

2

Level Up! CI/CD

Continuous Integration and Deployment

Curtis Spendlove

ii

Contents

Preface v

1 Introduction 1

1.1 Fork / Cone Project . 1

2 A Basic Test Harness with GitLab 3

2.1 Sample Project . 4

2.2 Add .gitlab-ci.yml . 7

2.2.1 Commit, Push, and Merge 8

2.3 Add Linting . 9

2.3.1 Auto-Linting . 13

2.3.2 Fail Softly . 14

2.4 Add Tests . 15

2.4.1 Create a Test . 17

3 Expanding the GitLab Test Harness 21

3.1 Fix the Linting . 21

3.2 Add Code Coverage . 24

3.2.1 GitLab Code Coverage 24

3.2.2 Do-It Yourself . 25

3.3 Add Code Coverage HTML Report 27

3.4 Add GitLab Pages Job . 29

3.4.1 Uncomment the Master Constraint 30

3.5 Tests, Tests, Tests . 31

3.6 Badges, Badges! We don’t NEED no Stinkin’ Badges 37

iii

iv CONTENTS

4 Adding Continuous Deployment to the Pipeline 39

5 BitBucket CI/CD 41

6 GitHub CI/CD 43

Preface

This is an example of “frontmatter”, which comes before the main text of the

book.

v

vi PREFACE

Chapter 1

Introduction

After the book is completed (or mostly completed) there will be a public repo

representing the code in the book. It isnt here, because Im still thinking through

the exact form I want it to take (I want it to be as instructional as possible, and

that is going against my nature to heavily rebase my code for clean histories.)

:)

1.1 Fork / Cone Project

fork / clone sample project. . .

push it to github on your account

continue on, brave warrior

IF, you dont want to use the repo, you can use a new express project. Ac-

tually I might want to make it so you do this anyway. . . at least in the GitLab

chapters. A simple project to get to know CI; then we can push a much better

codebase into CI.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

A Basic Test Harness with
GitLab

This is a basic test harness using GitLab as an example.

Note: Im using GitLab for the first portion. This is an introductory to

CI/CD for beginner/intermediate programmers (whove finished an excellent

set of tutorials or otherwise have some basic experience with coding). Its also

good for anyone relatively new to CI/CD workflows. For anyone experienced,

you may want to skip to (chapter whatever) for a more piecemeal configuration.

(There are some limitations to using a single, overall offering that can be solved

by using a more complex CI/CD workflow.)

This book, for now, does lean heavily toward Node.js / Express (in par-

ticular the MEAN stack). I plan on either adding appendices (or just writing

separate flavors of the book) for other popular frameworks. (Im leaning toward

appendices if I can make them make sense. . . hopefully they make sense as a

diff of the modifications that would be required to work for a Rails or Django

project, etc.)

(Move intro text blocks into a what to expect or how to navigate the book

section of the introduction.)

The next few chapters will serve as an introduction to Continuous Integra-

tion, Delivery, and Deployment, using GitLab and Heroku as our vehicles. If

you use a public project and dont do anything excessive on Heroku, following

3

4 CHAPTER 2. A BASIC TEST HARNESS WITH GITLAB

these chapters should be free.

For the purposes of the GitLab chapters, well be creating a very basic

Node.js / Express app. If youre unfamiliar with Node.js please feel free to

either download the base repository (without CI, ready for use throughout this

guide) or use your own repo.

(Note: if your code is in a language directly compatible with npm, you

should be fine with the examples as-is. If youre using a different language like

Ruby, Python, etc; youll need to tweak the build scripts for your build / test

tools. Future versions of this book will help identify and resolve these issues

for multiple languages.)

(Move the previous disclaimer to the front, as well.)

2.1 Sample Project

Well be creating a basic web application project using Node.js / Express. We

will then place it under version control with GitLab and add in CI/CD phases.

This will demonstrate a reasonable number of the sorts of issues youll en-

counter adding (or expanding) CI/CD to any project.

2.1. SAMPLE PROJECT 5

Youll need node, npm, and express installed on your development ma-

chine in order to create the base project and to locally run portions of the build

chain (localized linting, testing, etc). They can be easily installed on most op-

erating systems, and if youd rather not install them on your local machine, a

VM or Cloud IDE are excellent options.

