is a picture of a random walk with one step of size one for every unit

of time, with p = .6:
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We can look at the following simulation of 180 such random walks. Note
the black line across the top, corresponding to (0.6− 0.4)t:
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Notice that changing p and q doesn’t change the cone of possible paths –
these simple random walks are still bounded by n above and n below at step n
– but it does radically change the general trajectory of the paths. Let’s quantify
this by looking at the expected value and variance of Sn.

7.2.1 Expected value and variance

Since E(Xi) = p · 1 + q · (−1) = p − q = 2p − 1, we have the following
calculation of expectation Sn:

E(W (1)(n)) = E(
n∑

i=1

Xi) (7.11)

=
n∑

i=1

E(Xi) (7.12)

=
n∑

i=1

2p− 1 (7.13)

= n(2p− 1). (7.14)

We plotted this as a line on the figure consisting of simulated walks above.
Here’s another example, with p = 0.55.
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The variance calculation is mildly more interesting:

var(Xi) = (p · 12 + q · (−1)2)− (2p− 1)2 = 4p(1− p),

and with independence of the steps,

var(W (1)(n)) = var(
n∑

i=1

Xi) (7.15)

=
n∑

i=1

var(Xi) (7.16)

=
n∑

i=1

4pq (7.17)

= 4npq. (7.18)

For what value of p is this variance maximized? What does that mean in
terms of the walks we can take?
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You can calculate the value of p maximizing var(W (1)(n)) using calculus
or using symmetry of the parabola 4p(1− p): no matter what method you use,
variance is maximized for p = 1/2. Figure out how to justify this to yourself
using the pictures above. Also confirm to yourself that variance is minimized
for p = 1 or q = 1, and understand why.

7.3 Scaling time or space

Instead of adjusting the probabilities, we could scale the frequency of the steps
or the size of the steps. Let’s return to the symmetric random walk so that we
can mess with one idea at a time!

Return to the symmetric probability setting P (Xi = 1) = 1/2, but take two
steps in every unit time – or three, or k, for k a positive integer (for simplicity).
Before, each step took one time unit, and we conflated “number of steps” and
“total time units”. Now we need to be more careful. Let’s say that we take
k steps in one unit of time, so in t units of time we take n = kt steps in the
random walk. Another way to think about this is that in one unit of time we
take k steps, each taking time length ∆ = 1/k. We’d like to design a discrete-
time stochastic process W (k)(t) that just gives a finer and finer random walk,
without blowing up the position of the walker (as k changes we want variance
of W (k)(t) for any particular time t to stay constant).

For example, here are twenty random walks that each have

• a step distance of 1 unit per step

• ten steps per unit time (so k = 10, while ∆ = 0.1.)

• all over 1, 000 total steps or 100 units of time
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Look how some paths get near 40 or−40 just 20 time units in. The variance
of this random walk process is much larger than our previous random walks:
for this particular set of 20 trials, we have a variance at time 100 of 1022.51.
Variance is about ten times bigger than the time length of the random walk,
and that’s no coincidence. What if we let k = 12345? Then variance would be
about 12345t at time t.

As k grows, we’ll simply move away from the origin more rapidly as we
walk – the variance of the position at time t will get larger as k gets larger. This
does not preserve the properties of random walks that we wanted. We want a
finer random walk (more steps k per unit time) that keeps variance at time t
constant even as k changes. Scaling only the frequency of steps we take (time)
while leaving the length of the step (space) at one results in a variance of kt at
time t.

Solution: as we scale time, we must scale space as well. If we move more
often we’ve got to take smaller steps in order to keep variance constant with re-
spect to step frequency. We want the variance of our stochastic process W (k)(t)
to be T at time t = T , not kT . This can be accomplished by scaling distance
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to take out that extra k:

W (k)(t) =
n=kt∑
i=1

1√
k
Xi =

n=kt∑
i=1

Yi,

for Yi =
1√
k
Xi.

Take a look. In this set of 30 random walks, we took

• ten steps per unit time (so k = 10, while ∆ = 0.1)

• each step of length 1/
√
10, about 0.316

• all over 1, 000 total steps or 100 units of time.

At time 100, the variance for the final endpoints of these random walks is
105.769 – much closer to 100, as desired.

The image above has a random selection of random walks, rather than all
possible ones. With the scaling Yi =

1√
k
Xi, what is the maximum distnace one
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could go in time t, starting from the starting point of W (k)(0) = 0? With kt
steps of length 1√

k
at time t, the maximum distance traveled would be kt√

k
=√

kt. Note that this does grow with k.

7.3.1 Special properties
Three special properties stand out for these random walks that will also be very
important in the discussion of Brownian motion:

• Independent increments: for 0 < s < t < l < k, W (k)(t)−W (k)(s) and
W (k)(k)−W (k)(l) are independent.

• Expected value is zero for our symmetric set-up, E(W (k)(t)) = 0, and
variance is proportional to interval: var(W (k)(t)) = t.

• By the Central Limit Theorem, as n = kt grows large, W (k)(t) is well-
approximated by a normal distribution with the above mean and variance.

Once we transition to Brownian motion, we’ll see that independence of
increments and the normality of the distribution at a given time t are important
carryovers. The difference between our random walks and Brownian motion is
that Brownian motion is continuous.

7.4 Arithmetic Brownian motion
Here we will only talk about one-dimensional Brownian motions. (When we
say one dimension, we mean one space dimension – we’re not counting time.)
It’s possible to look at two-dimensional or multi-dimensional Brownian mo-
tions, which could be useful when modeling a portfolio of stocks, for instance.

Brownian motion is a continuous-time process. In the random walks above,
we only took steps at times that were multiples of 1/k for k an integer. They
were discrete-time stochastic processes. Brownian motion involves steps at all
times t > 0, t ∈ R.
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Let’s build up from the simple symmetric random walk, W (1)(t). Let W (k)(t)
be the scaled symmetric random walk defined before. We can write a scaled
random walk with drift µ and “diffusion coefficient” σ as

B(k)(t) = σW (k)(t) + µt.

Recall this will have the properties that

• For 0 ≤ s < t < u < v, we have independent increments B(k)(t) −
B(k)(s) and B(k)(v)−B(k)(u).

• For 0 ≤ s < t, the distribution of B(k)(t) − B(k)(s) depends only on
t− s.

• In particular, for large s and t, 0 ≤ s < t, B(k)(t) − B(k)(s) is approxi-
mated by the distribution N (µ(t− s), σ2(t− s)).

Take the limit as k → ∞, and get a stochastic process. Taking the limit
preserves the properties of stationary and independent increments which are
normally distributed. So let Bt be the limiting process

Bt = lim
k→∞

σW (k)(t) + µt.

Now we have a real-valued process Bt, t ≥ 0, with

• Independent increments: for 0 < s < t < u < v, Bt − Bs and Bv − Bu

are independent.

• For 0 ≤ s < t, the increment Bt−Bs has distribution N(µ(t−s), σ2(t−
s)).

• With probability one, Bt is continuous!

This is called a Brownian motion with drift µ and diffusion coefficient σ.
The “standard” version, with µ = 0 and σ = 1, is called standard Brownian
motion or the Wiener process, and we often denote this by Wt.
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The relationship between any two random walks B(k) and B(ℓ) is just a
change of coordinates, scaling space and time if k and ℓ are different and scal-
ing the drift and diffusion if they differ. The Wiener process (Brownian motion)
is the limit of a simple symmetric random walk as k goes to infinity (as step
size goes to zero). Thus Brownian motion is the continuous-time limit of a
random walk.

Note that if we’re being very specific, we could call this an arithmetic Brow-
nian motion. Here we are drawing the distinction between arithmetic and ge-
ometric, and this corresponds exactly to the distinction between an additive
binomial tree and a multiplicative binomial tree.

7.5 Geometric Brownian motion
Geometric Brownian motion is the next logical step. If Bt is an (arithmetic)
Brownian motion, we can make a geometric Brownian motion St by defining

St = S0e
Bt.

This is again a continuous stochastic process, and we can show it’s got proper-
ties similar to the arithmetic Brownian motion Bt. The process St has stationary
and independent increments, just like Bt. On the other hand, you can see that
at time zero we start with S0, any number we like, although we generally use
a positive number in financial modeling. (In particular we don’t use S0 = 0
because that would result in a constant function.) Last, since at a particular
t1 we have normally distributed Bt1, we also have a lognormally distributed
St1. Everything you learned about the lognormal distribution applies at each
moment in time to a geometric Brownian motion.

Previously, we saw that (arithmetic) Brownian motion comes about from
scaling and taking the continuous limit of an (additive) random walk. Geo-
metric Brownian motion comes instead as the limit of a multiplicative random
walk: look at an initial stock price, S0, multiplied by factors Li at each time
step:

Sn = S0L1L2 . . . Ln.
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If we model these Li as independent and identically distributed random vari-
ables, applying the logarithm allows us to write the equation additively and
then the Central Limit Theorem applies.

lnSn = lnS0 +
n∑

i=1

lnLi

The random variables lnLi are still independent and identically distributed.
You can imagine taking more and more multiplicative factors Li at shorter and
shorter time steps, just as we did with arithmetic Brownian motion.

7.6 Solving Brownian motion problems
How do we solve these problems?

Example 7.6.1. With a standard Brownian motion Wt, solving problems is
often easy! Since Wt ∼ N(0, t), we can standardize and normalize with ease.
Let Z be the standard normal continuous random variable. Take a look:

P (W4 < 0) = P (Z < 0) = 1/2.

Here we’re definitely using symmetry of the normal distribution. A step up:

P (W100 < W80) = P (W100 −W80 < 0) = P (Z < 0) = 1/2.

Now we’re using stationary increments: we know W100 −W80 ∼ N(0, 100 −
80). Mildly more difficult:

P (W100 < W80 + 2) = P (W100 −W80 < 2) (7.19)

= P (W20/
√
20 < 2/

√
20) (7.20)

= P (Z < 2/
√
20) (7.21)

= Φ(2/
√
20). (7.22)
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Since 2/
√
20 ≈ 0.447, this probability is between .6700 and .6736 using a

z-table. And now let’s combine some conditions:

P (W3 < W2 + 2 and W1 < 0) = P (W3 −W2 < 2 and W1 −W0 < 0)

(7.23)
= P (W3 −W2 < 2)P (W1 −W0 < 0)

(7.24)
= P (Z < 2)P (Z < 0) (7.25)

= Φ(2) · 1
2
. (7.26)

Here I write W1 − W0 to really emphasize that I’m looking at an increment
that does not overlap with W3 −W2, even though they have the same distribu-
tion. The distribution of what happens between times 2 and 3 doesn’t depend
on prior behavior, even though actual position at time 3 certainly depends on
position at time 2! So I’ll end with a question we can’t solve with current tools:

P (W3 < 2 and W4 > 4).

Do you see any way to transform this into a question about non-overlapping,
and thus independent, increments? I don’t! In fact, that position at time 4 is
influenced by position at time 2. We’ll need to figure out how, which will bring
us to considering the covariance matrix of {Wt} at integer times.

Questions about Brownian motion with drift are similar, although standard-
izing requires another step.

Example 7.6.2. Let Xt be a Brownian motion with drift µ = 2 and diffusion
σ = 3, so

Xt = 2t+ 3Wt.

Find P (X4 < X5 + 1).

P (X4 < X5 + 1) = P (X4 −X5 < 1) = P (X5 −X4 > −1).
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At this point I always stop to check some things: X5−X4 has what distribution
again?

X5 −X4 = 2 · 5 + 3W5 − (2 · 4 + 3W4) = 2 + 3(W5 −W4).

Since W5 −W4 ∼ N(0, 1), we’ll call it Z and write

X5 −X4 = 2 + 3Z.

Let’s get back to the calculation:

P (X4 < X5 + 1) = P (Z > −1) (7.27)
= 1− P (Z < −1) (7.28)
= 1− Φ(−1) (7.29)

This is approximately 0.8413.

Likewise, questions about geometric Brownian motion usually just involve
taking a logarithm and then following the steps shown above. In list form,

• take appropriate logarithms to go from geometric Brownian motion to
arithmetic Brownian motion

• translate from arithmetic Brownian motion to normal random variables

• standardize those normal random variables

• use a z-table and/or symmetry of the normal distribution to get numbers.

As illustrated above, you might get stuck if you can’t separate your com-
putations into computations about independent increments – but otherwise the
world is yours!
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Chapter 8

Linear algebra

While I’m assuming you’ve encountered vectors and matrices in previous math
classes, we’ll start with a short review. Then in the next few chapters, we’ll
cover elements of linear algebra, multivariable calculus, and differential equa-
tions that provide a nice base for financial math. Financial information is al-
most always multivariate: as a portfolio manager, you manage multiple assets;
as a risk analyst, you look at multiple risks. Combining these classical mul-
tivariate topics with statistics will give you access to powerful mathematical
techniques.

8.1 What is a vector? What is a matrix?

Most generally, a vector is an element of a vector space. Often, we care about
the vector spaces Rn or Cn, in which case

• the vector is an n-tuple of real or complex numbers (a list in which order
matters), or

• (equivalently) a direction with a magnitude.

There are examples that are rather different, but we’ll save those for discussion
later.

135
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We’ll use the notation v⃗ for a vector, and can write for instance

v⃗ = [v1, . . . , vn] ∈ Rn

for a vector whose components vi for i = 1, . . . , n are all real numbers.
A vector space or linear space is a set of vectors that is closed under scalar

multiplication and vector addition. This word “scalar” refers to a number that
scales things – a stretch factor – and so for a real vector space, a scalar is a real
number, and for a complex vector space, a scalar is a complex number. Notice
that any vector space must include the zero vector (which we write 0⃗) because
if scaling a vector by any scalar is an operation that keeps the output in the
vector space, we’ve got to be able to scale by zero.

Here are some examples of vectors and vector spaces:

Example 8.1.1. Think of all the vectors in R3 that have zero for their z-coordinate.
Call that vector space V , and write V as

V = {v⃗ = [x, y, z] ∈ R3|z = 0}.

Check that you can add or subtract two such vectors and still have z = 0.
Check that you can multiply the vector by any number in R and stay in V .
Remember multiplication of a vector by a scalar is done element by element,
so c[x, y, 0] = [cx, vy, c · 0] = [cx, cy, 0].

Example 8.1.2. Another vector space W ⊂ R3 is given by all the vectors
v⃗ = [x, y, z] such that x + y + z = 0. You can graph this. Do you know what
surface this gives in R3?1 Vectors in this vector space include [1, 2,−3] and
[−π, 38,−38 + π]. Check for yourself that this vector space is closed under
scalar multiplication and vector addition (that is, for all v⃗, w⃗ ∈ W , av⃗ + bw⃗ ∈
W for scalars a, b ∈ R).

If a vector space is contained in another vector space, we say it is a vector
subspace of the larger vector space. In our examples immediately above, both
V and W are vector subspaces of R3, but since neither V nor W contains the

1A plane that goes through the origin!
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other one, neither is a vector subspace of the other. However, both V and W
contain the intersection V ∩W , the set of vectors v⃗ = [x, y, z] in R3 with z = 0
and x+ y + z = 0. That vector space, Q, is given by

Q = {[x, y, z] ∈ R3 | x+ y = 0, z = 0}.

In fact, that’s a line through the origin given by x + y = 0 and z = 0, and we
could rewrite it as

Q = {[x,−x, 0] ∈ R3}.
If you like parameterizations (I do!) we could use a parameter t ∈ R and write
this yet one more way:

Q = {t[1,−1, 0] ∈ R3|t ∈ R}.

What is a matrix? Mechanically, a matrix is made by stacking vectors as
rows or columns to make a rectangular array of numbers. In this book we’ll
most frequently encounter matrices of numbers, but we also make matrices of
symbols or expressions (you’ll notice this in the section on rotation matrices,
for instance).

An example of a matrix of real numbers would be[
1 2 3
−2 π −1.5

]
.

This is a two by three matrix. An example of a matrix of complex numbers
would be [

i 2 3− i
0 iπ −1.5i

]
.

This is also a 2 × 3 matrix. When we need a very general m × n (m by n)
matrix called A, we can write

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
... . . . ...

am1 am2 . . . amn

 .
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You can multiply matrices by scalars (just multiply each element by the
scalar) and you can add matrices (also element by element). The observant
among you might think, hmm, does that mean we can make a vector space out
of matrices? Yes, you can! The vector space of all m × n matrices with real
entries is often called Matm×n(R), or Mm×n, or Rm×n. Somehow you have to
indicate the dimensions of the matrix and what the entries are allowed to be.

8.2 Linear combinations and matrix multiplica-
tion

8.2.1 Linear combinations

First, let’s look at the idea of linear combinations of vectors and relate it to
matrices. Here’s a very simple motivating example:

The equation 2x + y − 4z + w is a linear combination of the variables x, y, z
and w. It can be expanded as a dot product,

[x, y, z, w] · [2, 1,−4, 1],

or as a product of matrices,

[
2 1 −4 1

] 
x
y
z
w

 .

Here is another motivating example:
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An example of a linear combination of the vectors

32
1

 and

−72
4

 is given by

3

32
1

+

−72
4

 =

28
7

 .

Using matrix multiplication, we could also write3 −72 2
1 4

[3
1

]
=

28
7

 .

8.2.2 Matrix multiplication and dot products
Linear combinations of vectors can always be expressed via matrix multiplica-
tion, and matrix multiplication is built out of dot products. The dot product of
two real vectors a⃗ and b⃗ in Rn is

a⃗ · b⃗ = [a1, . . . , an] · [b1, . . . , bn] =
n∑

i=1

aibi.

We are only defining dot product for real vectors right now (complex vectors
will show up in Section 9.10). For real vectors, a⃗ · b⃗ = b⃗ · a⃗, so dot product is
commutative (not true for complex inner product!). Multiplication by scalars
(real numbers) distributes over dot product, too: a⃗ · (c⃗b) = c(⃗a · b⃗) = (c⃗a) · b⃗.
Often with commutativity we talk about associativity (for instance (3+2)+1 =

3 + (2 + 2)), but for dot product this does not make sense: a⃗ · (⃗b · c⃗) is not an
operation that makes sense, as you can’t dot a vector and a scalar.

