

2

PadrinoBook

The Guide To Master The Elegant Ruby Web Framework

Matthias Günther

ii

Contents

1 Introduction and Setup 1

1.1 Motivation . 1

1.1.1 Why Padrino . 2

1.1.2 Pages using Padrino 3

1.2 Tools and Knowledge . 3

1.2.1 Installing Ruby With rbenv 4

1.2.2 Ruby Knowledge . 6

1.3 Hello Padrino . 7

1.3.1 Directory Structure of Padrino 10

1.4 Conclusion . 13

2 Job Vacancy Application 15

2.1 Creating The Application . 15

2.1.1 Basic Layout . 18

2.1.2 First Controller And Routing 19

2.1.3 Application Template 21

2.1.4 CSS Design Using bulma 22

2.1.5 Using Sprockets to Manage the Asset Pipeline 23

2.1.6 Navigation . 26

2.1.7 Writing Tests . 28

2.2 Creating Models . 31

2.2.1 User Model . 31

2.2.2 Job Offer Model . 36

2.2.3 Creating Connection Between User And Job Offer Model 37

iii

iv CONTENTS

2.2.4 Testing Associations in the console 39

2.2.5 Testing With RSpec + Factory Bot 41

2.3 Login and Registration . 46

2.3.1 Extending the User Model 46

2.3.2 Validating attributes 47

2.3.3 Users Controller . 52

2.3.4 Emails . 61

2.3.5 Sending Email with Confirmation Link 68

2.3.6 My Tests are Slow . . . use Mocks! 69

2.3.7 Controller Method and Action For Password Confir-

mation . 71

2.3.8 Mailer Template for Confirmation Email 77

2.3.9 Registration and Confirmation Emails 78

2.4 Sessions . 85

2.5 User Profile . 101

2.5.1 Authorization . 107

2.5.2 Remember Me Function 110

2.5.3 Password Forget . 116

Chapter 1

Introduction and Setup

Why another book about how to develop an application (app) in Rails? But

wait, this book should give you a basic introduction on how to develop a web

app with Padrino. Padrino is “The Elegant Ruby Web Framework”. Padrino is

based upon Sinatra, which is a simple Domain Specific Language for quickly

creating web apps in Ruby. When writing Sinatra apps many developers miss

some of the extra conveniences that Rails offers, this is where Padrino comes in

as it provides many of these while still staying true to Sinatra’s philosophy of

being simple and lightweight. In order to understand the mantra of the Padrino

webpage: “Padrino is a full-stack ruby framework built upon Sinatra” you have

to read on.

1.1 Motivation

Shamelessly I have to tell you that I’m learning Padrino through writing a book

about instead of doing a blog post series about it. Besides I want to provide

up-to-date documentation for Padrino which is at the moment scattered around

the Padrino’s web page padrinorb.com.

Although Padrino borrows many ideas and techniques from it’s big brother

Rails it aims to be more modular and allows you to interchange various com-

ponents with considerable ease. You will see this when you will the creation of

two different application we are going to build throughout the book.

1

http://www.padrinorb.com
http://www.sinatrarb.com
http://www.padrinorb.com
http://rubyonrails.org

2 CHAPTER 1. INTRODUCTION AND SETUP

1.1.1 Why Padrino

Nothing is enabled without explicit choice. You as a programmer know what

database is best for your application, which Gems don’t carry security issues.

If you are honest to yourself you can only learn a framework by heart if you

go and digg under the hood. Because Padrino is small and you can understand

most of the source. There is no need for monkey-patching, almost everything

can be changed via an API. Padrino is rack-friendly, a lot of techniques that are

common to Ruby can be reused. Having a low stack frame makes it easier for

debugging. The best Rails convenience parts like I18n and active_support

are available for you.

Before going any further you may ask: Why should you care about learning

and using another web framework? Because you want something that is easy to

use, simple to hack, and open to any contribution. If you’ve done Rails before,

you may reach the point where you can’t see how things are solved in particular

order. In other words: There are many layers between you and the core of you

application. You want to have the freedom to chose which layers you want

to use in your application. This freedoms comes with the help of the Sinatra

framework.