Start with an empty subdirectory in whichever directory houses your devel-

opment projects:

Listing 2.1: Create Sample Project

$ mkdir levelup-test

$ cd levelup-test

$ express --css=less --view=pug --git

I always smoke test a project the first time it gets on my hard drive, regard-

less of whether I create it myself (like we just did) or clone it from a remote.

This project doesnt even have a test suite yet, so our smoke test is manual.

6 CHAPTER 2. A BASIC TEST HARNESS WITH GITLAB

Listing 2.2: Manual Smoke Test

$ npm install

npm notice created a lockfile as package-lock.json. You should commit this file.

added 173 packages in 9.374s

$ npm start

> levelup-test@0.0.0 start /Users/curtis/src/koc/levelup-test

> node ./bin/www

We can then visit our application on the default port of 3000.

Place it under version control, create a GitLab remote, and push the code.

Listing 2.3: Version and Push to GitLab

2.2. ADD .GITLAB-CI.YML 7

$ git init

$ git remote add origin git@gitlab.com:[group]/[project-name].git

$ git add --all

$ git commit [...]

$ git push -u origin master

2.2 Add .gitlab-ci.yml

When getting to know a feature, its often a good idea to start with any templates

provided by the tool makers. GitLab has a button in the project overview to

walk through this (they also publish the templates in a repo).

I expect that tool changes over time as best practices are discovered and

refined. As of this books publishing, the below script is the resulting template:

Listing 2.4: .gitlab-ci.yml

This file is a template, and might need editing before it works on your project.

Official framework image. Look for the different tagged releases at:

https://hub.docker.com/r/library/node/tags/

image: node:latest

Pick zero or more services to be used on all builds.

Only needed when using a docker container to run your tests in.

Check out: http://docs.gitlab.com/ce/ci/docker/using_docker_images.html#what-is-a-service

services:

- mysql:latest

- redis:latest

- postgres:latest

This folder is cached between builds

http://docs.gitlab.com/ce/ci/yaml/README.html#cache

cache:

paths:

- node_modules/

test_async:

script:

- npm install

- node ./specs/start.js ./specs/async.spec.js

test_db:

script:

- npm install

- node ./specs/start.js ./specs/db-postgres.spec.js

8 CHAPTER 2. A BASIC TEST HARNESS WITH GITLAB

This initial template is good to start, but we will modify it over time to

enforce our preferences. The first minor changes involve the services and jobs:

• delete services section (we wont be linking services in this sample)

• change test_async to test (I like concise names)

• delete node call from test job (we dont have tests yet)

• delete test_db (we wont be testing the db in this sample)

Listing 2.5: .gitlab-ci.yml

This file is a template, and might need editing before it works on your project.

Official framework image. Look for the different tagged releases at:

https://hub.docker.com/r/library/node/tags/

image: node:latest

This folder is cached between builds

http://docs.gitlab.com/ce/ci/yaml/README.html#cache

cache:

paths:

- node_modules/

test:

script:

- npm install

(Note: This is a book about CI/CD, not about testing. The basic framework

we setup here will work with expanded configurations to flawlessly test very

complex setups with multiple databases and other attached services. Start out

small, grow big. In fact, I recommend if youre going to be adding CI/CD to a

large flagship project, you should instead start out small on a test project.)

2.2.1 Commit, Push, and Merge

The GitLab interface should now show the branch running the pipeline. It

should be triggered whenever you create an MR, push a code update to the

branch, or merge back into the parent branch.

2.3. ADD LINTING 9

This allows us to enforce constraints to virtually guarantee quality code

before its merged back into the parent branch and, up the chain, deployed into

production.

It doesnt do much yet, but it does trigger, and thats a victory. Grab your

favorite beverage and pat yourself on the back. . . the easy part is done. ;)

2.3 Add Linting

One of the most wonderful options a CI pipeline provides is an easy way to lint

code.

Linting: . . . (define)

Like most auxiliary processes, linting is performed via an external tool.