Geometrically, the dot product a⃗ · b⃗ is related to the angle between the vec-
tors a⃗ and b⃗. Pick the smallest possible angle between the two vectors, θ be-
tween zero and π. Define

a⃗ · b⃗ = ||⃗a||||⃗b|| cos θ.
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If a⃗ and b⃗ are perpendicular to each other, then the angle between them is π/2
radians and a⃗ · b⃗ = 0.

This uses the magnitude of a⃗ and b⃗: for a⃗ ∈ Rn, we can define the magni-
tude ||⃗a|| by

||⃗a|| =
√
a21 + a22 + . . .+ a2n.

This should look a lot like Euclidean distance to you (if you’re not sure, just
think about a⃗ ∈ R2). It is exactly that, the distance from the tail of a⃗ at the
origin to the tip of the vector a⃗. Notice too then that a⃗ · a⃗ = ||⃗a||2. This will be
useful.

Matrix multiplication, then, is built from dot products as follows: Let C be
an m× n matrix with rows given by c⃗1 through c⃗m. Let D be an n× p matrix
with columns given by d⃗1 through d⃗p. We can write the matrix multiplication
as

CD =


← c⃗1 →
← c⃗2 →

...
← c⃗m →


 ↑ ↑ ↑
d⃗1 d⃗2 . . . d⃗p
↓ ↓ ↓

 =


c⃗1 · d⃗1 c⃗1 · d⃗2 . . . c⃗1 · d⃗p
c⃗2 · d⃗1 c⃗2 · d⃗2 . . . c⃗2 · d⃗p

... . . . ...
c⃗m · d⃗1 c⃗m · d⃗2 . . . c⃗m · d⃗p


Make sure you know the difference between a row vector and column vec-

tor! A row vector looks like

r⃗ = [r1, r2, . . . , rm] ∈ Rm,

for instance, while a column vector might be

c⃗ =


c1
c2
...
cn

 ∈ Rn.

Often people (like me) are rather sloppy and switch back and forth between
writing a vector in Rn as a row or column vector depending on how much
paper they have. That’s not terrible. But being clear in calculations about
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whether you’re using a row vector or column vector is important. For instance,
what is the difference between multiplying two vectors as matrices and taking
the dot product between two vectors with the same shape?

Example 8.2.1. Let v⃗ = [1, 2] and w⃗ = [−1, 1]. Then compute the follow-
ing, with the knowledge that the T stands for transpose (exchange rows and
columns, or flip over the diagonal):

v⃗ · w⃗

v⃗w⃗

v⃗T w⃗

v⃗w⃗T

Now check your answers in the footnote. 2

8.3 Geometry and linear algebra

Linear algebra is, unsurprisingly, rather... linear. But it’s got a lot of geometry
going on with all those angles and lengths and volumes. In this section we’ll
discuss planes and parametrizations as a great first example, then tackle deter-
minants, cross products, and projection. We’ll focus on the geometric meaning
as a means of beginning the integration3 of linear algebra with multivariable
calculus. Some of these techniques are specific to low dimensions (R2 and
R3) but they can give intuition to the generalizations to higher dimensions. As
high-dimensional data analysis becomes an ever more important part of the
landscape of mathematics, finance, and industry, this is useful!

2(Dot product is 1, second product makes no sense for dimension reasons, third is
[
−1 1
−2 2

]
, and fourth is 1,

the same as the dot product.)
3haha
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8.3.1 Planes and parameterizations

In this section we’ll talk about equations of planes, but maybe it’s good to start
with the equation of a line as a test case. You can write the equation of a line
L in R3 in several ways. One of my favorite ways to write a line in R3 is to
parameterize it. I will use the parameter t ∈ R. It’s just a scalar. Then we need
a direction for the line – call it v⃗ – and a point that lies in the line – call that p⃗.
A set-theoretic description of the points in the line, then, is

L = {x⃗ ∈ R3|x⃗ = tv⃗ + p⃗}.

When t = 0 we’re just at the point p⃗, and as t ranges through the rest of R, we
just scale along the vector v⃗.

This concept of parameterization will be very useful in exploring planes and
other multivariate curves, surfaces, solids, etc. Among other things, parametriza-
tion can help us understand the notion of dimension both in linear and nonlinear
contexts.

We can use matrix multiplication or dot product to write the equation of a
plane in R3. For instance, the equation 3x − y + 2z = 5 can be rewritten as
(3,−1, 2)(x, y, z)T = 5. This is a logical condition – a constraint – that picks
out a certain set of points in R3. The plane given by 3x − y + 2z = 5 is an
affine subspace of R3, not a vector space in R3. Why? First, check to see if the
space {[x, y, z] ∈ R3 | 3x− y + 2z = 5} is closed under scalar multiplication
and vector addition. (Remember zero is a scalar!) What do you find? Second,
ponder this question:
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Example 8.3.1. What is the difference between a point in this plane and a
vector in this plane? Find an example of a point in the plane and a vector lying
in the plane.

You probably found your own examples, but (0,−5, 0) and (0, 0, 2.5) are
two points in the plane – they satisfy the equation 3x−y+2z = 5. By contrast,
[0,−5,−2.5] is a vector in the plane. A few different ways to say that: it’s a
vector that lies parallel to the plane when based at the origin, so we can translate
it to lie in the plane; it is a vector that goes between two points in the plane;
it’s a vector perpendicular to the normal vector (3,−1, 2), which is enough to
characterize the plane since we’re in R3.

A plane can be parametrized using two variables, for instance s and t,
because it’s a two-dimensional object. For example, let x = s, y = t, and
z = 2.5 − 1.5s + 0.5t. Notice this satisfies our previous Cartesian equation,
3x− y+2z = 5! We can write the parametric vector-valued equation like this:x

y
z

 =

 s
t

2.5− 1.5s+ 0.5t

 .

If we wish to drop the x, y, z and write a function f : R2 → R3, we can write
the below expressions as well as the previous:

f(s, t) = s

 1
0
−1.5

+ t

 0
1
0.5

+

 0
0
2.5


or

f(s, t) =

 1 0
0 1
−1.5 0.5

(s
t

)
+

 0
0
2.5

 .

Notice here that I’ve now written the expression as a linear shift of the
linear combination of two vectors that lie in the plane, or as the linear shift
of a matrix product. While simply a cosmetic rewrite, this points out a larger
lesson. Explore this through examples:
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Look at (
x1 x2 x3

) 3 2
−1 3
2 4


How can this product be expanded? Write the product in two ways, as a single
row vector and as the linear combination of three row vectors in R2.

Do this again for another product: 3 2
−1 3
2 4

(y1
y2

)
.

Again, rewrite the product as a single column vector in R3 and as the linear
combination of two column vectors in R3.

What do you notice about the linear combinations and vector spaces that
result?

This leads to the useful concepts of row space and column space, explored
a little later.

8.3.2 Projection

Let’s get back to lines for a bit. One common question that arises in physics,
finance, and statistics is this: “I have a vector a⃗ that I want to explore, and
another vector b⃗ as a reference of sorts. How much of vector a⃗ points in the
direction of b⃗? What does this even mean?”

Examples you may have seen include the classic physics question about a
block on a slippery slope. That block is going to slide down the slope, but
how fast? What’s the component in the direction of gravity, and what’s the
horizontal component? We can use similar ideas closer to finance, in ideas of
decomposing a company’s stock’s movement into the component due to “the
market” and the component due to the company itself. (Insert discussion of
how this relates to alpha, beta here.***) Later, we’ll employ Gram-Schmidt
decomposition (Section ??) and singular value decomposition (Section 9.13)
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to pursue these ideas.
For the moment, though, let’s just look at projection. Let’s define the pro-

jection of a vector a⃗ onto another vector b⃗. Imagine that a projection is the
shadow of a⃗ on the line in direction b⃗ if the sun is “directly overhead.”

The algebraic formulation is

proj⃗ba⃗ =
a⃗ · b⃗
|⃗b|2

b⃗.

Notice that this vector has a direction (it goes in the direction of b⃗) and a mag-
nitude (the magnitude of the projection is |⃗a| cos(θ), where θ is the angle be-
tween the vectors a⃗ and b⃗. You could figure out this definition of projection
yourself by looking at the natural geometric expression |⃗a| cos(θ) b⃗

|⃗b|
and using

a⃗ · b⃗ = |⃗a||⃗b| cos(θ) to prove the formula in terms of the dot product.
In particular, this helps us write a⃗ as the sum of a component in the dirciton

of b⃗ and a component perpendicular to b⃗. We can get the component perpen-
dicular to b⃗ by simply subtracting:

• check that

c⃗ = a⃗− a⃗ · b⃗
|⃗b|2

b⃗ = a⃗− proj⃗ba⃗

is a vector orthogonal to b⃗, and check that

• check that textrmproj b⃗a⃗+ c⃗ = a⃗.
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8.3.3 Determinants
One must reckon with determinants of square matrices at some point in linear
algebra. It’s time. We will in general automate computation of determinants,
so I will include here only the 2× 2 and a few comments on determinants and
volume.

The determinant of the 2× 2 matrix

A =

(
a b
c d

)
is detA = ad− bc. This can be positive or negative or zero.

• Prove that if the determinant is zero, then the first column is a scalar
multiple of the second column.

• Demonstrate to yourself that if the determinant is negative, then the lin-
ear transformation T (x⃗) = Ax⃗ “switches the order of” the standard Eu-
clidean basis vectors e⃗1 and e⃗2 (changing the orientation, as a reflection
would)

• Draw some of examples of transformations of the unit square via A
and demonstrate to yourself that the absolute value of the determinant,
| detA|, gives the area of the transformed unit square.

For larger n×n matrices, we often use the Laplace expansion. The Laplace
expansion is a specific method of breaking an n×n determinant into n smaller
(n−1)× (n−1) determinants. It stems from a larger idea, that you could actu-
ally compute determinants by taking n! products of matrix entries and summing
them with sign coming from number of inversions in the order of rows picked
out: see picture ********

The Laplace expansion makes this systematic and hides much of the work:

• Set the following notation: Âi,j is the (n− 1)× (n− 1) submatrix of the
n× n matrix A you get by dropping row i and column j.

• Pick the top row of A to expand along for this Laplace expansion. This
is a choice; you could use any row or column.
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• Expanding along the top row,

detA =
n∑

j=1

(−1)j+1a1,j det Â1,j.

For large matrices, you’d not want to do this by hand, but as a recursive pro-
cedure it’s a relatively easy algorithm to implement in a computer. Of course,
determinants are already implemented in almost any programming language
you’d care to use at work, often with a number of optimizations that we don’t
have time to cover in this class.

8.3.4 Cross products

The cross product of two vectors in R3 gives a vector that is perpendicular to
both of the input vectors.

It’s is a funny product, as it’s only defined in R3. Contrast this with dot
product – a⃗ · b⃗ makes sense in any positive dimension – or in the next section,
determinant, which makes sense for any square matrix. Why only R3 for the
determinant?

Because of this odd constraint, the cross product is not that useful in fi-
nance, but it’s common enough in linear algebra examples that we should not
skip it here. Here’s a definition:a1

a2
a3

×
b1
b2
b3

 =

 a2b3 − a3b2
−(a1b3 − a3b1)
a1b2 − a2b1

 .

Check a few easy properties of this formula:

• a⃗× b⃗ = −b⃗× a⃗, so in particular this is not a commutative product! order
matters!

• a⃗× c⃗a = 0⃗ for c ∈ R, as a special case
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I find this formula almost intolerable to remember as I am generally aller-
gic to formulas, so instead I use one of the following methods: the “cover up
each row” method or the “determinant of three-by-three/stripes” method. Both
methods rely on knowing how to compute the determ

Cover up each row:

8.4 Useful inequalities for vectors

It’s important to mention a few special inequalities that are useful for linear
algebra and for finance. First, the triangle inequality. Back in Chapter 2, we
encountered a version of the triangle inequality: two sides of a triangle have to
sum to a number larger than or equal to the third side of the triangle. Now let’s
use vectors to express the same idea. Look at a triangle with sides v⃗, w⃗, and
v⃗ + w⃗, with all vectors in Rn. Then the triangle inequality is

||v⃗||+ ||w⃗|| ≥ ||v⃗ + w⃗||.

Why is this discussed right after all the material on dot products for real vec-
tors? Because you can rewrite those magnitudes as dot products and use the
Cauchy-Schwarz inequality to prove the triangle inequality in an elegant way.

The Cauchy-Schwarz inequality is really fundamental to any inner product
space – the dot product is an example of a more general inner product. Using
the notation we’ve been using in this chapter, the Cauchy-Schwarz inequality
says

|v⃗ · w⃗| ≤ ||v⃗|| ||w⃗||.

You can prove this using the geometric characterization of the dot product as
v⃗ · w⃗ = ||v⃗|| ||w⃗|| cos θ, where θ is the angle between v⃗ and w⃗.

Now I suggest you try using the Cauchy-Schwarz inequality to prove the
triangle inequality. Use the fact that you can rewrite ||v⃗+w⃗||2 as (v⃗+w⃗)·(v⃗+w⃗).
Can you finish the proof?
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8.5 Some vectors in finance
Linear algebra is used all over finance, and here I’ll introduce four vectors that
are useful in our further applications of linear algebra. First, we can represent
a portfolio of stocks (or other assets) with the vector x⃗ =

[
x1 . . . xm

]
. In-

terpreted, this means we have xi shares of stock i, for m stocks i = 1, . . . ,m.
These numbers can be real numbers: a negative entry xi would indicate holding
a short position on the stock, and we can have non-integer entries via buying
fractional shares or through investing in a mutual fund or exchange-traded fund.

Second, we could construct vectors that represent what happens to the price
of these assets under a particular economic scenario. Say we’re looking at a
possible change in regulations, or in energy prices, or just have a forecast of
what all the asset prices will be in one week. Then we could represent what
happens under this hypothetical future scenario using a vector

s⃗ =


s1
s2
...
sm


where si represents the change in price of a share of asset i under the scenario.
(We could equally well write a vector s⃗′ in which s′i represents the price of a
share of asset i under the scenario, rather than the change in price.)

Notice that both our portfolio vector x⃗ and our single-scenario change-in-
price vector s⃗ (or single-scenario price vector s⃗′) both have m entries. This is
because m assets are under consideration. Also notice that x⃗s⃗ = x⃗ · s⃗ gives
the expected change in the value in the portfolio x⃗ given the occurrence of the
scenario under consideration, while x⃗s⃗′ = x⃗ · s⃗′ gives the overall value of the
portfolio under the given scenario.

A third type of vector we could invent would look at the potential prices of a
stock or asset A under various scenarios. For instance, what would happen to a
pharmaceutical company’s stock price if (I’ll date myself) the Affordable Care
Act is repealed? if President Trump decreases the Food and Drug Adminis-
tration’s regulatory responsibilities and allows “fast-tracking” of new drugs”?
if the rules for H1B visa applicants are changed substantially? if changing
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trade relations with India and China change the profile of the export market?
Any of these changes could affect the stock price of a pharmaceutical com-
pany, and you might want to look at these scenarios using linear algebra as a
first pass analysis. Say for stock A we consider n scenarios. Then a vector
a⃗ =

[
a1 a2 . . . an

]
could represent the change in price of the asset A under

each of the n scenarios, or a vector a⃗′ =
[
a′1 a′2 . . . a′n

]
could represent the

net price of the asset under each of the scenarios.
Fourth, an essential part of risk management and forecasting is working

with the probabilities of these future scenarios. You may use “expert judge-
ment” to come up with the probabilities of these future scenarios, or you may
use the no-arbitrage principle to come up with probabilities based on the price
changes forecast by your “expert judgement.” Either way, with n scenarios
under consideration you’d want a vector

p⃗ =


p1
p2
...
pn


with each element pi giving the probability of the ith scenario. Note that if
you’re considering this situation where these n scenarios cover all future events,
you must have the probabilities adding up to one by the axioms of probability:

n∑
i=1

pi = 1.

This is the first time in our consideration of vectors in finance that we’ve had
a condition like this, and it’s a little special – finally probability is starting to
intersect with our multivariate work!

Again let’s look at a few matrix or dot products that are relevant. The
product

a⃗p⃗ = a⃗ · p⃗ = νA

would give the expected value of the change in price of the asset A under the
n scenarios under consideration. If you’re confident in your scenario analysis
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and the given probabilities and νA was positive, you’d have an expected profit
on your hands! Buy that asset! It’s not necessarily a guaranteed profit – under
some scenarios you might still lose money – but it may be a “good bet” in
investment terms. If you are looking at no-arbitrage pricing and probabilities,
you’d expect to have

a⃗p⃗ = a⃗ · p⃗ = νA = 0,

with no expected profit. (The product a⃗′p⃗ would just give the expected value,
rather than change in value, of asset A over all the scenarios under considera-
tion.)

Questions:

How would you represent a portfolio with 6 shares of stock A, 5 of stock
B, and a short on 7 shares of stock C?

Can you find a probability vector p⃗ that will give you an expected profit of
zero given a scenario vector for stock A of a⃗ =

[
1 3 0 0.5

]
? What about for

a⃗ =
[
1 3 1 0.5

]
? What problems do you encounter for the second one, and

why?4

8.6 Linear transformations

Consider a general m × n matrix A, with m rows and n columns. Figure out
some way to remember that rows come first, columns second – easy for some
to remember, but I’m a person who used to have trouble keeping left and right
straight. My solution:

4Remember that probabilities must all be positive and less than or equal to 1, and for a probability vector p⃗
elements must all add to one.
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Royal Crown Cola reminds me that rows come first, columns second!
Quiz yourself:

• If we multiply the matrix A on the left by a row vector with 5 ele-
ments, then we get a row vector with n elements.