Padrino adds the core values of Rails into Sinatra and gives you the follow-

ing extras:

• orm: Choose which adapter you want for a new application.

• multiple application support: Split you application into small,

more manageble-and-testable parts that are easier to maintain and to test.

• admin interface: Provides an easy way to view, search, and modify

data in your application.

When you are starting a new project in Padrino only a few files are created

and, when your taking a closer look at them, you will see what each part of

the code does. Having less files means less code and that is easier to maintain.

Less code means that your application will run faster.

With the ability to manage different applications, for example: for your

blog, your image gallery, or your payment cycle; by separating your business

http://www.sinatrarb.com
http://www.sinatrarb.com

1.2. TOOLS AND KNOWLEDGE 3

logic, you can share data models, session information and the admin interface

between them without duplicating code.

Remember: “Be tiny. Be fast. Be a Padrino.”

1.1.2 Pages using Padrino

Here is a rough list of pages using Padrino:

• Coca Cola Enterprises - Coca Cola’s European bottling arm

• Maptia - A beautiful way to tell stories about places.

• Brainfeed - Back-end for iPad app that presents educational videos for

kids.

• martianoids.com - System administration company at Spain.

• HRPartner - The go-to cloud HR software for small & medium-sized

businesses.

• tokyo-project - A photo gallery showcasing pictures of Tokyo

• HOF Studios Website - HOF Studios specializes in game development

for PC and mobile platforms.

Even more open-source application, web libraries as well as other pages

can be found on padrinorb page.

1.2 Tools and Knowledge

I won’t tell you which operating system you should use - there is an interesting

discussion on hackernews. I’ll leave it free for the reader of this book which to

use, because you are reading this book to learn Padrino.

To actually see a running padrino app, you need a web browser of your

choice. For writing the application, you can either use an Integrated Develop-

ment Environment (IDE) or with a plain text editor.

https://speakerdeck.com/daddye/padrino-framework-0-dot-11-and-1-dot-0
http://www.cokecce.com
http://maptia.com/
http://brainfeed.org/
http://martianoids.com
http://www.hrpartner.io/
http://www.tokyo-project.com/
http://www.hofstudios.com/
http://padrinorb.com/guides/introduction/examples/
https://news.ycombinator.com/item?id=3786674

4 CHAPTER 1. INTRODUCTION AND SETUP

Nowadays there are a bunch of Integrated Development Environments (IDEs)

out there:

• RubyMine by JetBrains - commercial, available for all platforms

• Eclipse Dynamic Languages Toolkit - free, available for all platforms

Here is a list of plain text editors which are a popular choice among Ruby

developers:

• Emacs - free, available for all platforms.

• Gedit - free, available for Linux and Windows.

• Notepad++ - free, available only for Windows.

• SublimeText - commercial, available for all platforms.

• Textmate - commercial, available only for Mac.

• Vim - free, available for all platforms.

All tools have their strengths and weaknesses. Try to find the software that

works best for you. The main goal is that you comfortable because you will

spend a lot of time with it.

1.2.1 Installing Ruby With rbenv

Instead of using the build-in software package for Ruby of your operating sys-

tem, we will use rbenv which lets you switch between multiple versions of

Ruby.

First, we need to use git to get the current version of rbenv:

$ cd $HOME

$ git clone git://github.com/sstephenson/rbenv.git .rbenv

https://www.jetbrains.com/ruby
https://projects.eclipse.org/projects/technology.dltk
https://www.gnu.org/s/emacs
https://wiki.gnome.org/Apps/Gedit
https://notepad-plus-plus.org
https://www.sublimetext.com/
https://macromates.com/
http://www.vim.org
https://github.com/sstephenson/rbenv
https://git-scm.org

1.2. TOOLS AND KNOWLEDGE 5

In case you shouldn’t want to use git, you can also download the latest

version as a zip file from GitHub.