There are many, and they vary per language. My preference for JavaScript is

eslint.

Listing 2.6: Install eslint

$ npm install --save-dev eslint

+ eslint@4.7.0

added 127 packages in 80.414s

Adding a package to your project with npm install adds its binaries

to the .node_modules subdirectory. This allows you to call it manually, or

through scripts.

10 CHAPTER 2. A BASIC TEST HARNESS WITH GITLAB

Listing 2.7: Run eslint

$./node_modules/.bin/eslint .

Oops! Something went wrong! :(

ESLint: 4.6.1.

ESLint couldn't find a configuration file. To set up a configuration file for this

project, please run:

eslint --init

ESLint looked for configuration files in /Users/curtis/src/koc/levelup-test and its

ancestors.

If you think you already have a configuration file or if you need more help, please s

top by the ESLint chat room: https://gitter.im/eslint/eslint

Well, at least it starts!

You can, of course, use a preferred template for your configuration file if

you have one. If not, fire up eslint -init.

Listing 2.8: Initialize eslint

$ eslint --init

? How would you like to configure ESLint? Answer questions about your style

? Are you using ECMAScript 6 features? Yes

? Are you using ES6 modules? Yes

? Where will your code run? Browser

? Do you use CommonJS? No

? Do you use JSX? No

? What style of indentation do you use? Spaces

? What quotes do you use for strings? Single

? What line endings do you use? Unix

? Do you require semicolons? Yes

? What format do you want your config file to be in? JSON

Successfully created .eslintrc.json file in /Users/curtis/src/koc/levelup-test

You can see here that I went with the standard template (which I usually

customize slightly) and I prefer JSON format.

The tool finishes up by installing any needed plugins and creates an .eslintrc.json

file.

2.3. ADD LINTING 11

Listing 2.9: Resulting .eslintrc.json

{

"env": {

"browser": true,

"es6": true

},

"extends": "eslint:recommended",

"parserOptions": {

"sourceType": "module"

},

"rules": {

"indent": [

"error",

4

],

"linebreak-style": [

"error",

"unix"

],

"quotes": [

"error",

"single"

],

"semi": [

"error",

"always"

]

}

}

This configuration would be a pretty good start, but I recommend a slightly

simplified one while learning.

Listing 2.10: Suggested .eslintrc.json

{

"rules": {},

"env": {

"es6": true,

"browser": true

},

"extends": "eslint:recommended"

}

(You’re welcome to use your preference, if you have one. However, if

12 CHAPTER 2. A BASIC TEST HARNESS WITH GITLAB

you’re following the tutorial exactly, it’s a good idea to stick to the suggested

config.)

As usual, well be customizing this over time, but its a pretty good start. We

can now rerun ./node_modules/.bin/eslint .

And get a bunch of errors (mine shows 21).

Listing 2.11: Suggested .eslintrc.json

$./node_modules/.bin/eslint .

/Users/curtis/src/koc/levelup-test2/app.js

1:15 error 'require' is not defined no-undef

2:12 error 'require' is not defined no-undef

3:5 error 'favicon' is assigned a value but never used no-unused-vars

3:15 error 'require' is not defined no-undef

4:14 error 'require' is not defined no-undef

5:20 error 'require' is not defined no-undef

6:18 error 'require' is not defined no-undef

7:22 error 'require' is not defined no-undef

9:13 error 'require' is not defined no-undef

10:13 error 'require' is not defined no-undef

15:28 error '__dirname' is not defined no-undef

24:34 error '__dirname' is not defined no-undef

25:34 error '__dirname' is not defined no-undef

38:33 error 'next' is defined but never used no-unused-vars

48:1 error 'module' is not defined no-undef

/Users/curtis/src/koc/levelup-test2/routes/index.js

1:15 error 'require' is not defined no-undef

5:36 error 'next' is defined but never used no-unused-vars

9:1 error 'module' is not defined no-undef

/Users/curtis/src/koc/levelup-test2/routes/users.js

1:15 error 'require' is not defined no-undef

5:36 error 'next' is defined but never used no-unused-vars

9:1 error 'module' is not defined no-undef

21 problems (21 errors, 0 warnings)

The good news is that the above items are pretty easy to fix. The better

news is that we can allow this to fail for now.