• If we multiply A on the right by a column vector with n elements, then
we get a column vector with 6 elements.

In this way, we can think of multiplication by A as a function that transforms
row vectors x⃗ in Rm to row vectors x⃗A in Rn, or as a function that transforms
column vectors y⃗ in Rn to column vectors Ay⃗ in Rm.

Example 8.6.1. Is multiplication by a matrix A, on either the left or the right,
a linear operation? (If necessary, remind yourself what linear means!)

We call these functions linear transformations, because they are nice gen-
eral ways of transforming yourself from one linear space to another linear
space.

Go back to our example of a row vector
(
x y z

)
multiplied by a 3 × 2

matrix

A =

 3 2
−1 3
2 4

 .

5m
6m
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We say that A represents a linear transformation

R : R3 → R2,

and we write the action as
R(x⃗) = x⃗A.

With this notation it’s easy to see that multiplying by a matrix A is a linear
operation: (bx⃗ + cy⃗)A = bx⃗A + cy⃗A for any b, c ∈ R by properties of matrix
multiplication, so R(bx⃗+ cy⃗) = bR(x⃗) + cR(y⃗).

Example 8.6.2. What is the domain of the function x⃗A with

A =

 3 2
−1 3
2 4

?

What is the range, or image, of this function? The domain is R3 and range is...
Well, in this case it’s all of R2 but that takes some work to prove. We need to
develop some more machinery.

The concept of range is a bit sophisticated for linear transformations. We
call the possible outputs of R the image of R, and we notice it consists of all
linear combinations of the rows of A. The notation for this is im(R) or im(AT ).
Here, AT is the transpose and we write this because historically mathematicians
are prejudiced in favor of multiplying with the matrix on the left and the vector
on the right, and converting x⃗A to this format means taking AT x⃗T . Reconcile
this with the notation for column space below. The term for “all possible linear
combinations” is span. In sentences, we can say, The image of R is the linear
span of the rows of A, or alternatively, The image of R is the row span of
the matrix A. If the rows of A are written as a⃗1, . . . , a⃗m, then we can write
span(⃗a1, . . . , a⃗m) for this row span.

Example 8.6.3. Repeat this analysis instead multiplying by a column vector on
the right: the linear transformation

L : R2 → R3,
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written as
L(x⃗) = Ax⃗.

Here you get the column span of the matrix A for the image of L. If the
columns of A are c⃗1, . . . , c⃗n, we can write span(c⃗1, . . . , c⃗n) for the span of the
columns, or we can write im(A) for the image of the linear transformation Ay⃗.

How do we know the dimension of the row span or the column span? We
need to look at linear independence of rows and columns. This will give us the
idea of the rank of a matrix. We’ll define rank in section 8.7, but first, we’ll set
up some financial concepts.

When we talked about the span of a set of vectors above, we were making
a vector space by simply defining, for v⃗i ∈ Rm,

V = span(v⃗1, . . . , v⃗n) = {x⃗ ∈ Rm|x = c1v⃗1 + · · ·+ cnv⃗n ∀ ci ∈ R}.

For instance, the linear span of the v⃗i ∈ Rm is V ⊂ Rm.

Example 8.6.4. Is the row span of a matrix a vector space? Is the column span
of a matrix a vector space?

Let V be a vector subspace of Rn. The set of vectors orthogonal to every
vector in V is also a vector subspace. We denote this space by V ⊥ and call it
the orthogonal complement of V :

V ⊥ = {x⃗ ∈ Rn|x⃗ · v⃗ = 0∀v⃗ ∈ V }.

You should prove to yourself that V ⊥ is closed under scalar multiplication and
vector addition.

Example 8.6.5. How does this show that the set of all solutions to the equation
Ay⃗ = 0⃗ is a vector subspace of Rn? This vector subspace is called the right
null space of the matrix A.

Example 8.6.6. How does this show that the set of all solutions to the equation
x⃗A = 0⃗ is a vector subspace of Rn? This vector subspace is called the left null
space of the matrix A.
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We define the following vocabulary:

• A function f : A → B is one-to-one if whenever f(a1) = f(a2), we
have a1 = a2. Example: f(x) = x3, where f : R1 → R1, is one-to-one.
If f(x) = 1, you know x = 1 and there are no other choices. Non-
example: f(x) = x2 is not one-to-one, because if I tell you f(x) = x2 =
1, you can reply, “Clearly x must equal either 1 or−1! Which would you
like?”

• A function f : A → B is onto if for all b in B there’s an a in A so that
f(a) = b. The function f maps on to its image, covering all the points in
B. Example: f(x) = x3 again (why?). Non-example: f(x) = x2 again
(why?). More subtle non-example: f(x) = (x, x3). Here f : R1 → R2.
Points like (1, 1) are in the image of this function, but is (1, 2)? No! So
not all points of R2 are covered by this function; f is not onto. Be careful
of domain and range here.

• For a function f : A → B, take a point b in B that is in the image of f .
The preimage of this point b in B is the set of points in A that map to
b under f . For instance, for f(x) = x2, the preimage of 1 is 1,−1, the
set of all points whose square is 1. For a multivariable example, consider
f(x, y) = x2 + y2. Here f : R2 → R1. Take any point in R1 and try to
“go backward”: the preimage of −1 is the empty set, the preimage of 0
is (0, 0), and the preimage of 1 is the circle x2 + y2 = 1 in R2.

8.7 Bases
If V is the linear span of a set of vectors v⃗1, . . . , v⃗n, we call these v⃗i a spanning
set for V . A minimal spanning set for V is such a set with as few elements as
possible: if you remove any vector from a minimal spanning set, the remaining
vectors will no longer span V . We call a minimal spanning set a basis for V .

Theorem 8.7.1. Let v⃗1, . . . , v⃗n be a basis of V . Then the vectors v⃗i are linearly
independent: that is, no v⃗i can be written as a linear combination of the remain-
ing n − 1 vectors. Equivalently, the only way to write the zero vector 0⃗ as a
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linear combination of the v⃗i,

c1v⃗1 + · · ·+ cnv⃗n = 0⃗

is to take all coefficients c1 = c2 = . . . = cn = 0. In addition, every basis for
V has exactly n vectors.

Example 8.7.1. Use contradiction to prove the first part: if we could write vn
(for instance) as a linear combination of the other vectors, then (what?)

Example 8.7.2. Challenge: prove that every basis for V must have the same
number of vectors.

The dimension of a vector space is the number of vectors in a basis for the
vector space.

We can easily work with the linear span of a set of vectors v⃗1, . . . , v⃗m by
writing the vectors as the rows of an m × n matrix. Go through the following
questions and give your best answers:

Example 8.7.3. • Does swapping two rows of a matrix change the row
space of the resulting matrix?

• Does replacing row i of a matrix with row i minus row j change the row
space of the matrix?

• Does multiplying a row in a matrix by a real number change the row
space of the resulting matrix?

The answer to all of the above is no, because each of these is a linear com-
bination of row vectors, and the row space (the span of the row vectors) is
closed under linear combinations (scalar multiplication and vector addition).
This means that we can use row reduction techniques to solve matrix equations
of the form Ay⃗ = b⃗ on paper. The goal is to streamline old techniques for solv-
ing systems of equations by row reducing the augmented matrix [A|⃗b] to have
A in row echelon form.

Row echelon form is a special form of a matrix: at the bottom of the matrix,
rows with only zeroes; all other rows have first nonzero entry 1, which we call
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a “leading 1”; all entries above and below leading 1s are zero. Not only does
this allow us to solve equations of the form Ay⃗ = b⃗, but it allows us to easily
see the rank of a matrix A, and this form gives an easy way of determining the
dimension of the right null space (just the number of rows of zeroes).

Example 8.7.4. Find the space of solutions to

(
x1 x2 x3

)1 0
2 1
3 4

 =
(
2 1

)
.

Hint: Using the symbol T for transpose (swapping rows and columns), we can
change x⃗A = b⃗ to AT x⃗T = b⃗T . This makes the equation easier to deal with
using methods discussed in class.

(The solution space is one-dimensional – we’ve got three variables and two
conditions on them, so one degree of freedom in solutions. Check that your
work gives you something like x1 = 5x3, x2 = 1− 4x3, x3 free. We can write
this answer parametrically as(

x1 x2 x3
)
=
(
0 1 0

)
+ x3

(
5 −4 1

)
.

Example 8.7.5. Show that 1 1
2 1
3 4

(a
b

)
=

0
1
4


has no solution.

(Find a contradiction.)

Example 8.7.6. Consider the following three investment opportunities, show-
ing the net profit under four possible outcomes:(

−20, 20, 20, 20
)
,
(
0, 20,−10,−10

)
,
(
30,−40,−20,−30

)
.

Show that these do not offer the possibility of arbitrage, and determine the
price of the following investment opportunity:

(
20, 0, 30, 0

)
. Hint: Use the
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theorem of no arbitrage! You can show there’s no possibility of arbitrage (“free
money”) directly, by reducing the matrix and showing there’s no solution, or
you can find a probability vector p⃗ that satisfies case (2) of the No Arbitrage
theorem. The existence of this probability vector shows that there can be no
arbitrage!

The fundamental theorem of linear algebra relates the four “fundamental
linear subspaces” of an m×n matrix A. These four subspaces are the right and
left null spaces, the column space, and the row space. I’ll remind you that

L : Rn → Rm (8.1)
x⃗ 7→ Ax⃗ (8.2)

and

R : Rm → Rn (8.3)

y⃗ 7→ y⃗A = AT y⃗T . (8.4)

Theorem 8.7.2. The dimension of the row space of A plus the dimension of
right null space of A equals n.

dim(im(AT )) + dim(null(A) = n.

The dimension of the column space of A plus the dimension of left null space
of A equals m.

dim(im(A)) + dim(null(AT ) = m.

Theorem 8.7.3. The dimension of row space of A is the same as the dimension
of column space of A, and these are both equal to the rank of matrix A.

Example 8.7.7. Challenge: think about how you could get a set of orthogonal
basis vectors for a vector space from any basis provided. Pick a vector to
start with, then use the projection formula discussed a few classes ago to find
the next one. How do you get the third basis vector? Remember it must be
orthogonal to both of the previous vectors! Explain how to proceed in the case
of n vectors.
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Example 8.7.8. Challenge two: can you modify this process to produce an
orthonormal basis? That means all basis vectors are orthogonal to each other,
and moreover each is a unit vector.

This will be discussed more in the next chapter.

8.8 Applications to financial math
The principle of no arbitrage in finance has many different phrasings. One that
I like is that if two assets have the same risk and the same cash flow, they’ve
got to sell at the same price. Otherwise you could make money from exploiting
the difference in price between the two. Another way people express the no
arbitrage principle is to say that you can’t make more money than the market
without taking on more risk, and yet another is that there is “no free lunch.”

Now, is the no arbitrage principle true? Well, not exactly. The “efficient
market hypothesis” says that if there’s an arbitrage opportunity (the chance to
make money without risk) then the market will notice, people will take ad-
vantage of it, and prices will then adjust to eliminate that opportunity. This
means that in an efficient market, prices reflect information accurately. (Look
up strong, semi-strong, and weak efficiency elsewhere!) The capital asset pric-
ing model (CAPM) and Black-Scholes options pricing model are both built on
the principle of no arbitrage, and that’s why we need to understand it. More-
over, CAPM and Black-Scholes are really useful out in the real world. But like
all models, they’re wrong, as is a really strict no-arbitrage statement. Robert
Shiller, for instance, looked at changes in dividend prices and their effect on
share prices of assets.He found that share prices “overreact.” Look up the work
of Fama, Schiller, and Hansen, who jointly won the Nobel Prize in Economics
in 2013 for their (separate) work on asset pricing. You’ll find that the truth
about asset prices is a lot more complicated than no-arbitrage – but you can’t
understand what is really going on without knowing this basic principle.

We will formulate a “No Arbitrage” theorem via linear algebra. First, we
assume that we can form an m×n matrix S of net profits, describing what will
happen to m stocks under n outcomes or scenarios. (Entry Sij is the net profit
for stock i under scenario j.)
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Example 8.8.1. What are the possible net profit vectors for all the portfolios
I could create? Test yourself by translating this into the language of linear
algebra. What vector space am I asking for?

Consider the situation given by

(
x1 x2 x3

) −2 −1 0 1
3 2 −1 −1
1 0 6 −5


We have three stocks and four scenarios under examination.

Example 8.8.2. Can we invest in a way that produces the vector
(
0 0 0 5

)
?

How do you figure out the answer to this? How do you interpret the answer
once you have it?

Example 8.8.3. Can we invest in a way that produces the vector (4, 2, 12,−9)?

Example 8.8.4. Let’s add another investment opportunity, the “savings ac-
count.” This opportunity is an idealized situation in which you put in a dollar
and get a dollar. This of course ignores interest rates for the moment. How do
you add this information to the matrix?

Example 8.8.5. Given the new matrix, can you invest in a way that produces
the vector (4, 2, 12,−9)?

Example 8.8.6. What is the cost of such a portfolio? Interpret this carefully,
looking at net profit vectors and the savings vector and considering the cost of
each.

We can find the cost of such a portfolio by solving for a probability vector
that satisfies

Sp⃗ =
(
0 0 0 1

)T
and then taking the dot product of our portfolio vector x⃗ with this probability
vector p⃗.
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By the axioms of probability, a probability vector has only non-negative
entries and its entries sum to one. In particular, if the vector p⃗ must have non-
positive elements to satisfy the matrix equation given above, we can create a
portfolio with no negative elements and at least one positive element which
costs no money – and that’s arbitrage.

Let’s go back to vector spaces so that we can gather some techniques for
more efficiently solving the matrix equations above. With new language, we
can also restate the “no arbitrage” theorem in terms of linear algebra and pro-
vide some strategies for proof.

Using the new language of linear algebra, we can restate the no-arbitrage
theorem as the following: EITHER

• the row space of S contains a non-negative vector with at least one posi-
tive element, OR

• the orthogonal complement of the row space of S (the right null space)
contains a vector whose elements are all strictly positive.

I use incorrect capitalization here to emphasize that these outcomes are mutu-
ally exclusive. To test your understanding, ask yourself: which of these cases
is the case with arbitrage? How do you know? In the no-arbitrage scenario,
what’s true about the probabilities of the scenarios?

Initially we considered the situation with n scenarios and m stocks, so

• each portfolio x⃗ has m entries,

• the matrix of prices S is an m× n matrix,

• and the probability vector p⃗ has n entries.

Figuring out which case of the no-arbitrage theorem holds involves either
finding x⃗S with some strictly positive entry (making some money!) and the
corresponding portfolio x⃗ that guarantees us this risk-free money, or finding
the probability vector p⃗ that gives Sp⃗ = 0⃗.

To consider cost or the “savings account” approach, add a row of ones to
the bottom of S. Call the new matrix S ′. Add an entry xm+1 to the end of
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the portfolio vector x⃗, representing how much money you’re putting in the
savings account, and call the resulting vector x⃗′. If the “savings account” in-
terpretation is distateful to you (and it does have some drawbacks), consider
this a mathematical way of requiring that p⃗ be a probability vector: that is,
p1 + · · · + pn = 1. The reason you might not like the “savings account” inter-
pretation is that it does not quite line up with the idea that the matrix entries of
S are net change in stock price, or profits. The row of ones does not represent
absolute profit (making $3 per share of stock i) but instead leaves the amount
xm+1 unchanged in each scenario.

Example 8.8.7. Prove to yourself that if we have a probability vector p⃗ so that
Sp⃗ = 0⃗, then x⃗′S ′p⃗ = xm+1.

Example 8.8.8. Show that if we have p⃗ a probability vector with only positive
entries, then we must have negative entries in the portfolio vector x⃗. (This is
one part of the proof of the no arbitrage theorem.)

Example 8.8.9. Challenge: prove that if we have a vector x⃗ whose entries are
all non-negative, and at least one of whose entries is positive, so that x⃗S is non-
negative and has at least one strictly positive entry, then there can be no strictly
positive probability vector p⃗ so that Sp⃗ = 0⃗.

8.9 Invertible transformations

This section mainly emphasizes ideas of rank and determinant, and reinforces
what we’ve learned about transformations. All matrices in this section are
square matrices.

Theorem 8.9.1. If the rank of an n× n matrix A is n, then the linear transfor-
mation L : Rn → Rn defined by L(x⃗) = Ax⃗ is both one-to-one and onto. If the
rank of A is less than n, then the linear transformation L is neither one-to-one
or onto. Thus the linear transformation L is invertible if and only if the matrix
A has rank n.
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A square matrix is of full rank if and only if its determinant nonzero; a
determinant of zero means the matrix is degenerate (the matrix gives a trans-
formation that is not onto – the image is contained in a smaller linear subspace
of the target space).

In much of linear algebra before this class, you’ve probably concentrated
on full rank matrices, which give invertible transformations. That is because
they give systems of equations easy to solve with matrix methods: if A is full
rank and Ax⃗ = y⃗, then x⃗ = A−1y⃗. This is extraordinarily important, and also
not that interesting!

Remember from earlier that the determinant of a matrix A gives the change
in volume that the transformation induced by the transformation L(x⃗) = Ax⃗.
Maybe some illustrations will help: in two dimensions,

and in three dimensions
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This holds for transformations Rn → Rn, in fact. Think of it this way:
take the unit hypercube [0, 1]n and look at its image under the transformation
L. The image of the unit hypercube under L will have n-dimensional volume
detA. This also says something about transformations that are not invertible:
if a square matrix is not invertible, then the determinant is zero – the transfor-
mation is not onto and one-to-one. That means that the image of the unit hyper-
cube has zero n-volume, which means the unit hypercube in Rn was squashed
into a lower-dimensional subspace by the transformation L. Remember this
when we start talking about principal component analysis, dimension reduc-
tion techniques, and singular value decomposition!!