You need to add the directory that contains rbenv to your $PATH envi-

ronment variable. If you are on Mac, you have to replace .bashrc with

.bash_profile in all of the following commands):

$ echo 'export PATH="$HOME/.rbenv/bin:$PATH"' >> ~/.bashrc

To enable auto completion for rbenv commands, we need to perform the

following command:

$ echo 'eval "$(rbenv init -)"' >> ~/.bashrc

Next, we need to restart our shell to enable the last changes:

$ exec $SHELL

Basically, there are two ways to install different versions of Ruby: You can

compile Ruby on your own and try to manage the versions and gems on your

own, or you use a tool that helps you.

ruby-build

Because we don’t want to download and compile different Ruby versions

on our own, we will use the ruby-build plugin for rbenv:

$ mkdir ~/.rbenv/plugins

$ cd ~/.rbenv/plugins

$ git clone git://github.com/sstephenson/ruby-build.git

If you now run rbenv install you can see all the different Ruby version

you can install and use for different Ruby projects. We are going to install

ruby 2.4.1:

https://github.com
https://github.com/sstephenson/ruby-build

6 CHAPTER 1. INTRODUCTION AND SETUP

$ rbenv install 2.4.1

This command will take a couple of minutes, so it’s best to grab a Raider,

which is now known as Twix. After everything runs fine, you have to run

rbenv rehash to rebuild the internal rbenv libraries. The last step is to make

Ruby 2.4.1 the current executable on your machine:

$ rbenv global 2.4.1

Check that the correct executable is active by exexuting ruby -v. The

output should look like:

$ 2.4.1 (set by /home/.rbenv/versions)

Now you are a ready to hack on with Padrino!

1.2.2 Ruby Knowledge

For any non-Ruby people, I strongly advise you to check out one of these books

and learn the basics of Ruby before continuing here.

• Programming Ruby - the standard book on Ruby.

• Poignant Guide to Ruby - written by why the lucky stiff in an entertaining

and educational way.

In this book, I assume readers having Ruby knowledge and will not be

explaining every last detail. I will explain Padrino-specific coding techniques

and how to get most parts under test.

https://en.wikipedia.org/wiki/Twix
https://pragprog.com/book/ruby4/programming-ruby-1-9-2-0
http://poignant.guide/
https://en.wikipedia.org/wiki/Why_the_lucky_stiff

1.3. HELLO PADRINO 7

1.3 Hello Padrino

The basic layout of our application is displayed on the following image appli-

cation:

It is possible that you know this section from several tutorials, which makes

you even more comfortable with your first program.

Now, get your hands dirty and start coding.

First of all we need to install the padrino gem. We are using the last sta-

ble version of Padrino (during the release of this book it is version 0.14.0.1).

Execute this command.

$ gem install padrino

This will install all necessary dependencies and gets you ready to start.

Now we will generate a fresh new Padrino project:

https://rubygems.org/gems/padrino
https://rubygems.org/gems/padrino/versions/0.14.0.1

8 CHAPTER 1. INTRODUCTION AND SETUP

$ padrino generate project hello-padrino

Let’s go through each part of this command:

• padrino generate:1 Tells Padrino to execute the generator with the

specified options. The options can be used to create other components

for your app, like a mailing system or an admin panel to manage your

database entries. We will handle these things in a future chapter. A

shortcut for generate is g which we will use in all following examples.

• project: Tells Padrino to generate a new app.

• hello-padrino: The name of the new app, which is also the directory

name.

The console output should look like the following:

create

create .gitignore

create config.ru

create config/apps.rb

create config/boot.rb

create public/favicon.ico

create public/images

create public/javascripts

create public/stylesheets

create .components

create app

create app/app.rb

create app/controllers

create app/helpers

create app/views

create app/views/layouts

append config/apps.rb

create Gemfile

create Rakefile

create exe/hello-padrino

create tmp

create tmp/.keep

1You can also use padrino g or padrino-gen for the generate command, which will be used in the rest

of this book

1.3. HELLO PADRINO 9

create log

create log/.keep

skipping orm component...

skipping test component...

skipping mock component...

skipping script component...

skipping renderer component...

skipping stylesheet component...

identical .components

force .components

force .components

===

hello-padrino is ready for development!