2.3. ADD LINTING 13

2.3.1 Auto-Linting

Its pretty painful to remember to type ./node_modules/.bin/eslint .

every time we want to lint. It also violates best practices for CI/CD. If its not

automatic, its not continuous.

Fortunately, npm makes this pretty easy. We can add any number of aliases

with the scripts key in package.json:

Listing 2.12: Add "lint" Script to package.json

"scripts": {

"start": "node ./bin/www",

"lint": "./node_modules/.bin/eslint ."

}

Now a simple npm run lint provides you the extensive list of linting

violations. Yay, tools!

More importantly, it also gives us an easy command to add to a linting job

in the integration pipeline.

Listing 2.13: Add "lint" Task to .gitlab-ci.yml

lint:

script:

- npm install

- npm run lint

Commit, Push, Fail

This, of course, results in a failure.

14 CHAPTER 2. A BASIC TEST HARNESS WITH GITLAB

If you click and drill down into the results of the lint task, Im sure you

can verify your guess as to why. If it fails locally, rest assure it will fail in the

integration pipeline.

Ill provide the code to fix this later (or you can grab it from the online repo

if youre impatient). But for now, lets introduce allow_failure.

2.3.2 Fail Softly

We are currently failing hard, which triggers an error condition in the pipeline,

stopping anything further in the chain from executing (the rest of the paral-

lel tasks in the same phase of the pipeline will finish and indicate their error

status—notice test passed).

Fail fast is a basic best practice in software development. Its functioning as

we want it to. However, linting is for humans, not computers. The bots dont

care if our code is pretty, they care if it runs.

(Personally, I feel that in most cases one should strive to write exemplary

code. Therefore I prefer to require linting in all codebases where its possible.

However, teams must make this decision on what makes sense for them. And

its often a process over time, especially in legacy codebases.)

Fortunately, failing with a warning is a simple matter in most tools. In

GitLab we add allow_failure: true:

2.4. ADD TESTS 15

Listing 2.14: Allow Failure: True

lint:

script:

- npm install

- npm run lint

allow_failure: true

Commit, Push, Succeed (Kinda)

Your pipeline is still angry with you, but its didnt take the trash out angry,

instead of forgot your anniversary again angry.

Pull / Merge Request

Were done with this section, merge that sucker into its parent. That yellow

warning will bother you, and it should. This isnt a permanent solution. Its a

stop-gap.

2.4 Add Tests

A test harness isnt very useful without tests.

Before we conclude this chapter, we need to perform a similar task for the

testing tools as we did for the linting ones. Well use a pretty common suite

16 CHAPTER 2. A BASIC TEST HARNESS WITH GITLAB

of testing tools for Node / Express: mocha, chai, and superagent. Well

augment them as we go along with extra tools to support more best practices.

We follow the same pattern as earlier. Install, familiarize, add to npm, add

to pipeline.

Listing 2.15: Install Testing Tools

$ npm install --save-dev mocha chai superagent

+ superagent@3.6.0

+ chai@4.1.2

+ mocha@3.5.3

added 31 packages in 40.155s

I prefer to keep my tests in a test directory when dealing with Node

projects. We dont currently have that, so well get warnings (but well fix that

shortly).

Listing 2.16: Manual Test Check

$./node_modules/.bin/mocha ./test

As always, we can add this into our package.json.

Listing 2.17: Add Test Script to package.json

"scripts": {

"start": "node ./bin/www",

"lint": "./node_modules/.bin/eslint .",

"test": "mocha ./test"

}

And check it.

Listing 2.18: Check npm Test Script

$ npm run test

2.4. ADD TESTS 17

(npm gives us a shortcut for the test script)

Listing 2.19: npm test alias

$ npm test

And we can add the test job to the .gitlab-ci.yml file:

Listing 2.20: Add Test Job to .gitlab-ci.yml

test:

script:

- npm install

- npm test

After this, the suite should try to run the test (push and drill down to check).

It should fail, as no tests were executed. (Though various systems may treat no

tests as a pass.)