Chapter 9

Spectral theorem and
portfolio management

9.1 Orthogonal matrices and orthonormal bases
An n× n matrix A is called orthogonal if its rows are orthonormal: that is, all
rows are perpendicular to each other and all have length one as vectors in Rn.
For instance,

A =

(
0 1
1 0

)
is an orthonormal matrix (check!). More generally, if A is an n×n matrix with
rows r⃗1, . . . , r⃗n, then A is orthonormal if r⃗i · r⃗j = 0 for all i ̸= j between 1 and
n and r⃗i · r⃗i = 1 for all i = 1, 2, . . . , n.

Geometrically, what does an orthogonal matrix do?
Think about the consequences of the comments above: if A is orthonormal,

then
AAT = In,

where In is the identity matrix.

Example 9.1.1. Prove this!

This means that AT = A−1: AT is the inverse of A.

165
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Example 9.1.2. What does this mean for ATA?

Example 9.1.3. Prove the columns of A are orthonormal.

Example 9.1.4. Compare the length of a vector x⃗ with the length of the vector
Ax⃗: carry out the calculations necessary to do so.

Example 9.1.5. Compare the angle between x⃗ and y⃗ to the angle between Ax⃗
and Ay⃗ by using the formula that relates dot products and angles between vec-
tors.

If you did all the questions above, you proved the following theorem:

Theorem 9.1.1. Let L be a linear transformation from Rn to Rn represented
by an orthogonal n× n matrix A. Then L preserves the lengths of vectors and
the angles between vectors. Equivalently, for all column vectors x⃗, y⃗ ∈ Rn,
x⃗ · y⃗ = (Ax⃗) · (Ay⃗).

9.2 Gram-Schmidt orthogonalization
To find an orthonormal basis from any collection of basis vectors, use Gram-
Schmidt orthogonalization. The idea is elegant and simple: pick a first vector
and make it length one. Pick the next vector and take the component of it or-
thogonal to the first, then normalize. Pick a third vector and take the component
of it orthogonal to the first two, and so on.

First, of course, we need to define what the projection of a vector a⃗ onto
another vector b⃗ is. Imagine that a projection is the shadow of a⃗ on the line in
direction b⃗ if the sun is “directly overhead.”
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The algebraic formulation is

proj⃗ba⃗ =
a⃗ · b⃗
|⃗b|2

b⃗.

Notice that this vector has a direction (it goes in the direction of b⃗) and a mag-
nitude (the magnitude of the projection is |⃗a| cos(θ), where θ is the angle be-
tween the vectors a⃗ and b⃗. You could figure out this definition of projection
yourself by looking at the natural geometric expression |⃗a| cos(θ) b⃗

|⃗b|
and using

a⃗ · b⃗ = |⃗a||⃗b| cos(θ) to prove the formula in terms of the dot product.
Why do we need projection for Gram-Schmidt orthogonalization? It turns

out that a⃗ − proj⃗ba⃗ will give the component of a⃗ that is perpendicular, or or-
thogonal, to b⃗. By subtracting off the part of a⃗ that is in the direction of b⃗,
we’re left only with the part that is perpendicular to b⃗. This is what we want for
“orthogonalization.”

Formalize our descriptions with mathematical language: To find a Gram-
Schmidt orthogonal basis {u⃗1, . . . , u⃗n} or orthonormal basis {⃗b1, . . . , b⃗n} for
the space V spanned by a set of vectors {v⃗1, . . . , v⃗n},

• Pick one vector to start with: let’s choose v⃗1. Normalize it (make it length
one) via

v⃗1
|v⃗1|

if you want an orthonormal basis. Then the first vector in your orthogonal
basis is u⃗1 = v⃗1, and the first vector in the orthonormal basis is b⃗1 = v⃗1

|v⃗1| .

• Pick the next one to deal with: I choose v⃗2. Subtract off the component
in the direction of u⃗1:

u⃗2 = v⃗2 − proju⃗1
v⃗2.

Normalize the result if you want an orthonormal basis (that makes b⃗2 =
u⃗2

|u⃗2|).
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• Take v⃗3 and subtract off the components in the directions of u⃗1 and u⃗2:

u⃗3 = v⃗3 − proju⃗1
v⃗3 − proju⃗2

v⃗3.

Normalize this if you want an orthonormal basis ( b⃗3 = u⃗3

|u⃗3|)

• Repeat until done!

Order sort of matters: no matter what order you go in, you’ll get an orthog-
onal or orthonormal basis, but if you use a different order than a friend, you’ll
very often get a different basis. Check out the picture below:

**add picture****

Example 9.2.1. Why does this work? Why doesn’t the process lead to vectors
outside the vector space spanned by the original set of vectors? Use the words
“linear combination” in your solution.

9.3 Rotation and scaling
A particular class of invertible linear transformations is given by rotation. Yes,
rotation: just pick up everything in your vector space and rotate it by θ radians
in some particular plane. The rotation matrix that gives this transformation is

A(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Check for yourself that this is an orthonormal matrix. What is its determi-
nant?
More things to check for yourself:

• What is A(−θ)? What is A(θ)−1? Yes, they happen to be the same!
Why?

• What is A(θ1 + θ1)? What is A(θ1)A(θ2)? What is A(θ2)A(θ1)? Yes,
they happen to be the same! Why? You’ll need your angle-sum formulas
from trigonometry to see this.



9.3. ROTATION AND SCALING 169

• What do you think
√
A(θ) should be? Can you come up with a defini-

tion?

• What is A(θ)k for k a positive integer? Note that this denotes carrying out
matrix multiplication k − 1 times (A(θ) times itself k times), not raising
the elements in the matrix to the kth power. With this nice rotation matrix
A(θ), what’s a nice way to streamline this calculation? If you deduced
A(θ)k = A(kθ), you’d be right.

Rotation matrices certainly extend to rotations in Rn, but are more compli-
cated to write out. No matter what, if we’re rotating only by an angle θ, a single
parameter, there will be some axis that is invariant under the rotation in Rn. In
R2, you rotate by θ around a point (the origin). In R3, you rotate by θ around
some line. For instance, cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)


rotates by θ around the y-axiz – the x − z plane is rotated but points (0, y, 0)
stay untouched.

You may have noticed that whether in R2 or Rn it is dramatically easier
to calculate (A(θ))k for any rational number k than it would be for a general
n × n matrix. This is not a coincidence. The beautiful geometry of a rotation
matrix allows a very simple interpretation of these operations. We’ll be able to
put this to use in Taylor series of matrices, among other applications. But you
know that not every matrix is a rotation – we need some wider techniques.

The next baby step is to consider scaling as well, and look at the matrix

A(r, θ) = r

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
=

[
r cos(θ) −r sin(θ)
r sin(θ) r cos(θ)

]
.

Notice we’ve given this matrix a name, A(r, θ). Notice, too, that now we’ve
introduced another bit of ambiguity: if you look carefully, A(1, π) = A(−1, 0).
This is the same equivalence that occurs in polar coordinates.



170CHAPTER 9. SPECTRAL THEOREM AND PORTFOLIO MANAGEMENT

Consider what happens when two such matrices A(r1, θ1) and A(r2, θ2) are
multiplied: geometric reasoning tells you that the angles add and the scalars r1
and r2 multiply. When you multiply out the matrices, though, what happens?

Example 9.3.1. Multiply out A(r1, θ1) and A(r2, θ2). How does this agree with
your geometric reasoning?

Raising matrices to a power is also easy using our new notation:

A(r, θ)p = A(rp, pθ).

This formula essentially uses polar coordinates, if you remember those!
How does this work for fractional powers? Almost the same way! No-

tice that when you take a square root, you still have the choice of positive or
negative that you would in the real numbers.

Example 9.3.2. Take the square root of
[
−1 0
0 −1

]
. Make sure you get two

different answers. Express those answers in A(r, θ) form.

This may be reminding you of complex numbers.....

9.4 Complex Numbers
At some point in your math education you encountered the frustration of want-
ing to understand the solution to x2 + 1 = 0. Hopefully at about the same time
you encountered the idea of complex and imaginary numbers. We define the
imaginary number i to be

√
−1; notice that −i is a fine imaginary number as

well and (−i)2 = −1 as well. (Remember that f(x) =
√
x is only a function if

it has a unique output y for each input x, and we define the unique output to be
the “positive” number y that satisfies the equation y2 = x.)

You may have also encountered the idea of the complex plane at about
this time. The complex plane is a representation of C that is topologically
equivalent to R2. The way to see this is that every number x + iy ∈ C can be
represented as a pair (x, y) ∈ R2 by viewing the x-axis as the “real” axis and
the y-axis as the “imaginary” axis.
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Complex numbers add together just like vectors in R2, as x+ iy+z+ iw =
(x + z) + i(y + w), and multiplication by real scalars also behaves the same.
The difference between C and R2 lies in their multiplicative structures. In R2,
we might pick out dot product as the way to multiply (x, y) and (z, w), but in
C we’ve got a rule we want satisfied – that i2 = −1 – and dot product clearly
doesn’t do the right thing!!

To illuminate the multiplicative structure of the complex numbers, we’ll
pick out two equivalent ways of thinking about complex numbers. First, the
complex number x+ iy behaves like the matrix[

x −y
y x

]
.

What I mean by “behaves like” is that if you carry out matrix multiplication
here, you’ll get a structure that is equivalent to complex multiplication:

(x+ iy)(z + iw) = (xz − yw) + i(xw + yz)

corresponds with[
x −y
y x

] [
z −w
w z

]
=

[
xz − yw −(xw + yz)
xw + yw xz − yw

]
.

Example 9.4.1. How can you write this matrix as A(r, θ)? Challenge: think
about the ways in which you can extract θ from the information you have, and
how it may be constrained by the way in which you write it.
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Example 9.4.2. Think of three ways in which you can find the reciprocal of the
complex number represented by a matrix A(r, θ). Remember, the reciprocal of
the number z ∈ C is 1

z . It is the multiplicative inverse.

The questions above ask you to think about the second way to represent a
complex number: instead of using Cartesian coordinates via x + iy, you can
use polar coordinates via A(r, θ), or with Euler’s formula,

reiθ = r cos θ + ri sin θ.

Euler’s formula gives another way to link the geometry of C with the matrix
representation and the Cartesian representation of the same complex number.

9.4.1 Taylor series
Why are we bothering with series, especially right now, right after complex
numbers? The use of power series representations for functions makes it very
easy to extend these functions to the complex numbers. If I ask you what
cos(3 + 2i) is, you will probably be unable to answer the question using your
unit-circle understanding of trigonometry. You can just plug z = 3 + 2i into
the power series definition, though! Convergence is still a big deal, but we can
prove that convergence in real numbers is the “same” as convergence in the
complex numbers. That is, if P (x) converges for |x| < a, then P (z) converges
for |z| < a and z ∈ C.

Example 9.4.3. Use your power series representation for ex to write the series
for eiθ. Separate the terms with odd degree from the terms with even degree to
prove that

eiθ = cos θ + i sin θ.

9.5 Changes of basis and coordinates

9.5.1 Changing basis alone
We are used to working in the standard basis for Rn, with vectors e⃗1 = (1, 0, . . . , 0),
e⃗2 = (0, 1, 0, . . . , 0), through e⃗n = (0, . . . , 0, 1). However, there might be a sit-



9.5. CHANGES OF BASIS AND COORDINATES 173

uation in which we’d like to work in a different basis – maybe an eigenbasis.

9.5.2 Changing linear transformations into a new basis
Example 9.5.1. In R3, call our standard basis E and denote another basis by B.
Let B consist of b⃗1 = (1, 2, 3), b⃗2 = (0, 1, 0), and b⃗3 = (0, 1, 1). Say we’ve got
a linear transformation T : R3 → R3 that we’ve written as T (x⃗) = Ax⃗ in terms
of the standard basis E . How can we write T in terms of this new basis? That
is, what’s the matrix for T in terms of the basis B?

Introduce a transition matrix S that relates the two bases. S has entries Sji

defined by

b⃗i =
3∑

j=1

Sjiej.

In our example, since b⃗1 = e⃗1 + 2e⃗2 + 3e⃗3, b⃗2 = e⃗2, and b⃗3 = e⃗2 + e⃗3, we get
the matrix

S =

1 0 0
2 1 1
3 0 1

 .

Notice the columns here!!
A few calculations show, then, that if our transformation in the standard

basis is written T (x⃗) = Ax⃗ and the same transformation in the new basis B is
written Bx⃗, then

AS = SB,

or in particular
S−1AS = B.

This operation is called conjugation.

Example 9.5.2. To continue our example, say that

A =

2 0 0
0 1 0
0 0 3
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and S is as above. Then the matrix B is

B =

 2 0 0
−5 1 −2
3 0 3

 .

Check this!
This means that B takes the vector b⃗1 = e⃗1 + 2e⃗2 + 3e⃗3 to the vector 2⃗b1 −

5⃗b2 + 3⃗b3. Notice that this is (2, 2, 9) in the standard basis!

Example 9.5.3. Say we want to write a linear transformation L : R2 → R2 in
terms of the new basis B given by

b⃗1 = (
√
2/2,
√
2/2)

b⃗2 = (−
√
2/2,
√
2/2),

an orthogonal basis for Rn. Let L be given by

Ax⃗ =

(
1 2
0 4

)
x⃗.

What is S? What is the matrix for L in the new basis?

If two matrices A and B are conjugates of each other, that is, there’s an S
so that S−1AS = B or so that A = SBS−1, then we say that A and B are
similar matrices.

Ideally, we can find a diagonal matrix D so that D = S−1AS. This is very
nice because

• Diagonal matrices are easy to multiply: they simply scale rows or columns,
depending on which side of the produce they’re on.

• In particular, Dp is very easy to calculate – you just raise each diagonal
entry to the pth power.

• Calculations like Ap are suddenly easy too. Since A = SDS−1, Ap =
(SDS−1)(SDS−1) · · · (SDS−1), p times. Notice most of the Ss cancel
with S−1.
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• The concept of diagonalizability (being able to find a diagonal similar
matrix) is going to be very useful when we look at eigenvalues and eigen-
vectors!

Example 9.5.4. Draw a picture in R2 of the standard basis and of the basis
given by b⃗1 = (1, 1) and b⃗2 = (−1, 1). Draw a picture of the vector c⃗ =

−2e⃗1 − 3e⃗2, and express it in terms of b⃗1 and b⃗2.

Example 9.5.5. If v⃗ has coordinates of 3,−2 with respect to the basis B given
in the previous problem, what are the coordinate of v⃗ in the standard basis?

Example 9.5.6. Using again the basis B given by b⃗1 = (1, 1) and b⃗2 = (−1, 1),
what matrix will change a vector in standard coordinates to a vector in coordi-
nates with respect to B? Use that matrix to find the B coordinates of (2, 2).

9.6 Eigenvalues and eigenvectors
Let L be a linear transformation from Rn to Rn. A nonzero vector w⃗ ∈ Rn is
an eigenvector of L if

L(w⃗) = λw⃗

for some scalar λ. The number λ is the eigenvalue of L associated to the eigen-
vector w⃗. For an n × n matrix, there are up to n distinct eigenvectors and
eigenvalues. As you’ll see, we’ll care a lot how many distinct eigenvalues a
matrix has.

The geometric meaning of the eigenvectors and eigenvalues of a real ma-
trix is that an eigenvector gives a direction in which a matrix transformation
gives a “pure stretch,” and the associated eigenvalues gives the magnitude of
this stretch. At least, this is true if the eigenvalue is a real number and the
eigenvector is a real vector. Direction and magnitude – sounds like a vector
– why do we need the pair? The eigenvector truly is just a basis vector for a
particular vector subspace, while the eigenvalue can be either positive or neg-
ative, indicating pure stretch when positive and a stretch and reflection when
negative.
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Example 9.6.1. Find the eigenvalues and eigenvectors of the matrix

S =

(
2 0
0 −4

)
solely by thinking (no calculating allowed!!). Link this understanding visually
or geometrically with scaling in the x and y directions.

Example 9.6.2. Find the eigenvalues and eigenvectors of the matrix

A =

(
0 1
−2 −3

)
.

To do this, use the characteristic polynomial P (λ) = det(A − λI2) to find
out for what values of λ the matrix A− λI2 is singular. The solutions to

P (λ) = 0

are the eigenvalues of A. In this situation, you’ll have two or fewer eigenvalues:
check that you get λ = −1 and λ = −2 as solutions. Write λ1 = −1 and
λ2 = −2 to keep track of them, and then find the associated eigenvectors using
the definition. We know that we must have Av⃗1 = λ1v⃗1, so our first equation is

0x+ 1y = −1x,

implying y = −x. A solution to this is x = 1, y = −1; does this also satisfy
the second equation,

−2x− 3y = −1y?
Check: −2− 3(−1) = 1 is true! Thus

v⃗1 =

[
1
−1

]
is a fine eigenvector for λ1 = −1. In fact, any scalar multiple of this would
work; check that

v⃗1 = c

[
1
−1

]
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satisfies the definition of eigenvector for any c ∈ R. I’ll let you calculate v⃗2.
Check your answer in the footnote.1

Geometric and algebraic multiplicity of eigenvalues are useful and subtly
different ideas that come into play when you have fewer than n eigenvalues for
an n × n matrix. Eigenvectors of a matrix A are a basis of the null space of
A−λIn – that’s why finding the roots of the characteristic polynomial works to
find eigenvalues. We know there is a relationship between the dimension of the
(right) nullspace and and the rank of the matrix; let’s explore this relationship
and geometric and algebraic multiplicities by example.

Example 9.6.3. Consider the matrix

A =

(
1 2
1 0

)
.

Check to see that the two eigenvalues are λ1 = −1 and λ2 = 2, and that each
of A− (−1)I2 and A− 2I2 have a nullspace of dimension 1.

Example 9.6.4. Consider the matrix

A =

(
1 2
0 1

)
.

The characteristic polynomial is (1 − λ)2. The only root, λ = 1, occurs twice
– the algebraic multiplicity is two because the exponent of the term (1 − λ) is
two. The geometric multiplicity is the dimension of the nullspace of A− (1)I2.
Since

A− λI2 =

(
0 2
0 0

)
is rank one, its nullspace has dimension one by the rank-nullity theorem. That
means the geometric multiplicity of the eigenvalue λ = 1 is one.