===

$ cd ./hello-padrino

$ bundle --binstubs

===

The last line in the console output tells you the next steps you have to per-

form. Before we start coding our app, we need some sort of package manage-

ment for Ruby gems.

Ruby has a nice package manager called bundler which installs all nec-

essary gems in the versions you would like to have for your project. Other

developers know now how to work with your project even after years. The

Gemfile declares the gems that you want to install. Bundler takes the content

of the Gemfile and will install every package declared in this file.

To install bundler 1.14.6, execute the following command and check the

console output:

$ gem install bundler

Now we have everything we need to run the bundle command and install

our dependencies:

$ cd hello-padrino

$ bundle

Fetching gem metadata from https://rubygems.org/.........

https://bundler.io/
https://bundler.io/gemfile.html#gemfiles
https://rubygems.org/gems/bundler/versions/1.14.6

10 CHAPTER 1. INTRODUCTION AND SETUP

Let’s open the file app/app.rb (think of it as the root controller of your

app) and insert the following code before the last end:

app/app.rb

module HelloWorld

class App < Padrino::Application

get "/" do

"Hello Padrino!"

end

end

end

Now run the app with:

$ bundle exec padrino start

Instead of writing start, we can also use the s alias. Now, fire up your

browser with the URL http://localhost:3000 and see the Hello World Greet-

ing being printed.

Congratulations, you’ve built your first Padrino app!

1.3.1 Directory Structure of Padrino

Navigating through the various parts of a project is essential. Thus we will go

through the basic file structure of the hello-padrino project. The app consists

of the following parts:

|-- app

| |-- app.rb

| |-- controllers

| |-- helpers

| `-- views

| `-- layouts

|-- bin

|-- config

| |-- apps.rb

http://localhost:3000

1.3. HELLO PADRINO 11

| |-- boot.rb

| `-- database.rb

|-- config.ru

|-- exe

| |-- hello-padrino

|-- Gemfile

|-- Gemfile.lock

|-- public

| |-- favicon.ico

| |-- images

| |-- javascripts

| `-- stylesheets

|-- Rakefile

`-- tmp

We will go through each part.

• app: Contains the “executable” files of your project, along with the con-

trollers, helpers, and views of your app.

– app.rb: The primary configuration file of your application. Here

you can enable or disable various options like observers, your mail

settings, specify the location of your assets directory, enable ses-

sions, and other options.

– controller: The controllers make the model data available to the

view. They define the URL routes that are callable in your app and

defines the actions that are triggered by requests.

– helper: Helpers are small snippets of code that can be called in

your views to help you prevent repetition - by following the DRY

(Don’t Repeat Yourself) principle.

– views: Contains the templates that are filled with model data and

rendered by a controller.

• bin: contains the installed executables files installed by bundler. They

are used to prepare the environment for your app to run the exact defines

executables in this bin folder. This ensure that no other version then the

generates is used when your app is deployed and run in production.

12 CHAPTER 1. INTRODUCTION AND SETUP

• config: General settings for the app, including hooks (explained later)

that should be performed before or after the app is loaded, setting the

environment (e.g. production, development, test) and mounting other

apps within the existing app under different subdomains.

– apps.rb: Allows you to configure a compound app that consists

of several smaller apps. Each app has it’s own default route, from

which requests will be handled. Here you can set site wide config-

urations like caching, CSRF protection, sub-app mounting, etc.

– boot.rb: Basic settings for your app which will be run when you

start it. Here you can turn on or off the error logging, enable inter-

nationalization and localization, load any prerequisites like HTML5

or Mailer helpers, etc.

– database.rb: Define the adapters for all the environments in your

application.