2.4.1 Create a Test

Well create a test (which will fail linting miserably, but thats acceptable for

now—well get back to linting).

Listing 2.21: Create test/index.test.js

$ mkdir test

$ touch test/index.test.js

Listing 2.22: Sample test/index.test.js

var assert = require('assert');

describe('Array', function() {

describe('#indexOf()', function() {

it('should return -1 when the value is not present', function() {

assert.equal(-1, [1,2,3].indexOf(4));

});

});

});

18 CHAPTER 2. A BASIC TEST HARNESS WITH GITLAB

This test is straight from the Mocha homepage, and it should pass with

flying colors (mostly green colors):

Listing 2.23: npm test passing

$ npm test

> levelup-test@0.0.0 test /Users/curtis/src/koc/levelup-test

> mocha ./test

Array

#indexOf()

should return -1 when the value is not present

1 passing (7ms)

Itll do, Donkey, itll do.

Commit, Push, Succeed

Success!

You can drill down if you wish. It is good to verify the server is perform-

ing what you expect it to. (I knew it succeeded even before drilling down or

typing the above paragraph, slack told me so. I highly recommend getting up a

clearinghouse for notifications.)

2.4. ADD TESTS 19

Merge

Were done with this section, and also this chapter. We have a very basic test

harness setup. No, it doesnt really do much, but its easy to expand. Take a few,

relax. Play some Factorio (Im sure your boss would like to be introduced to it.)

20 CHAPTER 2. A BASIC TEST HARNESS WITH GITLAB

In the next chapter, well expand the test harness into something more use-

ful. Well fix the linting, add real tests, and add code coverage (including push-

ing static results to GL pages).

Chapter 3

Expanding the GitLab Test
Harness

In this chapter, we expand the test harness to be more useful, and more accurate.

3.1 Fix the Linting

Im tired of the yellow warning. Im guessing you are too. :) Fortunately, this is

a tiny sample project, so its quite easy to take advantage of eslint and clean

up our code to conform to modern JavaScript styling (ES6, in this case).

Code style is a separate book in and of itself, so as it stands Im just going

to provide linted code which should pass our pipeline. I arrived at these modi-

fications through a combination of eslints auto fix features and a few manual

styling modifications.

Listing 3.1: app.js

var express = require('express');

var path = require('path');

// var favicon = require('serve-favicon');

var logger = require('morgan');

var cookieParser = require('cookie-parser');

var bodyParser = require('body-parser');

var lessMiddleware = require('less-middleware');

21

22 CHAPTER 3. EXPANDING THE GITLAB TEST HARNESS

var index = require('./routes/index');

var users = require('./routes/users');

var app = express();

// view engine setup

app.set('views', path.join(__dirname, 'views'));

app.set('view engine', 'pug');

// uncomment after placing your favicon in /public

//app.use(favicon(path.join(__dirname, 'public', 'favicon.ico')));

app.use(logger('dev'));

app.use(bodyParser.json());

app.use(bodyParser.urlencoded({ extended: false }));

app.use(cookieParser());

app.use(lessMiddleware(path.join(__dirname, 'public')));

app.use(express.static(path.join(__dirname, 'public')));

app.use('/', index);

app.use('/users', users);

// catch 404 and forward to error handler

app.use(function(req, res, next) {

var err = new Error('Not Found');

err.status = 404;

next(err);

});

// error handler

app.use(function(err, req, res) {

// set locals, only providing error in development

res.locals.message = err.message;

res.locals.error = req.app.get('env') === 'development' ? err : {};

// render the error page

res.status(err.status || 500);

res.render('error');

});

module.exports = app;

Listing 3.2: routes/index.js

var express = require('express');

var router = express.Router();

/* GET home page. */

router.get('/', function(req, res) {

res.render('index', { title: 'Express' });

	Preface
	Introduction
	Fork / Cone Project

	A Basic Test Harness with GitLab
	Sample Project
	Add .gitlab-ci.yml
	Commit, Push, and Merge

	Add Linting
	Auto-Linting
	Fail Softly

	Add Tests
	Create a Test

	Expanding the GitLab Test Harness
	Fix the Linting