These multiplicities play into whether we can find a basis of eigenvectors.
If an n× n matrix has n eigenvectors, we have a basis of eigenvectors and we

1The second eigenvector can be any multiple of (1,−2)T .
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can diagonalize the matrix. Else we can’t! Let’s think through this: Consider
a specific transformation L : Rn → Rn and there’s a basis B consisting of n
distinct eigenvectors w⃗i. Let’s find the matrix of L with respect to basis B.
Thinking through this carefully, we see that the matrix of L in the matrix B
must be the matrix

S =


λ1 0 . . . 0
0 λ2 . . . 0
... ... . . . ...
0 . . . 0 λn

 .

Call this diagonal matrix D(λ1, . . . , λn). Notice that if we use our knowledge
from earlier, this matrix is easy to find:

D(λ1, . . . , λn) = S−1AS

for A the matrix of L in the standard basis and S the transition matrix defined
above.

Example 9.6.5. Silly example: consider the matrix

A =

[
2 0
0 2

]
.

The only eigenvalue of this matrix is two, with both algebraic and geometric
multiplicity two: that means that even though λ1 = λ2 = 2, we can pick
linearly independent eigenvectors

v⃗1 =

(
1
0

)
, v⃗2 =

(
0
1

)
.

Can you diagonalize the matrix A? Not a trick question!

Example 9.6.6. Use the characteristic polynomial to find the eigenvalues of

A =

(
3 0
1 1

)
.

Find the corresponding eigenvectors of A. Then find the matrix S that satisfies
D = S−1AS.
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Example 9.6.7. Use the characteristic polynomial to find the eigenvalues of

A =

(
0 1
−2 2

)
.

Find the corresponding eigenvectors of A. Then find the matrix S that satisfies
D = S−1AS.

How are these two examples different?

Example 9.6.8. Last, look at the matrix

A =

0 1 1
1 0 1
1 1 0

 .

Check that you can find three linearly independent eigenvectors even though
one of the eigenvalues has algebraic multiplicity two.

Remarkably, if the eigenvalues of a matrix are all distinct, then the corre-
sponding eigenvectors are automatically linearly independent, thus providing a
basis for

So far we’ve ignored one sticky case: the case of complex eigenvalues.
Look at the matrix

A =

(
3 −2
4 −1

)
.

Check that you get roots of P (λ) that are complex: λ = 1±2i. No coincidence
that they occur in a conjugate pair! The fundamental theorem of algebra guar-
antees that any degree n polynomial with real coefficients will have exactly n
solutions when you count with multiplicity (explored above) and count com-
plex solutions, and that complex solutions will always come in conjugate pairs
because (x − (a + ib))(x − (a − ib)) = x2 − 2ax + (a2 + b2) has real coeffi-
cients, while any other product (x− (a+ ib))(x− (c+ id)) will have complex
coefficients. But how can this make sense if we are considering “real-world”
applications?
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First, go through the work of finding the eigenvectors for the matrix A we
just considered. You’ll find eigenvectors

v⃗1 = c

(
1

1− i

)
for some c ∈ C (so if you got a different-looking answer, just check that it’s a
multiple by some c) and

v⃗2 = c

(
1

1− i+

)
,

again for c ∈ C. Notice that these eigenvectors also come in a conjugate pair.
That’s also not coincidence. Second, let’s try to interpet this as a rotation and
scaling using properties of complex numbers. *******

9.7 Quadratic forms and definiteness
Having eigenvalues and eigenvectors also allows us to discuss quadratic forms
and positive definite, negative definite, and indefinite matrices much more eas-
ily.

A quadratic form is a homogeneous degree-two polynomial with real coef-
ficients. Homogeneous means that every term of the polynomial has the same
degree; for example, x2 + y2 − 2xy is a homogeneous polynomial of degree
two and thus a quadratic form. Using summation symbols, we could write a
quadratic form in n variables x1, . . . , xn as

q(x1, . . . , xn) =
n∑

i=1

a1x
2
i +

∑
1≤i<j≤n

bijxixj.

More excitingly, though, we can write any quadratic form using vectors and
matrices: let x⃗ = (x1, . . . , xn), and convince yourself that you can write

q(x⃗) = x⃗TSx⃗

for a unique real symmetric matrix S. What must the entries of S be? Compare
terms between our two expressions: we must have sii = ai and we must have
sij = sji =

bij
2 .
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We call a quadratic form and its associated matrix S positive definite if

q(x⃗) = x⃗TSx⃗ > 0

for all non-zero vectors x⃗ in Rn. If instead we have the weaker condition

q(x⃗) = x⃗TSx⃗ ≥ 0

then both the form and the matrix are positive semidefinite. Likewise, if

q(x⃗) = x⃗TSx⃗ < 0

for all non-zero x⃗ ∈ Rn, we call both q and S negative definite, and if

q(x⃗) = x⃗TSx⃗ ≤ 0

they’re negative semidefinite. If none of the above, call q and S indefinite.

9.8 Power series of matrices
Using the diagonalization of a matrix we can more easily work with power
series. For instance, if A = SDS−1, then for f(x) = ex,

eA = eSDS−1

=
∞∑
k=0

1

k!
SD(λk

1, . . . , λ
k
n)S

−1.

We can make this into a matrix of power series, and then if the power series
converges to f(λ) for each λ, we get

f(A) = SD(f(λ1), . . . , f(λn))S
−1.

This is easy, and works for real and complex eigenvalues!
We don’t always get convergence, though – if some of the eigenvalues are

too big for convergence this won’t work. For instance, the power series ex-
pansion of (In −M)−1 only converges if the eigenvalues of M are of absolute
value less than one.

Example 9.8.1. Calculate cos(A) using power series where

A =

(
π/3 −6
0 0

)
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9.9 Applications to financial math
Often you might be interested in how two quantities vary together – their co-
variance. If you have a number of quantities whose covariances are of interest,
you can assemble a covariance matrix. Each entry σij is the covariance be-
tween quantity i and quantity j. Since σij = σji, the covariance matrix is
symmetric.

Principal component analysis is mathematically simply the act of finding
the eigenvectors and eigenvalues of the covariance matrix. I think it’s fair to
say that the first step in principal component analysis is simply linear regression
– finding the best-fit line through the data.

Since the covariance matrix is symmetric, the Spectral Theorem will tell us
(soon!) that when all the eigenvalues are distinct, the eigenvectors are actually
all orthogonal. Since we can choose eigenvectors of whatever length we like
(it’s direction that is not up to us), that means it’s easy to find an orthonormal
basis of eigenvectors for a real symmetric matrix.

• Eigenvectors come up in analyzing components of Brownian motion in
many dimensions.

• Power series and their truncations come up a lot when looking at normal
distributions of prices, for instance.

9.10 Complex vectors
Complex vectors are very similar to real vectors, but there are a few key differ-
ences. First, the similarities:

• Multiplication by a scalar works the same.

• Addition of vectors works the same, and is commutative.

• The formula for length is analogous (but not quite the same!).
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Here is the first difference: We want a formula for length or magnitude of a
complex vector v⃗ ∈ Cn so that

||v⃗||2 = ||(z1, z2, . . . , zn)||2 = |z1|2 + |z2|2 + . . .+ |zn|2,

in analogy with real vectors. But what is |zj| for a complex number?
We want |zj| to be the “absolute value” or length of |zj|, and looking at

zj = x+ iy that magnitude would be
√

x2 + y2. An easy way to get this is by
using the complex conjugate z̄j = x− iy to get the length:

|zj|2 = z̄jzj = (x− iy)(x+ iy) = x2 − i2y2 = x2 + y2.

This means that the right way to define length of a complex vector is using the
inner product

v⃗ · v⃗ = ||v⃗||2 = |z1|2 + . . .+ |zn|2

using
|zj|2 = z̄jzj.

This also allows us to define the inner product of two different vectors:

r⃗ · s⃗ = r̄1s1 + r̄2s2 + . . . , r̄nsn.

BIG CHANGE here: we are now talking about the inner product of two vec-
tors, rather than the dot product, and this inner product is not commutative.
Check it yourself!

Example 9.10.1. Given r⃗ = (3 + i, 2 − 2i)T and s⃗ = (i,−1 − 2i)T , compare
r⃗ · s⃗ and s⃗ · r⃗. What is their relationship?

It turns out that
r⃗ · s⃗ = s⃗ · r⃗.

9.11 Complex matrices
In the previous section, we determined that to take the inner product of two
complex vectors we need to use complex conjugates: basically,

r⃗ · s⃗ = r⃗T s⃗
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in matrix notation. Here, we want to maintain some of the structure we had in
real matrix land — to check if a real matrix A is orthonormal, for instance, we
just see if ATA is equal to the identity matrix. This relies on dot products, so
needs to be modified for the complex world.

Define the Hermitian transpose MH of a matrix M by

MH = M̄T .

That is, we take the complex conjugate of every entry and take the transpose of
the whole matrix. You can do this to any matrix: for example, the Hermitian
transpose of 1− i 2

i −3 + i
0 2i


is 1− i 2

i −3 + i
0 2i

H

=

[
1 + i −i 0
2 −3− i −2i

]
.

Also notice that
(AB)H = BHAH

if the product AB of complex matrices made sense in the first place. You can
prove this by using properties of the transpose.

We call M a “complex orthogonal” matrix if it is square (n × n) and has
rows v⃗i which satisfy

v⃗i · v⃗j = 0

for i ̸= j and
v⃗i · v⃗i = 1.

Another name for this is “unitary.” Such a matrix satisfies MHM = In, so we
have

M−1 = MH .

(Notice that you can prove MMH = In as well, as (MHM)H = IHn .)
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9.12 The spectral theorem
An n× n complex matrix M is called Hermitian if M = MH . Any real sym-
metric matrix is Hermitian; all the diagonal entries of a Hermitian matrix must
be real, even if the rest of the entries are complex. (Check this yourself! Notice
that the diagonal entries of the matrix must all be equal to their conjugates.)

Hermitian matrices are very special. Following is a non-exhaustive list of
their special properties.

Proposition 9.12.1. Let M be an n × n Hermitian matrix. Then for column
vectors v⃗, w⃗ ∈ Cn,

(Mv⃗) · w⃗ = v⃗ · (Mw⃗).

Proposition 9.12.2. Every eigenvalue of a Hermitian matrix is a real number.

Proposition 9.12.3. Every eigenvalue of a real symmetric matrix is a real num-
ber, and the eigenvectors of such a matrix can always be chosen to be real
eigenvectors.

Proposition 9.12.4. If v⃗ and w⃗ are eigenvectors of a Hermitian matrix, and the
corresponding eigenvalues are distinct, then v⃗ and w⃗ are orthogonal.

Proposition 9.12.5. If M is an n × n Hermitian matrix with n distinct eigen-
values λ1, . . . , λn, then all of these eigenvalues are real and we can choose the
corresponding eigenvectors so that they are an orthonormal basis for Cn. If A
is the matrix whose columns are those eigenvectors, then

AHMA = D(λ1, . . . , λn).

If M is real and symmetric, then the eigenvectors can be taken to be real, and
they form an orthonormal basis for Rn.

Theorem 9.12.1. If M is an n×n Hermitian matrix with n eigenvalues λ1, . . . , λn

listed according to multiplicity, then all of these eigenvalues are real. If λ is
one of these eigenvalues and has multiplicity k, then there are k corresponding
eigenvectors that are an orthonormal to each other. There is an orthonormal



186CHAPTER 9. SPECTRAL THEOREM AND PORTFOLIO MANAGEMENT

basis for Cn consisting of eigenvectors of M . If A is the matrix whose columns
are those eigenvectors, then

AHMA = D(λ1, . . . , λn).

If M is real and symmetric, then the eigenvectors can be taken to be real, and
they form an orthonormal basis for Rn.

9.13 Singular value decomposition
We have talked a lot about eigenanalysis of square matrices. For any square
matrix A, you can now find the eigenvalues and eigenvectors and have some
intuitive notion about how these relate to the geometry of the linear transfor-
mation given by the matrix A. In particular, you know that you can think of the
linear transformation as “scaling” by the eigenvector λi in the direction of the
corresponding eigenvector v⃗i.

This point of view works well in many situations. (You will use it to analyze
systems of linear first-order differential equations and to classify critical points
of surfaces in three-dimensional space, for instance.) Even if one’s data does
not appear in a square matrix, relationships between different quantities can
often be analyzed in this way by carrying out eigenanalysis of a corresponding
covariance matrix, which will be square.

However, we need a new tool when we are looking at transformations from
Rm to Rn. For instance, we may want to look at a rectangular matrix of stock
prices under different scenarios, or we might want to analyze how economic
factors influence GDP of geographically related provinces or countries. Singu-
lar value decomposition can even be used to analyze voting patterns in the US
Senate, showing interesting information about party affiliation. All of these in-
volve rectangular arrays of data, and invite interpretation based on the meaning
of the domain space and the range space.

Singular value decomposition of a rectangular matrix A will factor A into
three matrices:

A = UΣV T .
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Σ will be an almost-diagonal matrix – it will have the same dimensions as
A, so need not be square, but will be zero everywhere but the diagonal. On
the diagonal will appear the singular values of A, explained below. U and V
will be orthogonal matrices that give rotation or reflection on Rn or Rm, as
appropriate.

Here’s the fast version of the process of SVD:

• To find the orthonormal basis v⃗1, . . . , v⃗n of Rn that will give the columns
of the matrix V , we find the eigenvectors of ATA.

• We order the v⃗i by the magnitude of their eigenvalues: that means we
have λ1 ≥ λ2 ≥ · · · ≥ λn, and the matrix V is

V =

 ... ...
v⃗1 . . . v⃗n
... ...

 .

• The singular values that give the diagonal entries of Σ are σj =
√

λj.

• We can find the columns u⃗i of U , which also give (part of?) an orthonor-
mal basis of Rm, by solving Av⃗i = σiu⃗i for all the i = 1, . . . ,min(m,n).
If m > n, we can fill in the remaining u⃗i by Gram-Schmidt orthogonal-
ization.

• Then the matrix U is

U =

 ... ...
u⃗1 . . . u⃗n
... ...

 .

Since we define the singular values σj of A by Av⃗j = σju⃗j, for v⃗j an
eigenvector of ATA, we can follow the calculations to prove some of the claims
made above. For v⃗j an eigenvector of ATA with eigenvalue λj,
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(Av⃗i)(Av⃗j) = v⃗Ti A
TAv⃗j (9.1)

= v⃗Ti λj v⃗j. (9.2)

At the same time, using the definition of singular value we’ve got

(Av⃗i)(Av⃗j) = (σiu⃗i) · (σju⃗j) (9.3)
= σiσJ u⃗i · u⃗j. (9.4)

Since the v⃗i are orthonormal, by the Spectral Theorem, this tells us that either
σ2
j |u⃗j|2 = λj|v⃗j|2 (when i = j in the calculation above) or σiσju⃗i · u⃗j = 0,

when i ̸= j. That implies the u⃗j are also orthonormal, which we claimed above
but didn’t justify.

This gives you a way of finding the SVD decomposition of a matrix A, but
what does it all mean?

9.14 Applications of SVD
You may have read about principal component analysis (PCA). It’s a way of
analyzing data by looking at the principal (most predictive, or highest vari-
ance) directions in the data, in a way that can be made mathematically precise.
PCA is essentially a singular value decomposition on a correlation matrix –
that’s one reason we cover SVD in my course and this textbook. A correlation
matrix is always symmetric, so its SVD matrix factorization ends up being a
straightforward diagonalization C = QTDQ.****

SVD is more versatile than PCA, though. Singular value decomposition
examines the “principal components” in both the source space and the target
space, allowing two views of the same set of data. This can be very useful
when you’re trying to get a qualitative as well as quantitative understanding of
the data.



Chapter 10

Joint distributions

10.1 Jointly distributed discrete random variables
For simplicity, we’ll start by considering two jointly distributed random vari-
ables at a time. Once we’ve established these definitions, we can easily extend
to n jointly distributed random variables.

We say that X and Y are jointly distributed discrete random variables if

• both X and Y are defined on the same sample space Ω, and

• there is a probability measure P that satisfies the axioms of probability,
so that

• we have a function p(x, y) = P (X = x, Y = y) called the joint proba-
bility mass function of X and Y .

Notice that p(x, y) is a function defined on R2. Remember that a random
variable X or Y is a function from sample space Ω to R that assigns nu-
merical values to outcomes of probability experiments. In particular, then,
P (X = x, Y = y) = P (A ∩ B) where A = {ω ∈ Ω|X(ω) = x} and
B = {ω ∈ Ω|Y (ω) = y}. This seems a little pedantic but it’s nice to avoid
confusion by trying precision from the start!

We can call (X,Y ) or
[
X
Y

]
a random vector. You can see how linear alge-

bra will start emerging...

189



190 CHAPTER 10. JOINT DISTRIBUTIONS

10.1.1 Marginal probability mass function
The marginal probability mass functions are what we get by looking at only one
random variable and letting the other roam free. For jointly distributed random
variables (X,Y ), we sum over all possible values of Y to get the marginal for
X:

pX(x) =
∑
y

P (X = x, Y = y).

Similarly, sum over all possible values of X to get the marginal for Y :

pY (y) =
∑
x

P (X = x, Y = y).

You can think of these as collapsing back to single-variable probability. This
definition has its foundation in one of the initial rules of probability we learned:
if Ai are mutually exclusive events and ∪iAi = A, then

∑
i P (Ai) = P (A).

Think about how this gives the marginal probability mass functions above.

10.1.2 Examples of discrete jointly distributed random vari-
ables

Let’s do a pretty simple example first: we’ll return to our coin-tossing roots.
Toss a quarter and a dime into the air. We’ll let D and Q be the indicator random
variables for heads on the dime and the quarter, respectively. That means that
D = 1 if the dime shows heads and D = 0 if the dime shows tails, and Q = 1
for the quarter showing heads, Q = 0 for tails.