• config.ru: Contains the complete configuration options of the app, such

as which port the app listens to, whenever it uses other Padrino apps as

middleware and more. This file will be used when Padrino is started from

the command line.

• exe: contains the executable script to start the app.

• Gemfile: The place where you declare all the necessary gems for your

project. Bundle takes the content of this file and installs all the depen-

dencies.

• Gemfile.lock: This is a file generated by Bundler after you run bundle

install within your project. It is a listing of all the installed gems and

their versions.

• public: Directory where you put static resources like images directory,

JavaScript files, and style sheets. You can use for your asset packaging

sinatra-assetpack or sprockets.

1.4. CONCLUSION 13

• Rakefile: Is the file to manage build automation tasks. For example will

print the rake task rake routes all the defined routes in your padrino

application

• tmp: This directory holds temporary files for intermediate processing

like cache, tests, local mails, etc.

1.4 Conclusion

We have covered a lot of stuff in this chapter: installing the Padrino gem, find-

ing the right tools to manage different Ruby versions, and creating our first

Padrino app. Now it is time to jump into a real project!

14 CHAPTER 1. INTRODUCTION AND SETUP

Chapter 2

Job Vacancy Application

There are more IT jobs out there than there are skilled people available. It

would be great if we could have the possibility to offer a platform where users

can easily post new jobs vacancies to recruit people for their company. Now

our job is to build this software using Padrino. We will apply K.I.S.S principle

to obtain a simple and extensible design.

First, we are going to create the app file and folder structure. Then we are

adding feature by feature until the app is complete. First, we will take a look

at the basic design of our app. Afterwards, we will implement one feature at a

time.

2.1 Creating The Application

Start with generating a new project with the canonical padrino command.

In contrast to our “Hello World!” application (app) before, we are using new

options:

$ mkdir ~/padrino-projects

$ cd ~/padrino-projects

$ padrino-gen project job-vacancy -d activerecord \

-t rspec \

-s jquery \

-e erb \

-a sqlite

15

http://en.wikipedia.org/wiki/KISS_principle

16 CHAPTER 2. JOB VACANCY APPLICATION

Explanation of the fields commands:

• -d activerecord: We are using Active Record as the orm library (Object

Relational Mapper).

• -t rspec: We are using the RSpec testing framework.

• -s jquery: Defining the JavaScript library we are using - for this app will

be using the ubiquitous jQuery library.

• -e erb: We are using ERB (embedded ruby) markup for writing HTML

templates.

• -a sqlite: Our adapter for the activerecord ORM[ˆorm] database adapter

is SQLite. The whole database is saved in a text file.

Since we are using RSpec for testing, we will use its’ built-in mock ex-

tensions rspec-mocks for writing tests later. In case you want to use another

mocking library like rr or mocha, feel free to add it with the -m option.

You can use a vast array of other options when generating your new Padrino

app, this table shows the currently available options:

• orm: Available options are: activerecord, couchrest, dynamoid, datamap-

per, minirecord, mongomapper, mongoid, mongomatic, ohm, ripple, and

sequel. The command line alias is -d.

• test: Available options are: bacon, cucumber, minitest, rspec, shoulda,

and test-unit. The command line alias is -t.

• script: Available options are: dojo, extcore, jquery, mootools, and

prototype. The command line alias is -s.

• renderer: Available options are: erb, haml, liquid, and slim. The com-

mand line alias is -e.

• stylesheet: Available options are: compass, less, sass/scss, and scss

(which ist just sass with scss syntax). The command line alias is -c.

https://rubygems.org/gems/activerecord
https://github.com/dchelimsky/rspec/wiki/get-in-touch
https://jquery.com
https://ruby-doc.org/stdlib-2.4.1/libdoc/erb/rdoc/ERB.html
http://www.sqlite.org
https://github.com/rspec/rspec-mocks
https://rubygems.org/gems/rr
http://gofreerange.com/mocha/docs
https://github.com/rails/rails/tree/master/activerecord
https://github.com/couchrest/couchrest
https://github.com/Dynamoid/Dynamoid
http://datamapper.org
http://datamapper.org
https://github.com/DAddYE/mini_record
https://github.com/mongomapper/mongomapper
https://github.com/mongoid/mongoid
https://github.com/mongomatic/mongomatic
https://github.com/soveran/ohm
https://github.com/basho-labs/ripple
https://github.com/jeremyevans/sequel
https://github.com/chneukirchen/bacon
https://github.com/cucumber/cucumber
https://github.com/seattlerb/minitest
https://github.com/rspec/rspec
https://github.com/thoughtbot/shoulda
https://github.com/test-unit/test-unit
https://dojotoolkit.org
https://www.sencha.com/products/extjs/#overview
https://jquery.com
https://mootools.net
http://prototypejs.org/
https://ruby-doc.org/stdlib-2.1.4/libdoc/erb/rdoc/ERB.html
http://haml.info/
https://shopify.github.io/liquid/
http://slim-lang.com
http://compass-style.org
http://lesscss.org
http://sass-lang.com
http://sass-lang.com/documentation/file.SCSS_FOR_SASS_USERS.html

2.1. CREATING THE APPLICATION 17

• mock: Available options are: mocha and rr.

The default value of each option is none. In order to use them you have to

specify the option you want to use.

Besides the project option for generating new Padrino apps, the follow-

ing table illustrates the other generators available:

• admin: A built-in admin dashboard to manager your entities.

• admin_page: Creates for an existing model the CRUD operation for the

admin interface.

• app: You can define other apps to be mounted in your main app.

• controller: A controller takes data from the models and puts them

into view that are rendered.

• mailer: Creating new mailers within your app.

• migration: Migrations simplify changing the database schema.

• model: Models describe data objects of your application.

• project: Generates a completely new app from the scratch.

• plugin: Creating new Padrino projects based on a template file - it’s

like a list of commands.

Later, when the time comes, we will add extra gems, for now though we’ll

grab the current gems using bundle1 by running at the command line:

$ bundle install

1You can also use the -b option during project creation - then bundle will run for your automatically.

http://gofreerange.com/mocha
http://rr.github.io/rr

18 CHAPTER 2. JOB VACANCY APPLICATION

2.1.1 Basic Layout

Lets design our first version of the index.html page which is the starter page our

app. An early design question is: Where to put the index.html page? Because

we are not working with controllers, the easiest thing is to put the index.html

directly under the public folder in the project.

We are using HTML5 for the page, and add the following code into public/index.html

<!DOCTYPE html>

<html lang="en-US">

<head>

<title>Start Page</title>

</head>

<body>

<p>Hello, Padrino!</p>

</body>

</html>

Plain static content - this used to be the way websites were created in the be-

ginning of the web. Today, apps provide dynamic layout. During this chapter,

we will how to add more and more dynamic parts to our app.

We can take a look at our new page by executing the following command:

$ cd job-vacancy

$ bundle exec padrino start

You should see a message telling you that Padrino has taken the stage, and

you should be able to view our created index page by visiting http://localhost:3000/index.html

in your browser.

You might ask “Why do we use the bundle exec command - isn’t padrino

start enough?” The reason for this is that we use bundler to load exactly

those Ruby gems that we specified in the Gemfile. I recommend that you use

bundle exec for all following commands, but to focus on Padrino, I will skip

this command on the following parts of the book.

You may have thought it a little odd that we had to manually requests the

index.html in the URL when viewing our start page. This is because our app

currently has no idea about routing. Routing is the process to recognize request

https://en.wikipedia.org/wiki/HTML5
http://localhost:3000/index.html

2.1. CREATING THE APPLICATION 19

URLs and to forward these requests to actions of controllers. With other words:

A router is like a like vending machine where you put in money to get a coke.

In this case, the machine is the router which routes your input “Want a coke”

to the action “Drop a Coke in the tray”.

2.1.2 First Controller And Routing

Lets add some basic routes for displaying our home, about, and contact-page.