The space Ω of outcomes is pretty limited here: just four outcomes (H,H), (H,T ), (T,H), (T, T )
with equal probability. So

p(d, q) = 1/4 for d, q ∈ {0, 1}.

Moreover, D and Q are independent. Check for yourself and see that p(d, q) =
pQ(q)pD(d).

Here is a transformation of the two random variables D and Q. Let X be
the number of heads showing wehn you’ve tossed the two coins, and let Y be
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the amount of money showing tails. For instance, if the dime shows heads and
the quarter shows tails, X = 1 and Y = 25 cents. What is the joint pmf of X
and Y ?

It’s nice to draw a picture here:

Notice how this table allows us to see the joint pmf for X and Y and also
shows the marginal pmfs nicely.

Are X and Y independent? Definitely not – simply by reasoning about the
problem, we know that how much money shows tails is related to how many
coins show heads. We’ll return to this example in the next few sections.

Our coin-tossing problem didn’t have any nice formulas to work with. For
a contrasting discrete probability problem, we can return to dice!
Roll two dice. Let X be the maximum roll and Y the minimum roll. What is
the joint probability mass function for X and Y ?

Again, let’s draw a table illustrating the joint pmf and the marginal pmfs:
*****add picture*******
Notice that we can come up with nice formulas for the marginal pmfs:

pX(x) =
2x− 1

36
and

pY (y) =
13− 2y

36

for x, y ∈ {1, . . . , 6}.
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10.1.3 Conditional probability mass function

Rather than looking at the probability of given outcomes for Y regardless of
the value of X (or vice versa), maybe we’d like to look at the probability of
a given outcome of Y given a particular value of X . That is, maybe we want
P (Y = y|X = x). Using our previous rules for conditional probability, we
know that

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)

as long as P (X = x) is not zero. Following through the definitions, we can
find a conditional probability mass function as well:

p(y|x) = p(x, y)

pX(x)

for pX(x) > 0. Likewise,

p(x|y) = p(x, y)

pY (y)

for pY (y) > 0.
This also allows us to define conditional expected value:

E(Y |X = x) =
∑
y

yp(y|x).

Let’s apply this to the example of rolling two dice that we considered a few
paragraphs ago. Remember X is the max of our roll of two dice, while Y is the
minimum of the roll of two dice. We can find a nice equation for conditional
probability of X given any value Y = y:

p(x|y) =


0 x < y

1
13−2y x = y

2
13−2y x > y

.
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For example, if we want the probability mass function for X conditioned on
Y = 3, we’d evaluate and find:

p(x|Y = 3) =


0 x < 3
1
7 x = 3
2
(7 x > 3

.

Check this result using techniques from the past.

10.1.4 Independence
Build off of our old rule for independence: events A and B are independent
if P (A ∩ B) = P (A)P (B), so X and Y are independent (jointly distributed)
discrete random variables if and only if

p(x, y) = pX(x)pY (y)

for all (x, y) ∈ R2. Again, you can often use reasoning to guide you to whether
two random variables are independent or not.

10.1.5 Multivariate versions
Extend everything I just said by looking at random vectors

X⃗ =

X1
...

Xn


taking values in Rn.

Notice that we can write the expected value of a random vector as the vector
of expected values:

E(X⃗) =

E(X1)
...

E(Xn)

 = µ⃗.
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10.2 Jointly distributed continuous random vari-
ables

Again, we have the concept of random vector (X,Y ), and again we’ll do ev-
erything in the two-dimensional case first. The main difference from the last
section is that continuous random variables have a probability density function
and a cumulative distribution function to define, and so that’s what we’ll do!

Definition 10.2.1. The continuous random variables X and Y have a joint prob-
ability density function f(x, y) if there exists a probability measure P that sat-
isfies

P (X ≤ a, Y ≤ b) =

∫ a

x=−∞

∫ b

y=−∞
f(x, y)dydx

with f(x, y) ≥ 0 for all (x, y) ∈ R2 and∫ ∞
x=−∞

∫ ∞
y=−∞

f(x, y)dydx = 1.

A great fact: for a “nice” region C ⊂ R2, we have

P ((X,Y ) ∈ C) =

∫∫
C

f(x, y)dxdy.

Remember that in single-variable probability we were able to find the pdf
from the cdf by differentiating. Now we need partial derivatives, because we
have two variables to consider. Using the multivariate fundamental theorem of
calculus, we can see that

f(x, y) =
∂2

∂x∂y
P (X ≤ x, Y ≤ y).

Let’s do an example to see how this works in practice:

Example 10.2.1. I will give you a probability density function with a mystery
parameter c:

f(x, y) =

{
c(x+ y) 1 < x < y < 2

0 else
.
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The restrictions on the domain mean that the random vector (X, Y ) takes values
in a triangle:

Let’s find the parameter c that ensures that this pdf respects the laws of
probability: we need∫ ∞

−∞

∫ ∞
−∞

f(x, y)dxdy =

∫ y=2

y=1

∫ x=y

x=1

c(x+ y)dxdy = 1.

Notice the bounds of integration here: why are they what they are? We want to
integrate only over a triangle 1 < x < y < 2, not over the square 1 < x, y < 2.
Do the integration to find that this implies 1.5c = 1, so c = 2/3. Thus the pdf
is

f(x, y) =

{
2
3(x+ y) 1 < x < y < 2

0 else
.

10.2.1 Marginal and conditional probability density functions
We have a familiar pattern: take everything you learned from discrete random
variables, turn the sum into an integral, and you’ve got properties of continuous
random variables if correctly interpreted. So, we’ve got marginal pdfs

fX(x) =

∫ ∞
y=−∞

f(x, y)dy
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and

fY (y) =

∫ ∞
x=−∞

f(x, y)dx.

Example 10.2.2. Let’s revisit the example of X and Y jointly distributed with
pdf

f(x, y) =

{
2
3(x+ y) 1 < x < y < 2

0 else
.

Integrate to find the marginal pdf fX(x), and think carefully what bounds you
want:

fX(x) =

∫ y=2

y=x

2/3(x+ y)dy =
2

3
(xy +

y2

2
)

for 1 < x < 2 and fX(x) = 0 else. Likewise,

fY (y) =

∫ x=y

x=1

2/3(x+ y)dx =
2

3
(
x2

2
+ xy)

for 1 < y < 2 and fY (y) = 0 else. These are both functions of a single
variable, and so only that variable can appear in the expression for the marginal
pdf.

Remember that the marginal pdfs must also satisfy the laws of probability,
so we have to have fX(x) ≥ 0 and fY (y) ≥ 0 and∫ ∞

−∞
fX(x)dx = 1,

∫ ∞
−∞

fY (y)dy = 1.

Again, if (X, Y ) is a random vector with a joint density function f(x, y),
then we can define the conditional probability density function for a particular
value of X as

f(y|x) = f(x, y)

fX(x)
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when fX(x) > 0 and zero elsewhere. If we do this, we can define conditional
expected value:

E(Y |X = x) =

∫ ∞
−∞

yf(y|x)dy.

This is the expected value of Y given that X = x. However, if we are very
careful here we may find some problems, and one of them is a very famous
“paradox” in probability, the Borel-Kolomogorov paradox.

10.3 Covariance and correlation, again
Covariance and correlation were mentioned briefly earlier. Remember that we
looked at the variance of a sum of independent random variables in Chapter
5. Now, we care about non-independent random variables (jointly distributed
random variables!). So...

var(X + Y ) = var(X) + var(Y ) + 2cov(X, Y )

is one way to define covariance between X and Y . There are of course more
convenient formulas. Another definition of covariance is

cov(X, Y ) = E[(X − E(X))(Y − E(Y ))].

Use linearity of expectation to prove for yourself that this implies

cov(X, Y ) = E[XY ]− E[X]E[Y ].

If you need to compute the covariance of two random variables, this is often
the easiest way to do it.

Covariance thus defined for two (one-dimensional) random variables is
great, but in the multivariate situation we’ll want to look at the covariance ma-
trix! (This is exciting! Trust me!) For a random vector

X⃗ =

X1
...

Xn
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where all the Xi are jointly distributed, we define the covariance matrix Σ =

Cov(X⃗) as having entries Σij = cov(Xi, Xj) for 1 ≤ i, j ≤ n. This is always
a square matrix, and because of the symmetry of covariance, it’s always a sym-
metric matrix as well. Be aware that terminology varies from field to field and
book to book: some people call this a variance-covariance matrix, as you can
see that the terms on the diagonal are all cov(Xi, Xi) = var(Xi). Notice that
if all the variables Xi are independent of each other, Σ = Cov(X⃗) will be a
diagonal matrix.

Another cute way to use linear algebra to write the covariance matrix of a
random vector X ∈ Rn is to say that

Σ = E[(X⃗ − E(X⃗))(X⃗ − E(X⃗))T ].

Again, you can use properties of expectation to write

Σ = E(X⃗X⃗T )− µ⃗µ⃗T .

Last, we can prove that covariance matrices are always positive semidefinite
by using the following trick. Remember one characterization of a matrix S
being positive semidefinite was that v⃗TSv⃗ ≥ 0 for all non-zero vectors v⃗ ∈ Rn.
Well, for any random vector X⃗ with mean µ⃗ ∈ Rn,

v⃗TΣv⃗ = v⃗TE[(X⃗ − µ⃗)(X⃗ − µ⃗)T ]v⃗ (10.1)

= E[v⃗T (X⃗ − µ⃗)(X⃗ − µ⃗)T v⃗] (10.2)

= E[(v⃗ · (X⃗ − µ⃗))((X⃗ − µ⃗) · v⃗) (10.3)
= E[s2] >= 0. (10.4)

The quantity v⃗ · (X⃗ − µ⃗) will be some scalar, which we call s in the last line of
our calculation, and since s2 is always positive or at worst zero, we’re set!

Covariance has the drawback of being intimately related to the units and
magnitudes of the random variables under consideration. Correlation is the
unitless sister to covariance, and more easily allows comparisons between dif-
ferent types of information. Write σXi

=
√

var(Xi). Then as before we write



10.4. MULTIVARIATE CHANGE OF VARIABLES 199

ρ(Xi, Xj) for the correlation of Xi and Xj,

ρ(Xi, Xj) =
cov(Xi, Xj)

σXi
σXj

.

Remember that you can prove

−1 ≤ ρ(Xi, Xj) ≤ 1,

and in fact you can now prove that using the Cauchy-Schwarz inequality!
Moreover, we can define the correlation matrix Corr(X⃗) as the matrix whose
entries at spot i, j are ρ(Xi, Xj).

Mentioning the Cauchy-Schwarz inequality should give you flashbacks to
the section on vector inequalities (Section 8.4). In fact, covariance is concep-
tually a lot like an inner product, and in particular like the dot product for real
vectors. Remember that the dot product for real vectors satisfied a few proper-
ties:

• Symmetry: just as for v⃗, w⃗ ∈ Rn we have v⃗ · w⃗ = w⃗ · v⃗, we have
cov(X,Y ) = cov(Y,X).

• Linearity: just as (av⃗+bw⃗)·u⃗ = av⃗·u⃗+bw⃗·u⃗, we have cov(aX+bY, Z) =
acov(X,Z) + bcov(Y, Z).

• Positive-definiteness: just as v⃗ · v⃗ ≥ 0 and v⃗ · v⃗ = 0 if and only if v⃗ = 0,
we have cov(X,X) = var(X) ≥ 0 and var(X) = 0 if and only if X is
(more or less) constant.1

This is actually useful for financial applications.

10.4 Multivariate change of variables
In the linear algebra sections of the book, we spent significant effort on chang-
ing bases. Now we’re going to change variables. This is conceptually similar

1To be precise here, I should actually say “almost everywhere constant” or “almost surely constant” – constant
everywhere but a set of measure zero. But you need measure theory for this.
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and will use some linear algebra, but the huge difference is that we don’t have
to make linear changes of variables! We can make all sorts of changes of vari-
ables!

First, the technical details; then some examples. Consider n continuous
random variables X1, . . . , Xn with a continuous joint distribution. Call their
joint probability density function f(x1, . . . , xn) and let it be defined on a do-
main S. Say we want to transform these random variables into n new random
variables, Y1, . . . , Yn, using some one-to-one differentiable functions r1, . . . , rn
from S to T :

Yi = ri(X1, . . . , Xn)

for i = 1, . . . , n. Here T is some new domain (could be the same as S or
different). Since these ri are one-to-one and differentiable, there is an inverse
transformation that has xi = si(y1, . . . , yn) for each i = 1, . . . , n. This takes
points in T to points in S. (Think about how this is the analogue of the “mono-
tonically increasing” or “monotonically decreasing” condition in the single-
variable case.)

Along with the inverse of the transformation, we need to know how the
transformation changes the variables infinitesimally. We understand this change
through using the Jacobian,

J = det


∂s1
∂y1
· · · ∂s1

∂yn... . . . ...
∂sn
∂y1
· · · ∂sn

∂yn

 .

Determinants are intimately related to volume – remember the determinant of
a three by three matrix is the volume of the parallelopiped spanned by the three
columns of the matrix, for instance. (This was discussed in section 8.9.) The
partial derivatives ∂si

∂yj
measures how much si is changing with respect to yj.

The combination of the determinant of the matrix of derivatives can be thought
of as measuring the change of volume that is forced by the transformation.

Given all this set-up, the joint probability density function g(y1, . . . , yn) of
the random variables Y1, . . . , Yn is

g(y1, . . . , yn) =

{
f(s1, . . . , sn)|J | (y1, . . . , yn) ∈ T
0 else
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There are essentially two actions here: you need to substitute in the new vari-
ables y1, . . . , yn by plugging in each xi = si(y1, . . . , yn), and then you need to
compensate for “stretching” caused by the transformation using |J |.

10.5 Bivariate and multivariate normal
The bivariate normal distribution is a great place to start exploring multivari-
ate normal distributions, as we can actually draw pictures. Let’s start with a
definition and a derivation.

Definition 10.5.1. A random vector X⃗ = (X, Y ) of jointly distributed ran-
dom variables has the bivariate normal distribution if aX + bY is normally
distributed for every pair (a, b) ∈ R2 with (a, b) ̸= (0, 0).

While a bit abstract, this is actually a very useful characterisation of bivari-
ate normal distributions. You might wonder, though, what the probability den-
sity function is. That’s fair. Let’s start, as in the single-variable case, with the
simplest situation – here, two independent though jointly-distributed standard
normal random variables. Thus we consider Z1 ∼ N (0, 1) and Z2 ∼ N (0, 1),
with ρ(Z1, Z2) = 0. Then the pdf for their bivariate normal distribution is

f(z1, z2) =
1

2π
e−

1
2 (z

2
1+z22)

for (z1, z2) ∈ R2. Notice this is no big surprise; since Z1 and Z2 are indepen-
dent, their joint density function is just the product of their individual density
functions.

As in the single-variable case, we can transform our way from this straight-
forward density function to any other bivariate normal density function. How
would we get to the probability density function for X⃗ = (X,Y ) where X ∼
N (µX , σ

2
X), Y ∼ N (µY , σ

2
Y ), and ρ(X, Y ) = ρ?

One way to look at this is to transform the standard normal Zi to have the
desired parameters, by using affine linear transformations:

X = σXZ1 + µX
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Y = σY [ρZ1 +
√
1− ρ2Z2] + µY .

We shift Z1 to get the desired mean µX and stretch to get the desired variance
var(X) = σ2

X . Check for yourself that Y has the desired mean and variance!
Since X and Y are linear combinations of normal random variables Z1 and Z2,
X and Y will also be normally distributed because of our definition previously.
Notice that cov(X, Y ) = σXσY ρ, as well.

How do we find the joint density function of X and Y from this? Use
the multivariate change of variables formula discussed earlier. In our current
situation, we have inverse functions

s1(x, y) =
x− µX

σX

and

s2(x, y) =
1√

1− ρ2

[
y − µY

σY
− ρ

x− µX

σX

]
.

These give the Jacobian

J = det

[
1
σX

0
−ρ

σX

√
1−ρ2

1

σY

√
1−ρ2

]
=

1

σXσY
√

1− ρ2
.

Putting this all together, we can get the horrible formula

f(x, y) =
1

2πσXσY
√
1− ρ2

e
−1

2(1−ρ2)

(
(x−µX )2

σ2
X

+
(y−µY )2

σ2
Y

−2ρ (x−µX )

σX

(y−µY )2

σY

)
.

Why do I call this horrible? Because it takes a long time to type, and some
people find it easy to mess up the recall of the formula on exams due to its
length. Use the power of linear algebra to simplify this expression! If we write

x⃗ =

[
x
y

]
, µ⃗ =

[
µX

µY

]
, Σ =

[
σ2
X ρσXσY

ρσXσY σ2
Y

]
,

then we can write instead

f(x⃗) =
1

2π
√

det(σ)
e−

1
2 (x⃗−µ⃗)

TΣ−1(x⃗−µ⃗).
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The best part is that this formula generalizes to a k-dimensional multivariate
normal: if x⃗ is k-dimensional, then

f(x⃗) =
1

(2π)k/2
√

det(Σ)
e−

1
2 (x⃗−µ⃗)

TΣ−1(x⃗−µ⃗).

The only change is in the power of 2π; the structure of the density function
remains the same. Of course, here Σ is the covariance matrix with Σi,j =
cov(Xi, Xj).

You need to familiarize yourself with the probability density function for
the bivariate and multivariate normal distributions to call yourself a financial
mathematician. They’re foundational. However, in practice you won’t use
these equations explicitly all that often. You’ll often be able to rely on com-
puter implementations of the multivariate normal to simulate returns or other
quantities that you’re modeling with a normal distribution, and you’ll be able
to use properties of the multivariate normal distribution to solve other problems
without going to the pdf. For instance, you might want to do a basic calculation
like this:

Example 10.5.1. You’re considering two stocks and modeling their returns us-
ing a joint bivariate distribution. Based on historical data, stock A has returns
with mean µA = 0.03 and variance σ2

A = 0.02, while stock B has returns with
mean µB = 0.1 and variance σ2

B = 0.01. What is the probability that a portfolio
that invests equally in both stocks will have returns greater than 0.08?