How can we do this? With the help of a routing controller. A controller makes

data from you app (in our case job offers) available to the view (seeing the

details of a job offer). Now let’s create a controller in Padrino names page:

$ padrino-gen controller pages --no-helper

create app/controllers/pages.rb

create app/views/pages

apply tests/rspec

create spec/app/controllers/pages_controller_spec.rb

Please note that we are using the -no-helper option which omits the cre-

ation of a helper files for our views.

Lets take a closer look at our page-controller:

app/controller/pages.rb

JobVacancy::App.controllers :pages do

get :index, :map => '/foo/bar' do

session[:foo] = 'bar'

render 'index'

end

get :sample, :map => '/sample/url', :provides => [:any, :js] do

case content_type

when :js then ...

else ...

end

get :foo, :with => :id do

'Maps to url '/foo/#{params[:id]}''

end

20 CHAPTER 2. JOB VACANCY APPLICATION

get '/example' do

'Hello world!'

end

end

The controller above defines for our JobVacancy the :pages controller

with no specified routes inside the app. Let’s change this and define the about,

contact, and home actions:

app/controller/pages.rb

JobVacancy:.App.controllers :pages do

get :about, :map => '/about' do

render :erb, 'about'

end

get :contact , :map => '/contact' do

render :erb, 'contact'

end

get :home, :map => '/' do

render :erb, 'home'

end

end

We will go through each line:

• JobVacancy::App.controller :pages - defines the namespace page

for our JobVacancy app. Typically, the controller name will also be part

of the route.

• do ... end - This expression defines a block in Ruby. Think of it

as a method without a name, also called anonymous functions, which is

passed to another function as an argument.

• get :about, :map => ’/about’ - The HTTP command get starts

the declaration of the route followed by the about action (as a sym-

bol2), and is finally mapped to the explicit URL /about. When you

2Unlike strings, symbols of the same name are initialized and exist in memory only once during a session of

ruby. This makes your programs more efficient.

2.1. CREATING THE APPLICATION 21

start your server with bundle exec padrino s and visit the URL

http://localhost:3000/about, you can see the rendered output of this re-

quest.

• render :erb, ’about’ - This action tells us that we want to render

the erb file about for the corresponding controller which is page in our

case. This file is actually located at app/views/page/about.erb file.

Normally the views are placed under app/views/<controller-name>/<action-name>.<ending>

Instead of using an ERB templates, you could also use :haml, or another

template engine. You can even completely drop the rendering option and

leave the matching completely for Padrino.

Call the following command to see all defined routes for your application:

$ padrino rake routes

=> Executing Rake routes ...

Application: JobVacancy

URL REQUEST PATH

(:pages, :about) GET /about

(:pages, :contact) GET /contact

(:pages, :home) GET /

2.1.3 Application Template

Although we are now able to put content (albeit static) on our site, it would

be nice to have some sort of basic styling on our web page. First we need to

generate a basic template for all pages we want to create:

<%# app/views/layouts/application.erb %>

<!DOCTYPE html>

<html lang="en-US">

<head>

<title>Job Vacancy - find the best jobs</title>

</head>

<body>

<%= yield %>

</body>

</html>

http://localhost:3000/about
https://www.ruby-toolbox.com/categories/template_engines

22 CHAPTER 2. JOB VACANCY APPLICATION

Let’s see what is going on with the <%= yield %> line. At first you may

ask what does the <> symbols mean. They are indicators that you want to

execute Ruby code to fetch data that is put into the template. Here, the yield

command will put the content of the called page, like about.erb or contact.erb,

into the template.

2.1.4 CSS Design Using bulma

bulma is an open source CSS framework based on Flexbox. It is designed to be

100% responsive for mobile devices.