Using standardization and z-tables will be a fine technique for solving many
multivariate normal problems, and I would be negligent not to discuss these
problems here. On the other hand, you can find this material in many proba-
bility texts and I urge you to visit them for examples (see for instance Rosen-
crantz).

So as not to duplicate commonly-available standard materials, I’ll turn in-
stead to visualization and some topics I feel haven’t been covered very well in
the texts I’ve looked at.
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10.6 Visualizing the bivariate normal distribution

We’ll concentrate on the bivariate normal distribution just because it’s easy to
graph, but these ideas again generalize to higher dimensions!

You can graph the probability density function of a bivariate normal as a
surface, with f(x, y) = z:

***add pic*****
This gives you a nice visual representation of the fact that if X and Y have

a bivariate normal distribution then any aX + bY is also normally distributed
(for (a, b) ̸= 0⃗).

****add pic*****
Contour plots are a nice way of visualizing this pdf: we can take slices for

constant values c of f(x, y) = z and project them onto the xy plane, using
different colors to show different values of c:

*****add pic*********
At first glance this all seems a bit obvious, but the power of mathematics

only comes into play if you dig deeper and question the obvious. Why do we
always get ellipses? Do we always get ellipses? If we have ellipses, what
does their shape tell us? (Any ideas? Ponder these questions for three minutes
and then read on, or if you’re truly dedicated to understanding, get the Python
worksheet or grab your pencil and experiment.)

Do we always get ellipses? Well, yes and no. You don’t get an ellipse if
X and Y are equal, for instance. More generally, you don’t get an ellipse if
the covariance matrix is singular, but in that case you also can’t use the usual
equation for the probability density function because Σ−1 is not defined and
you have a divide-by-zero error at the very beginning (the 1

det(Σ) factor). If the
covariance matrix is full rank, which must be the case when you’re using the
pdf given, you get an ellipse.

Why an ellipse? To answer this, we need quadratic forms. Each of these
level sets is the set of points (x, y) that satisfy f(x, y) = c. Let’s solve:

1

2π
√

det(Σ)
e−

1
2 (x⃗−m⃗u)TΣ−1(x⃗−m⃗u) = c
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e−
1
2 (x⃗−m⃗u)TΣ−1(x⃗−m⃗u) = 2π

√
det(Σ)c = c̃

I don’t want to write out all the parts of this constant, so make a new constant
c̃.

(x⃗− m⃗u)TΣ−1(x⃗− m⃗u) = −2 ln c̃
This is a quadratic form!! Bet you thought you wouldn’t need Section 9.7
again. Hah. The matrix for this quadratic form is Σ−1. What do we know
about Σ−1? Well, we know it’s positive definite. How do we know that? Σ is
positive definite, with eigenvalues λi > 0 and corresponding eigenvectors v⃗i.
Then Σ−1 has eigenvalues 1/λi for corresponding eigenvectors v⃗i, and all those
eigenvalues are also positive – so Σ−1 must also be positive definite.

Speaking of these eigenvectors, they provide the directions of the major and
minor axes of the ellipses under consideration. (In higher dimensions, they give
all the axes of the “covariance ellipsoids”.) The eigenvector corresponding to
the biggest eigenvalue of Σ gives the major axis of the ellipse (the long dimen-
sion of the ellipse) and the eigenvector corresponding to the smaller eigenvalue
gives the minor axis of the ellipse, in this bivariate case.
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Chapter 11

Optimization and Newton’s
method

In the single-variable portion of the course, we emphasized short- and long-
term predictions (differentiation and integration) along with single-variable
probability. Then we learned about linear algebra with real and complex num-
bers, mixing that up with joint distributions of random variables. Now we’re
going to head toward different kinds of approximation: approximating solu-
tions to equations via Newton’s method and approximating scalar-valued func-
tions themselves using power series and Taylor polynomials.

11.1 Single-variable optimization

As a bit of motivation and a setting for these techniques, let’s start with opti-
mization for functions f : R→ R. The single-variable case is very familiar to
you, as it’s what a first calculus course emphasizes, but I’d like to call out the
parts that are particularly useful when we move to functions f(x⃗) defined on
Rn for n > 1.

207
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11.1.1 Single-variable unconstrained minima and maxima
Long ago and possibly far far away in your first calculus class, you learned how
to find local and global maxima and minima of functions f : R→ R:

• find the points xi at which f ′(xi) = 0 or at which f ′(xi) does not exist
(critical points)

• classify such points as local maxima, minima, or saddles using either the
first or second derivative tests,

• then compare all the values and the behavior of the function to determine
global maxima and minima (if they exist).

In most calculus class homework problems, finding xi such that f ′(xi) = 0
is possible algebraically or using trigonometry. If it is not straightforward to
solve the equations, you can use numerical methods like the bisection method
or Newton’s method to find values for xi. We’ll discuss Newton’s method in
the next section. To classify the critical points as maxima, minima, or saddle
points, you can look at the first derivative on either side of the point xi (does
the function change from increasing to decreasing, decreasing to increasing,
or not change direction?) or you can use the second derivative (check if the
function is concave up, concave down, or neither at the point xi). Let’s do a
few examples.

Example 11.1.1. Here’s an example that won’t exactly come up in finance,
but which is an illustration of the analytical methods you can use to find local
extrema. Think about the function f(x) = x+ sinx.

Identify critical points first: f ′(x) = 1 + cosx = 0 when cosx = −1, so
for all x = π + 2πk for k ∈ Z. How can we classify the critical points?

The first derivative test would tell us to look at where f is increasing (where
f ′(x) > 0) and where f is decreasing (where f ′(x) < 0). Well, we know
0 ≤ 1 + cosx ≤ 2 for all x, so f(x) is always non-decreasing – so all those
critical points are actually saddles by the first derivative test.

Another check: if we look at f ′′(x) = − sinx, we see that f does alternate
between being concave up (f ′′ > 0) and concave down (f ′′ < 0). But at
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x = π + 2πk, f ′′(x) = 0. So what does this tell us? Actually, nothing.
The second derivative test is indeterminate, because each critical point is an
inflection point as well.

A slight modification of the function is very different. If you consider
g(x) = 1

2x + sin x, you’ll find g′(x) = 1
2 + cos x = 0 forces cosx = −1

2 .
Looking at this geometrically, you can see that two sets of values solve this:
x = 2π

3 + 2πk and x = −2π
3 + 2πk for k ∈ Z. So we again have an infinite set

of critical points.
How do we classify these critical points? Since g′(x) > 0 on the intervals

where cosx > −1
2 , we have g increasing on (−2π

3 ,
2π
3 ) and all 2π translates, and

g decreasing on (2π3 ,
4π
3 ) and its 2π translates. Increasing to decreasing... that’s

a max, and so each x = 2π
3 + 2πk is a max. Decreasing to increasing makes a

minimum, and so x = −2π
3 + 2πk are all minima.

If you don’t want to think like that, check the second derivative. g′′(x) =
− sinx, and so g′′(x) > 0 for all x = −2π

3 + 2πk, which then are all minima.
Similarly, g′′(x) = − sinx < 0 for x = 2π

3 + 2πk, so those are maxima.

To know whether your extrema are local or global extrema,

• Check whether the function goes to infinity or negative infinity as x goes
to infinity or negative infinity, and check to see if the function has any
asymptotes.

• Make a list of the value of the function at the maxes and mins.

• Compare the two parts above and pick out the local and global maxes
and mins.

Remember that a global or absolute maximum point x0 for f : R → R is
a point such that for all other x ∈ R, f(x) ≤ f(x0). For instance, a function
whose highest-degree term ax2k has a positive coefficient a will go to positive
infinity as x goes to∞ or∞, because of the even degree. That means it cannot
have a global maximum at any particular value of x in R, because you can
always find a bigger x and a bigger output.
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11.1.2 Single-variable constrained optimization
In the single-variable case, it’s actually usually really easy to deal with con-
traints, because they just can’t be that complicated: contstraints in R take the
form of restricting to an interval or a point. For instance, you can find the
mins and maxes of f(x) = x

2 + sin(x) on the interval [0, π] by using our pre-
vious work (which tells us x = 2π

3 is a critical point in this interval) and then
comparing the output of f there with the value of f at the ends of the interval:

With a picture it’s very easy to see what’s going on. Even in the absence of
a picture we can follow the following procedure as long as f(x) is continuous
on [a, b].

To find the absolute maximum and minimum of f(x) on [a, b]:

• Find the critical points of f(x) in the interior (a, b). (You don’t need to
classify them.)

• Evaluate f(x) at the critical points and evaluate f(a) and f(b). Write
these down in a list.

• Circle the biggest value, circle the smallest value. These give you your
absolute min and absolute max!

There is a theorem that applies here:
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Theorem 11.1.1 (Extreme Value Theorem). As long as f(x) is continuous on
[a, b], f(x) will attain an absolute maximum and an absolute minimum on the
interval [a, b].

The idea that you should look at the interior of the contrained region and
then look at the boundaries will carry over into the multivariable setting.

11.2 Newton’s method, single-variable

Many equations can’t be solved exactly. Even many polynomials can’t be
solved exactly! Newton’s method provides a way of approximating roots of
any differentiable function. You might think that Newton’s method is thus not
very versatile... but you just spent a few hours (I hope) finding f ′(x) = 0 for
various functions f(x). That means you were finding roots of the function f ′.
Newton’s method can be generalized into a variety of optimization techniques,
even inspiring methods in machine learning. Again, we’ll start with the famil-
iar single-variable version (and look at some failures of the method) and then
generalize.

Newton’s method relies on our old idea of short-term approximation or lin-
ear approximation, in essence “running it backward” to find roots by assuming
that there is some x close to our initial guess x1 such that f(x) = 0. If we
have an approximate solution x1, so f(x1) ≈ 0, we want a better solution
x2 = x1 +∆x (one so that f(x2) is ideally closer to zero than f(x1)). Use the
basic equation for short-term prediction to estimate this new x2:

0 ≈ f(x2) = f(x1 +∆x) ≈ f(x1) + f ′(x1)∆x.

This suggests we consider

∆x = − f(x1)

f ′(x1)
,

which we can use in x2 = x1 +∆x. In fact, this often works! And if it works
once, why not try again and find an even better x3?
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Newton’s method, then, is an iterative process that solves f(x) = 0 by
finding a sequence x1, x2, . . . , xn, . . . using

xi+1 = xi −
f(xi)

f ′(xi)
.

When successful, this sequence of xis converges to a root x. In general, you
don’t have to iterate too many times. If the root you are seeking to approximate
is of multiplicity one and your initial guess was a good one, then the number
of correct digits after the decimal roughly doubles after every iteration. This is
proved using power series, which we will discuss further.

Example 11.2.1. Find an approximate value for
√
50. (Hint: this is the same

as solving the equation x2 − 50 = 0.)

Example 11.2.2. Find an approximate value for the solution of (cosx)2 = x.

Newton’s method is fairly straightforward when it works. It fails to work
for several reasons. Two important “failure modes” are when f ′(xi) = 0 for
some xi in the iterative process, and when the sequence of xi fails to converge.

Visualize the first failure mentioned above: when f(xi) = 0, the graph of f
has a horizontal tangent line, and so the next step of Newton’s method (finding
the intersection of the horizontal tangent line with the x-axis) cannot be carried
out.

The second failure is very interesting mathematically, though outside the
scope of this class. It leads directly into what’s called “dynamical systems
theory” and “chaos theory”.

A note on conditions for convergence of Newton’s method: You can prove
that for a function f there exists an open interval U ∈ R1 around a root of
f so that for any x0 in U , Newton’s method converges if f is continuously
differentiable over U and f ′(x) ̸= 0 for all x in U . Basically, if f is “nice” and
U is small, we can get convergence.

Example 11.2.3. Analyze f(x) = x1/3 and explain why x0 = 1, for instance,
leads to a sequence xi that does not converge. We have a theorem that guaran-
tees conditions under certain conditions. Why doesn’t the theorem apply?
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Example 11.2.4. Analyze f(x) = x3 − 2x + 2. Start with x0 = 0. What
happens? Draw a picture.

This is an example of a period-two solution. Newton’s method oscillates
between two solutions forever. Instead of starting with x0 = 0, start with
x0 = 0.001 or another similarly small value. Do you get a different solution?
What happens? You should see an example of “sensitivity to initial conditions.”
While this seems somewhat theoretical, this comes up a lot in financial model-
ing. If you’re creating a model more complicated than a linear regression, you
may come up with something that gives you pretty different results depend-
ing on your initial conditions. “Robustness” and “sensitivity analysis” are both
words that come up in this context. Often professionals in mathematics prefer
robust models, models that don’t give wildly different results given slightly dif-
ferent inputs, because so many inputs coming from the real world are estimates
or adjustments.

Example 11.2.5. Consider the function f(x) = 9
2
√
3
(x3− x) and try any initial

value x0 ̸= 0 between −1 and 1. What happens? Draw a picture if you can!

This is an example of “chaotic” behavior. Chaos is avoided by most fi-
nancial mathematicians, but some instead lean into it: Benoit Mandelbrot, for
instance, has put forward the view that traditional stochastic calculus is fun-
damentally inaccurate for financial mathematics and that chaos theory and in
particular fractal self-similarity are better for describing the behavior of finan-
cial markets. Check out his book, “The Mis-behavior of Markets,” to learn
more.

11.2.1 Newton’s method for single-variable optimization

Instead of using Newton’s method to find f(x) = 0, we can use it to find
f ′(x) = 0 and thus find extrema more directly. Check for yourself that now the
iteration is

xt+1 = xt −
f ′(xt)

f ′′(xt)
.
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Since you’ll have computed f ′′(x) in the process, this will give a quick and
streamlined way of finding and classifying extrema as long as f ′′(x) ̸= 0. If
f ′′(x) = 0, you won’t be able to use this method at all – the iteration will
diverge quickly!

Put this into practice by finding the absolute minimum of f(x) = x2+sin x
to four decimal places without first finding the critical points of f(x).

11.3 Multivariate Taylor approximations
You will notice that everything above used f ′(x) and maybe f ′′(x), first and
second derivatives of single-variable functions. These pieces of information
can be encapsulated in linear approximations and quadratic approximations of
the function f(x). To generalize the methods above to multiple variables, we
need multivariate versions.

We will start with degree-two approximations of single-variable functions
to establish our notation and the ideas, then move to multivariable functions f :
Rn → R. Our primary multivariable examples will be functions f : R2 → R
because these can be drawn on paper!

How do you write the degree-two polynomial approximation to any func-
tion f : R1 → R? Dredge up memories from Taylor approximation and remind
yourself now. Remember that the Taylor series of a function f : R → R or
f : C→ C at a point a is given by the power series

T (x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n.

By just truncating this power series at some point, we can get fine degree-k
approximations near the input a:

f(x) ≈
k∑

n=0

f (n)(a)

n!
(x− a)n.

This includes our linear approximation,

f(x) ≈ f(a) + f ′(a)x
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and the quadratic approximation

f(x) ≈ f(a) + f ′(a)x+
1

2
f ′′(a)x2.

We’d like to do something similar for a multivariable function f : Rn → R.
Write f(x1, . . . , xn) or f(x⃗) for the (scalar) output of the function.

What is the multivariable equivalent of the first derivative?
It is called the gradient, and it assembles the first derivatives of f(x⃗) with

respect to every variable in one vector of partial derivatives: the gradient of
f(x⃗) is

∇⃗f(x⃗) =


∂f
∂x1
∂f
∂x2...
∂f
∂xn

 .

You can evaluate at a point x⃗ = a⃗ by plugging in a⃗:

∇⃗f(x⃗)|⃗a = ∇⃗f (⃗a) =


∂f
∂x1

(⃗a)
∂f
∂x2

(⃗a)
...

∂f
∂xn

(⃗a)

 .

At a point a⃗, this gradient vector ∇⃗f (⃗a) indicates the direction of fastest change
– the direction in which you’d walk from a⃗ to experience the greatest “slope.”

What is the multivariable equivalent to the second derivative? Instead of a
vector, we now need a matrix. This matrix Hf(x⃗) is called the Hessian, and
it’s a delightful matrix of the second derivatives of f with respect to each pair
of coordinates.

Hf(x⃗) =


∂2f
∂2x1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂xn... ...

∂2f
∂xn∂x1

. . . . . . ∂2f
∂2xn

 .

What is true about the Hessian matrix Hf (⃗a)?



216 CHAPTER 11. OPTIMIZATION AND NEWTON’S METHOD

• If f is a real-valued function of real variables, Hf (⃗a) is a real matrix.

• It is symmetric by Clairaut’s theorem, as long as f is second-differentiable
around a⃗.

• Its eigenvalues and eigenvectors at the point a⃗ tell us about the properties
of the function f near a⃗. In particular, we can classify critical points of
f using the Hessian evaluated at the critical point.

The multivariable quadratic approximation to f(x1, . . . , xn) at a = (a1, . . . , an)
can be written

q(x⃗) ≈ f (⃗a) + ∇⃗f (⃗a) · (x⃗− a⃗) +
1

2
(x⃗− a⃗)THf (⃗a)(x⃗− a⃗),

or in a slightly different notation where h⃗ is the small change from point a⃗,

f (⃗a+ h⃗) ≈ f (⃗a) + ∇⃗f (⃗a) · h⃗+
1

2
h⃗THf (⃗a)⃗h.

Notice that x⃗− a⃗ corresponds to h⃗.
Try applying this yourself:

Example 11.3.1. Find the quadratic approximation to the function f(x⃗) =
x21 sin(x2 − 2x3) at the point x⃗ = (−2,−π/2, π/2).

These quadratic approximations are useful in a variety of contexts, not just
optimization. In finance, option pricing methods include delta-approximations
(∆-approximation) which is a linear approximation, delta-gamma approxima-
tion (∆Γ-approximation), and then delta-gamma-theta methods. These are all
developed to estimate option price movements when the price of the underly-
ing is also changing. For an option on a single stock, single-variable methods
suffice... but of course you want to work with portfolios!

11.3.1 Zeroes of multivariate functions
You might ask yourself if you could find the roots of a function f(x⃗) using
something like Newton’s method. Well, kind of. The problem with finding
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roots of a function f : Rn → R is that often zeroes of such a function are not
isolated. For instance, what do the zeroes of f(x, y) = x2 + y2 − 1 look like?
Any points in the unit circle x2 + y2 = 1 give f(x, y) = 0. Or if you want to
know where f(x, y, z) = x2 + y2 − z2 is zero – it’s an entire surface in R3.
When f(x⃗) is a polynomial, the study of sets of points that give f(x⃗) = 0 is an
entire area of mathematics called algebraic geometry (the field in which I got
my PhD). It’s very beautiful mathematics, and there are even practical applica-
tions in optimization, cryptography (elliptic curves, for instance), and genetics.
However, algebraic geometry is really beyond the scope of this course.

One idea I will pull out from algebraic geometry is an idea that starts in mul-
tivariable calculus and linear algebra. In linear algebra, we saw that a system
of n linear equations in n variables has a unique solution if the corresponding
matrix is full rank. If you have more equations than variables, you may have
an “overdetermined” system – too many conditions may mean no solutions. If
you have fewer equations than variables, you may have an “underdetermined”
system – too much freedom means that solutions are not unique. You’ve got
a positive-dimensional space of solutions, in linear algebra. When you have
nonlinear equations, it’s not quite so clear, but a similar idea carries through.
Looking at f(x, y, z) = x2+y2−z2 = 0, you’ve got one condition or constraint
in a three-dimensional ambient space. That leaves two degrees of freedom, and
so you’ve got two-dimensional solution set. This reasoning can be extended.

Anyhow, we’ll leave this discussion here. A multivariate Newton’s method
for finding zeroes of f(x⃗) = 0 ∈ R just is not so easy because that zero set
won’t just be a point. However, we can use Newton’s method more fruitfully
in the setting of optimization. Isolated maxes and mins of f : Rn → R are
much more common, and very useful in finance. Maximizing the return of a
portfolio, minimizing the variance – classic applications.
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11.4 Multivariate optimization

11.4.1 Unconstrained optimization

A critical point of the function f is a point a⃗ at which ∇⃗f (⃗a) = 0, or at which f
is not differentiable. For a differentiable function f , how can you interpret this
in terms of “steepest ascent”?1 (What does this look like for a differentiable
function f(x1, x2), for instance?) Maxima and minima of f can appear only at
critical points.

We can classify a critical point a⃗ of f : Rn → R as a maximum, minimum,
or saddle by looking at Hf (⃗a). This is the multivariate version of the second
derivative test. Specifically, if this matrix is

• positive definite, then a⃗ is a strict minimum

• negative definite, then a⃗ is a strict maximum

• positive/negative semidefinite, then a⃗ is a non-strict minimum/maximum

• indefinite, then a⃗ is a saddle point

Wonderfully, we can get the definiteness of a matrix from looking at its
eigenvalues!

Quiz yourself:

• If the eigenvalues of a matrix are positive, the matrix is .

• If the eigenvalues of a matrix are negative, the matrix is .

• If one of the eigenvalues is zero, then the matrix is or ,
depending on

• If the matrix has eigenvalues of opposite signs, then the matrix is .

I’ll write this as a theorem so it’s official (and this can carry over to con-
strained optimization):

1If you said that ∇⃗f (⃗a) = 0 means there is some sort of a “flat point” at a⃗, you may have the right idea.
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Theorem 11.4.1. If f(x⃗) is a function with continuous second partial deriva-
tives on a set D ⊂ Rn, and a⃗ is an interior point of D that is also a critical point
of f , then the eigenvalues of the matrix Hf (⃗a) determine whether a⃗ is a (local)
maximum, minimum, or saddle point of f .

Again, if you’d like to check whether points are globally optimal, you’ll
need to understand the behavior of the function (continuous or not? bounded
or not?) and then examine the values of the function at the critical points and
as inputs go off to infinity in various directions.

11.4.2 Multivariate Newton’s method for optimization
Let’s return to the consideration of Newton’s method for optimization. Why
is Newton’s method useful when we’re considering optimization? Look at the
linear and quadratic approximations to f : Rn → R at a⃗:

L(x⃗) = f (⃗a) +∇f |⃗a · (x⃗− a⃗)

Q(x⃗) = f (⃗a) +∇f |⃗a · (x⃗− a⃗) +
1

2
(x⃗− a⃗)THf |⃗a(x⃗− a⃗)

Now, if a⃗ happens to be a critical point of the function f , then ∇f |⃗a = 0⃗.
But the point of Newton’s method is that we create an iterative process that
starts with a point that is not the minimum (if we knew the minimum, we
wouldn’t need to optimize!). So, rather than set ∇f |x⃗ = 0⃗ and solve, we want
to be slightly cleverer. Instead set∇Q(x⃗) = 0⃗ and use that to give us a hint.

∇Q(x⃗0) = Hf |x⃗0
x⃗+∇f |x⃗0

If we set this equal to zero and solve, we’d get

x⃗1 = −Hf−1 +∇f |x⃗0
.

Iterate!
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11.4.3 Constrained optimization
Either you want maxes/mins on the boundary of a region, or in a bounded
region.....



Chapter 12

Differential equations

Goals of this chapter

• find equilibrium solutions of basic differential equations

• classify equilibrium points of systems of first-order equations, at least
roughly!

This topic is mostly qualitative, but involves elements of review from earlier
topics as well. Keep an eye out for:

• short-term prediction

• long-term prediction

• Euler’s method

• a possible application of Newton’s method

• optimization

• eigenvalues and eigenvectors

221
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12.1 Equilibrium: the concept
Differential equations allow us to study how quantities change in relation to
each other, as they’re equations that set out the relationships between given
derivatives. Equilibrium is a useful concept to group our exploration: it’s de-
fined as “a state in which opposing forces or influences are balanced” according
to Google’s source on August 27, 2018. In the world of differential equations,
think of equilibrium as a solution to a differential equation in which quantities
are not increasing or decreasing, but instead are constant... a solution in which
derivatives are zero!

12.2 A single ordinary differential equation
Consider a basic differential equation like

dx

dt
= 0.02x.

This is the sort of equation we considered at the beginning of the semester: we
were able to solve such an equation using the method of long-term approxima-
tion or using analytical methods:∫

dx

x
=

∫
0.02dt

so
ln|x| = 0.02t+ C

and thus
x(t) = eCe0.02t = Pe0.02t.

In general, humans are more interested in gaining or losing money than
keeping it the same, but it’s actually extraordinarily useful for mathematicians
and analysts to understand equilibria, points at which the rate of change of a
quantity is zero. For this equation under consideration, the equilibrium solu-
tion would be when dx

dt = 0, which is when 0.02x = 0 (by the design of the
equation), which occurs only when the function x(t) = 0.
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Equilibrium analysis is useful because if we consider a smoothly-changing
dx
dt , then dx

dt can’t change signs without passing through zero! (When I say
“smoothly-changing” I mean that f(x) in dx

dt = f(x, t) is a continuous and dif-
ferentiable function. This is stricter than necessary but will serve our purposes.)
In fact, for a single differential equation like this which depends only on x, we
can draw a phase line that illustrates the behavior of x(t) by looking at the sign
of dx

dt .

Example 12.2.1. Consider the example

dx

dt
= 0.02x(1− x).

For what values of x(t) is the system at equilibrium? That is, when is dx
dt = 0?

Draw a phase line and indicate where dx/dt is positive and where it is negative.

The equation above is an example of a logistic differential equation. The
logistic equation is very useful in population ecology, and there is written

dP

dt
= rP

(
1− P

K

)
.

In this situation P (t) is population as a function of time, r is the growth rate of
the population, and K is the carrying capacity of the environment.

Example 12.2.2. Practice reading the differential equation: change in popula-
tion is proportional to the rate parameter times the population times one minus
the ratio of population to carrying capacity. What are the equilibrium values
for the differential equation? Draw a phase line and characterize the behavior
of the population with various initial conditions. Review: Remember initial
value problems were introduced in September.
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To carry out heuristic analysis of these differential equations, another great
graphical tool is the slope field or direction field. Slope fields can be generated
by computer or drawn by hand. To draw a slope field for a single differential
equation of the form dx

dt = f(x, t), draw the t- and x-axes and then for every
point (t, x) draw a small tick mark with slope f(x, t).

Here is an example: the slope field for dx
dt = 3x

(
1− x

2

)
is
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1
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To use a slope field for qualitative analysis of solutions to a differential equa-
tion, start at an initial value (t0, x)) of your choice and simply follow the ar-
rows! This traces a solution curve, and this curve is the graph of a solution to
the differential equation.
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Recall that we discussed Euler’s method for numerically solving these dif-
ferential equations. Euler’s method puts together many short-term predictions
to make a long-term prediction. How does that work again? Review!

Example 12.2.3. Use Euler’s method or the method of long-term predictions
to estimate x(2) if you know dx

dt = 3x(1− x/2) and you start at x(0) = 1. Use
two steps.

Example 12.2.4 (Challenge). Solve dx
dt = 3x(1− x/2) analytically.

12.3 So I can model a caribou population: what
about money?

A good qualitative understanding of differential equations is essential to pro-
gressing toward the Ito calculus and Black-Scholes equation. Let’s take a look
at the Black-Scholes equation for a moment:

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2∂

2C

∂S2
= rC.
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Here C(S, t) is the price, when the stock price is S and time is t, of a European
call option struck at price K with an expiration date of T . The parameter
σ is the volatility of the stock’s returns. This equation is a partial differential
equation (PDE) as opposed to the ordinary differential equations (ODEs) we’re
considering in this document. But the principles of “reading” a differential
equation remain the same! A very first analysis can go as follows:

• If we considered a simplified C(S, t) under some extraordinary condi-
tion in which C(S, t) did not vary according to S at all (imagine simply
holding S constant but letting time run) we’d end up with the equation

∂C

∂t
= rC.

Look familiar? Yes, it’s just the exponential growth from the first page
of this document!

• If we let t stay constant and just let S vary, as a thought experiment, we’d
get

rS
∂C

∂S
+

1

2
σ2S2∂

2C

∂S2
= rC.

This is a second-degree differential equation, as it has those second deriva-
tives. Ordinary autonomous second-degree differential equations can be
split into two ordinary first-degree differential equations; check out this
concept in the next chapter.

Understanding the uses and pitfalls of the Black-Scholes equation is a sig-
nificant endeavor in financial math! Having an acquaintance with ordinary
differential equations gives a mental context for dealing with Black-Scholes.

12.4 Systems of Differential Equations
Systems of differential equations: use everything you know about linear alge-
bra and transfer it to the differential equation setting! Let’s start with something
simple to get an idea of why this might work.
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Example 12.4.1. Consider the system of equations

dx

dt
= 3x

dy

dt
= −2y.

Alone, you’d be happy to solve either of these equations. You would get x(t) =
Pxe

3t and y(t) = Pye
−2t. This is still perfectly reasonable.

We can rewrite the system of differential equations using the language of
matrices: (

dx
dt
dy
dt

)
=

(
3 0
0 −2

)(
x
y

)
.

Then the solution is(
x(t)
y(t)

)
=

(
Pxe

3t

Pye
−2t

)
= Pxe

3t

(
1
0

)
+ Pye

−2t
(
0
1

)
.

Solutions to this differential equation, then, are curves in xy-space: they
depend on t (they are parametrized by t).

To draw a slope field or phase plane for a two-dimensional system of equa-
tions, take a point (x, y) in the plane and draw a tiny vector in the direction
of (

dx
dt
dy
dt

)
.

***Notice something: no equation I write today has a t appearing explicitly
on the right-hand side. Instead, they are of the form f(x, y). These are called
autonomous differential equations. It is possible in math to deal with non-
autonomous systems (

dx
dt
dy
dt

)
=

(
f(x, y, t)
g(x, y, t)

)
but that is definitely outside the scope of this class!!

Example 12.4.2. Systems of differential equations can be linear (the functions
describing the derivatives are linear and of form ax + by, for a and b real
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numbers at least for today) or non-linear. Here’s an example of a linear system:

(
dx
dt
dy
dt

)
=

(
3&1
−1&− 2

)(
x
y

)
.

Here is a phase plane with some solutions included (for positive t only):
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By contrast, here’s a nonlinear system:

(
dx
dt
dy
dt

)
=

(
3x2 + y

−x− 2 cos(y)

)
.

Notice that I can’t write it using the matrix format! Here’s the slope field, with
some solutions sketched. Which solution is wrong? Why is it wrong? Where
are common sources of error when using Euler’s method?
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12.5 Equilibria
We can find “equilibrium points” (we now call them fixed points instead) for
these differential equations just as we found equilibrium solutions for single
differential equations. Just solve for the points where dx

dt and dy
dt are both zero!

For a linear system of differential equations, the origin (0, 0) will always be
an/the only fixed point. (Why?) For nonlinear systems you’ve got to use what-
ever techniques you can to find these solutions.

Example 12.5.1. For (
dx
dt
dy
dt

)
=

(
3x2 + y

−x− 2 cos(y)

)
,

solve
3x2 + y = 0

and get the curve
y = −3x2.
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(A whole curve. . . ! Can you see this on the slope field? What would it mean?)
Then solve

−x− 2 cos(y) = 0

to get
x = −2 cos(y).

Put these together: if both are true,

y = −12 cos(y).

This has many solutions, but y ≈ −1.44969 is one of them and fits into our
picture. If that is true, then x ≈ 0.695147.. and that gives us our fixed point.
Messy! This is just one of many fixed points since cos(y) is periodic.

Look at this fixed point in the picture: how do the solutions relate to the
fixed points? How do they behave together? It looks like solutions “tend to-
ward’’ the fixed point. When solutions tend toward a fixed point, the fixed point
is called a sink. When solutions tend away from a fixed point, the fixed point
is called a source. When nearby solutions zoom past a fixed point, careening
toward it and then rushing away, the fixed point is called a saddle.1

Let’s deal with a simpler situation:

Example 12.5.2. Consider (
dx
dt
dy
dt

)
=

(
3x− y2

sin(y)− x

)
This has two equilibria. Solve 3x−y2 = 0 to get 3x = y2, and sin(y)−x = 0 to
get x = sin(y). Then sin(y) = y2/3, so 3 sin(y) = y2. This has the solutions
of y = 0 and y ≈ 1.72213. That means (0, 0) is an equilibrium point and
(.98857 . . . , 1.72213 . . .) is also an equilibrium point.

1How does this remind you of minima, maxima, and saddles when we look at optimizing functions like
z = f(x, y)?
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12.6 Straight-line solutions
Looking at phase planes of systems of linear first-order differential equations,
you can see that there are often straight-line solutions – solution curves that
follow a straight line into or out of the origin. This is no accident. Turns out
they run along eigenvectors. In fact, the solutions to a system of two linear DEs

d

dt
x⃗ = Ax⃗

where A has real eigenvalues λ1, λ2 with corresponding eigenvectors w⃗1, w⃗2

are completely classified by

x⃗(t) = c1e
λ1tw⃗1 + c2e

λ2tw⃗2.

(Actually, we can do the same if the eigenvectors are complex, but we have to
pick off the real parts of the solution by using the identity

eit = cos(t) + i sin(t)

and combining this with the complex eigenvectors.)

Example 12.6.1. Consider the system(
dx
dt
dy
dt

)
=

(
2&7

−1&− 6

)(
x
y

)
The matrix A has eigenvalues λ1 = −5, λ2 = 1:

(2− λ)(−6− λ) + 7 = 0 (12.1)
λ2 + 4λ− 5 = 0 (12.2)

(λ+ 5)(λ− 1) = 0. (12.3)

It’s got eigenvectors

w1 =

(
−1
1

)
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and

w2 =

(
−7
1

)
(check yourself!). So the straight-line solutions are

c1e
−5t
(
−1
1

)
and

c2e
1t

(
−7
1

)
.

Look at the phase plane:
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Here I did not draw the whole straight line solution in either situation: I drew
only the solution starting (with t = 0) at an initial value and continuing for
positive t. I did this because then you can see that the solutions associated
with λ1 go “in” toward the origin (as e−5t decreases when t increases) and the
solutions associated with λ2 go “out” from the origin (as et increases when t
increases).
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12.7 Back to Black-Scholes for a minute
In the first chapter I mentioned that second-degree differential equations can
often be split into two first-degree differential equations. The most classic ex-
ample of this is the motion of a spring with a mass on the end, possibly with
some external forcing. Back to physics for a moment!

The equation for the displacement u(t) of a spring in this situation is

m
d2u

dt2
+ γ

du

dt
+ ku = F (t),

where m is the mass at the end of the spring, γ is some damping coefficient (is
your spring moving through air, oil, peanut butter?), k is the spring constant (≈
stiffness), and F (t) describes the external forcing.2 Use a very simple trick to
rewrite this second-order equation as two first-order equations:

du

dt
= v.

Look: I made up a variable name for du
dt ! Now we get(

du
dt
dv
dt

)
=

(
v

1
m (F (t)− γv − ku)

)
.

This is not quite linear, but there are standard mathematical tools to deal with
this. Moreover, if F (t) = 0 (in other words, there’s no external forcing) you’ve
got all the information you need to solve(

du
dt
dv
dt

)
=

(
v

1
m (−γv − ku)

)
=

(
0 1
−k
m

−γ
m

)(
u
v

)
.

2Compare it to Black-Scholes:

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂

2C

∂S2
= rC

There are some similarities; the big difference is that Black-Scholes has derivatives with respect to time and stock
price.
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