Padrino itself also provides built-in templates for common tasks done on

web app. These padrino-recipes help you saving time by not reinventing the

wheel. Thanks to @wikimatze, we use his bootstrap-plugin by executing:

$ padrino g plugin bulma

apply https://raw.github.com/padrino/padrino-recipes/master/ \

plugins/bulma_plugin.rb

create public/stylesheets/bulma.css

Next we need to include the style sheet in our app template for the whole

app:

<%# app/views/layouts/application.erb %>

<!DOCTYPE html>

<html lang="en-US">

<head>

<title>Job Vacancy - find the best jobs</title>

<%= stylesheet_link_tag 'bulma' %>

<%= javascript_include_tag 'jquery', 'jquery-ujs' %>

</head>

<body>

<%= yield %>

</body>

</html>

The stylesheet_link_tag points to the bootstrap.min.css in you app

public/stylesheets directory and will automatically create a link to this stylesheet.

You can also use javascript_include_tagwhich does the same as stylesheet_link_tag

just for JavaScript files.

https://bulma.io/
https://github.com/padrino/padrino-recipes
https://twitter.com/wikimatze
https://github.com/padrino/padrino-recipes/blob/master/plugins/bootstrap_plugin.rb

2.1. CREATING THE APPLICATION 23

2.1.5 Using Sprockets to Manage the Asset Pipeline

Sprockets is a way to manage serving your assets like CSS, and JavaScript

compiling all the different files in one summarized file for each type.

To implement Sprockets in Padrino there the following strategies:

• rake-pipeline: Define filters that transforms directory trees.

• grunt: Set a task to compile and manage assets in JavaScript.

• sinatra-asset-pipeline: Let’s you define you assets transparently in Sina-

tra.

• sprocket-helpers: Asset path helpers for Sprockets 2.0 applications

• padrino-sprockets: Integrate sprockets with Padrino in the Rails way.

We are using the padrino-sprockets gem. Let’s add it to our Gemfile (don’t

forget to run bundle install):

Gemfile

gem 'padrino-sprockets', :require => ['padrino/sprockets'],

:git => 'git://github.com/nightsailer/padrino-sprockets.git'

Next we need to move all our assets from the public folder in the assets

folder:

$ mkdir -p job-vacancy/app/assets

$ cd job-vacancy/public

$ mv images ../app/assets

$ mv javascripts ../app/assets

$ mv stylesheets ../app/assets

Now we have to register Padrino-Sprockets in this application:

https://github.com/rails/sprockets
https://github.com/livingsocial/rake-pipeline
https://gruntjs.com
https://github.com/kalasjocke/sinatra-asset-pipeline
https://github.com/petebrowne/sprockets-helpers
https://github.com/nightsailer/padrino-sprockets

24 CHAPTER 2. JOB VACANCY APPLICATION

app/app.rb

module JobVacancy

class App < Padrino::Application

...

register Padrino::Sprockets

sprockets

...

end

end

Next we need create an application.css file and add the following to deter-

mine the order of the loaded CSS files in app/assets/stylesheets/application.css

/* app/assets/stylesheets/application.css */

/*

* This is a manifest file that'll automatically include all the stylesheets ...

* ...

*

*= require_self

*= require bulma

*= require site

*/

This file serves as a manifest file and the require_self directive indicates

that any CSS in the file should be delivered in the given order to the browser.

First we are loading the bulma css, and then our customized site CSS.

This is helpful if you want to check the order of the loaded CSS as a comment

above your application without ever have to look into the source of it. The file

Next let’s have a look into our JavaScript file app/assets/javascript/application.js

/* app/assets/javascript/application.js */

// This is a manifest file that'll be compiled into including all the files ...

// ...

//

//= require_tree .

The interesting thing here is the require_tree . option. This option

(note the Unix dot operator) tells Sprockets to include all JavaScript files in the

	Introduction and Setup
	Motivation
	Why Padrino
	Pages using Padrino

	Tools and Knowledge
	Installing Ruby With rbenv
	Ruby Knowledge

	Hello Padrino
	Directory Structure of Padrino

	Conclusion

	Job Vacancy Application
	Creating The Application
	Basic Layout
	First Controller And Routing
	Application Template
	CSS Design Using bulma
	Using Sprockets to Manage the Asset Pipeline

